Properties

Label 168.4.p.a.139.12
Level $168$
Weight $4$
Character 168.139
Analytic conductor $9.912$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(139,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.139"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.p (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.12
Character \(\chi\) \(=\) 168.139
Dual form 168.4.p.a.139.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.20291 + 1.77404i) q^{2} +3.00000i q^{3} +(1.70558 - 7.81607i) q^{4} +4.80791 q^{5} +(-5.32211 - 6.60872i) q^{6} +(7.97009 - 16.7176i) q^{7} +(10.1088 + 20.2438i) q^{8} -9.00000 q^{9} +(-10.5914 + 8.52942i) q^{10} -46.9141 q^{11} +(23.4482 + 5.11675i) q^{12} -72.3890 q^{13} +(12.1003 + 50.9665i) q^{14} +14.4237i q^{15} +(-58.1820 - 26.6619i) q^{16} -51.4848i q^{17} +(19.8261 - 15.9663i) q^{18} -102.868i q^{19} +(8.20029 - 37.5790i) q^{20} +(50.1528 + 23.9103i) q^{21} +(103.347 - 83.2274i) q^{22} +120.251i q^{23} +(-60.7315 + 30.3263i) q^{24} -101.884 q^{25} +(159.466 - 128.421i) q^{26} -27.0000i q^{27} +(-117.072 - 90.8080i) q^{28} -66.4930i q^{29} +(-25.5883 - 31.7741i) q^{30} +166.816 q^{31} +(175.469 - 44.4833i) q^{32} -140.742i q^{33} +(91.3360 + 113.416i) q^{34} +(38.3195 - 80.3767i) q^{35} +(-15.3502 + 70.3447i) q^{36} -156.568i q^{37} +(182.492 + 226.609i) q^{38} -217.167i q^{39} +(48.6021 + 97.3306i) q^{40} -509.410i q^{41} +(-152.899 + 36.3008i) q^{42} -367.069 q^{43} +(-80.0159 + 366.684i) q^{44} -43.2712 q^{45} +(-213.330 - 264.902i) q^{46} +262.751 q^{47} +(79.9857 - 174.546i) q^{48} +(-215.955 - 266.481i) q^{49} +(224.441 - 180.746i) q^{50} +154.455 q^{51} +(-123.465 + 565.798i) q^{52} +373.897i q^{53} +(47.8990 + 59.4784i) q^{54} -225.559 q^{55} +(418.996 - 7.64901i) q^{56} +308.604 q^{57} +(117.961 + 146.478i) q^{58} +429.575i q^{59} +(112.737 + 24.6009i) q^{60} -748.653 q^{61} +(-367.480 + 295.938i) q^{62} +(-71.7308 + 150.458i) q^{63} +(-307.626 + 409.280i) q^{64} -348.040 q^{65} +(249.682 + 310.042i) q^{66} +583.540 q^{67} +(-402.409 - 87.8116i) q^{68} -360.754 q^{69} +(58.1770 + 245.043i) q^{70} -168.649i q^{71} +(-90.9789 - 182.195i) q^{72} +185.820i q^{73} +(277.758 + 344.905i) q^{74} -305.652i q^{75} +(-804.024 - 175.450i) q^{76} +(-373.910 + 784.291i) q^{77} +(385.263 + 478.399i) q^{78} -151.500i q^{79} +(-279.734 - 128.188i) q^{80} +81.0000 q^{81} +(903.713 + 1122.18i) q^{82} -139.413i q^{83} +(272.424 - 351.217i) q^{84} -247.535i q^{85} +(808.619 - 651.195i) q^{86} +199.479 q^{87} +(-474.244 - 949.722i) q^{88} +684.248i q^{89} +(95.3224 - 76.7648i) q^{90} +(-576.947 + 1210.17i) q^{91} +(939.893 + 205.098i) q^{92} +500.448i q^{93} +(-578.815 + 466.130i) q^{94} -494.581i q^{95} +(133.450 + 526.406i) q^{96} -1053.68i q^{97} +(948.477 + 203.920i) q^{98} +422.227 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{2} + 10 q^{4} + 118 q^{8} - 432 q^{9} - 40 q^{11} + 38 q^{14} - 142 q^{16} + 18 q^{18} - 376 q^{22} + 1200 q^{25} - 274 q^{28} + 336 q^{30} + 318 q^{32} - 456 q^{35} - 90 q^{36} + 564 q^{42}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.20291 + 1.77404i −0.778845 + 0.627217i
\(3\) 3.00000i 0.577350i
\(4\) 1.70558 7.81607i 0.213198 0.977009i
\(5\) 4.80791 0.430033 0.215016 0.976610i \(-0.431019\pi\)
0.215016 + 0.976610i \(0.431019\pi\)
\(6\) −5.32211 6.60872i −0.362124 0.449666i
\(7\) 7.97009 16.7176i 0.430344 0.902665i
\(8\) 10.1088 + 20.2438i 0.446749 + 0.894659i
\(9\) −9.00000 −0.333333
\(10\) −10.5914 + 8.52942i −0.334929 + 0.269724i
\(11\) −46.9141 −1.28592 −0.642961 0.765899i \(-0.722294\pi\)
−0.642961 + 0.765899i \(0.722294\pi\)
\(12\) 23.4482 + 5.11675i 0.564076 + 0.123090i
\(13\) −72.3890 −1.54439 −0.772196 0.635384i \(-0.780842\pi\)
−0.772196 + 0.635384i \(0.780842\pi\)
\(14\) 12.1003 + 50.9665i 0.230995 + 0.972955i
\(15\) 14.4237i 0.248280i
\(16\) −58.1820 26.6619i −0.909093 0.416592i
\(17\) 51.4848i 0.734524i −0.930118 0.367262i \(-0.880295\pi\)
0.930118 0.367262i \(-0.119705\pi\)
\(18\) 19.8261 15.9663i 0.259615 0.209072i
\(19\) 102.868i 1.24208i −0.783778 0.621041i \(-0.786710\pi\)
0.783778 0.621041i \(-0.213290\pi\)
\(20\) 8.20029 37.5790i 0.0916821 0.420146i
\(21\) 50.1528 + 23.9103i 0.521154 + 0.248459i
\(22\) 103.347 83.2274i 1.00153 0.806552i
\(23\) 120.251i 1.09018i 0.838378 + 0.545090i \(0.183504\pi\)
−0.838378 + 0.545090i \(0.816496\pi\)
\(24\) −60.7315 + 30.3263i −0.516532 + 0.257930i
\(25\) −101.884 −0.815072
\(26\) 159.466 128.421i 1.20284 0.968669i
\(27\) 27.0000i 0.192450i
\(28\) −117.072 90.8080i −0.790163 0.612897i
\(29\) 66.4930i 0.425774i −0.977077 0.212887i \(-0.931713\pi\)
0.977077 0.212887i \(-0.0682866\pi\)
\(30\) −25.5883 31.7741i −0.155725 0.193371i
\(31\) 166.816 0.966484 0.483242 0.875487i \(-0.339459\pi\)
0.483242 + 0.875487i \(0.339459\pi\)
\(32\) 175.469 44.4833i 0.969336 0.245738i
\(33\) 140.742i 0.742427i
\(34\) 91.3360 + 113.416i 0.460706 + 0.572080i
\(35\) 38.3195 80.3767i 0.185062 0.388176i
\(36\) −15.3502 + 70.3447i −0.0710659 + 0.325670i
\(37\) 156.568i 0.695667i −0.937556 0.347834i \(-0.886917\pi\)
0.937556 0.347834i \(-0.113083\pi\)
\(38\) 182.492 + 226.609i 0.779055 + 0.967389i
\(39\) 217.167i 0.891656i
\(40\) 48.6021 + 97.3306i 0.192117 + 0.384733i
\(41\) 509.410i 1.94040i −0.242301 0.970201i \(-0.577902\pi\)
0.242301 0.970201i \(-0.422098\pi\)
\(42\) −152.899 + 36.3008i −0.561736 + 0.133365i
\(43\) −367.069 −1.30180 −0.650902 0.759162i \(-0.725609\pi\)
−0.650902 + 0.759162i \(0.725609\pi\)
\(44\) −80.0159 + 366.684i −0.274156 + 1.25636i
\(45\) −43.2712 −0.143344
\(46\) −213.330 264.902i −0.683779 0.849080i
\(47\) 262.751 0.815450 0.407725 0.913105i \(-0.366322\pi\)
0.407725 + 0.913105i \(0.366322\pi\)
\(48\) 79.9857 174.546i 0.240520 0.524865i
\(49\) −215.955 266.481i −0.629607 0.776914i
\(50\) 224.441 180.746i 0.634814 0.511227i
\(51\) 154.455 0.424078
\(52\) −123.465 + 565.798i −0.329261 + 1.50889i
\(53\) 373.897i 0.969032i 0.874783 + 0.484516i \(0.161004\pi\)
−0.874783 + 0.484516i \(0.838996\pi\)
\(54\) 47.8990 + 59.4784i 0.120708 + 0.149889i
\(55\) −225.559 −0.552989
\(56\) 418.996 7.64901i 0.999833 0.0182525i
\(57\) 308.604 0.717116
\(58\) 117.961 + 146.478i 0.267053 + 0.331612i
\(59\) 429.575i 0.947897i 0.880553 + 0.473948i \(0.157172\pi\)
−0.880553 + 0.473948i \(0.842828\pi\)
\(60\) 112.737 + 24.6009i 0.242571 + 0.0529327i
\(61\) −748.653 −1.57140 −0.785699 0.618609i \(-0.787696\pi\)
−0.785699 + 0.618609i \(0.787696\pi\)
\(62\) −367.480 + 295.938i −0.752741 + 0.606195i
\(63\) −71.7308 + 150.458i −0.143448 + 0.300888i
\(64\) −307.626 + 409.280i −0.600831 + 0.799376i
\(65\) −348.040 −0.664140
\(66\) 249.682 + 310.042i 0.465663 + 0.578236i
\(67\) 583.540 1.06404 0.532020 0.846732i \(-0.321433\pi\)
0.532020 + 0.846732i \(0.321433\pi\)
\(68\) −402.409 87.8116i −0.717637 0.156599i
\(69\) −360.754 −0.629415
\(70\) 58.1770 + 245.043i 0.0993355 + 0.418403i
\(71\) 168.649i 0.281901i −0.990017 0.140951i \(-0.954984\pi\)
0.990017 0.140951i \(-0.0450159\pi\)
\(72\) −90.9789 182.195i −0.148916 0.298220i
\(73\) 185.820i 0.297927i 0.988843 + 0.148963i \(0.0475936\pi\)
−0.988843 + 0.148963i \(0.952406\pi\)
\(74\) 277.758 + 344.905i 0.436334 + 0.541817i
\(75\) 305.652i 0.470582i
\(76\) −804.024 175.450i −1.21353 0.264809i
\(77\) −373.910 + 784.291i −0.553389 + 1.16076i
\(78\) 385.263 + 478.399i 0.559261 + 0.694461i
\(79\) 151.500i 0.215761i −0.994164 0.107881i \(-0.965594\pi\)
0.994164 0.107881i \(-0.0344064\pi\)
\(80\) −279.734 128.188i −0.390940 0.179148i
\(81\) 81.0000 0.111111
\(82\) 903.713 + 1122.18i 1.21705 + 1.51127i
\(83\) 139.413i 0.184369i −0.995742 0.0921843i \(-0.970615\pi\)
0.995742 0.0921843i \(-0.0293849\pi\)
\(84\) 272.424 351.217i 0.353856 0.456201i
\(85\) 247.535i 0.315870i
\(86\) 808.619 651.195i 1.01390 0.816513i
\(87\) 199.479 0.245821
\(88\) −474.244 949.722i −0.574484 1.15046i
\(89\) 684.248i 0.814945i 0.913217 + 0.407473i \(0.133590\pi\)
−0.913217 + 0.407473i \(0.866410\pi\)
\(90\) 95.3224 76.7648i 0.111643 0.0899080i
\(91\) −576.947 + 1210.17i −0.664621 + 1.39407i
\(92\) 939.893 + 205.098i 1.06512 + 0.232424i
\(93\) 500.448i 0.558000i
\(94\) −578.815 + 466.130i −0.635109 + 0.511464i
\(95\) 494.581i 0.534136i
\(96\) 133.450 + 526.406i 0.141877 + 0.559647i
\(97\) 1053.68i 1.10294i −0.834194 0.551471i \(-0.814067\pi\)
0.834194 0.551471i \(-0.185933\pi\)
\(98\) 948.477 + 203.920i 0.977660 + 0.210195i
\(99\) 422.227 0.428641
\(100\) −173.771 + 796.332i −0.173771 + 0.796332i
\(101\) 187.496 0.184718 0.0923592 0.995726i \(-0.470559\pi\)
0.0923592 + 0.995726i \(0.470559\pi\)
\(102\) −340.249 + 274.008i −0.330291 + 0.265989i
\(103\) 1791.24 1.71356 0.856778 0.515685i \(-0.172463\pi\)
0.856778 + 0.515685i \(0.172463\pi\)
\(104\) −731.764 1465.43i −0.689955 1.38171i
\(105\) 241.130 + 114.959i 0.224113 + 0.106846i
\(106\) −663.307 823.659i −0.607793 0.754725i
\(107\) −2.14700 −0.00193979 −0.000969897 1.00000i \(-0.500309\pi\)
−0.000969897 1.00000i \(0.500309\pi\)
\(108\) −211.034 46.0507i −0.188025 0.0410299i
\(109\) 522.814i 0.459417i 0.973259 + 0.229709i \(0.0737774\pi\)
−0.973259 + 0.229709i \(0.926223\pi\)
\(110\) 496.885 400.150i 0.430692 0.346844i
\(111\) 469.705 0.401644
\(112\) −909.438 + 760.164i −0.767267 + 0.641328i
\(113\) −2134.09 −1.77662 −0.888310 0.459245i \(-0.848120\pi\)
−0.888310 + 0.459245i \(0.848120\pi\)
\(114\) −679.826 + 547.476i −0.558522 + 0.449788i
\(115\) 578.158i 0.468813i
\(116\) −519.714 113.409i −0.415985 0.0907740i
\(117\) 651.501 0.514798
\(118\) −762.082 946.313i −0.594537 0.738264i
\(119\) −860.702 410.339i −0.663029 0.316098i
\(120\) −291.992 + 145.806i −0.222126 + 0.110919i
\(121\) 869.935 0.653595
\(122\) 1649.21 1328.14i 1.22387 0.985607i
\(123\) 1528.23 1.12029
\(124\) 284.518 1303.84i 0.206052 0.944264i
\(125\) −1090.84 −0.780541
\(126\) −108.902 458.698i −0.0769984 0.324318i
\(127\) 1767.79i 1.23517i −0.786505 0.617584i \(-0.788112\pi\)
0.786505 0.617584i \(-0.211888\pi\)
\(128\) −48.4089 1447.35i −0.0334280 0.999441i
\(129\) 1101.21i 0.751597i
\(130\) 766.700 617.436i 0.517262 0.416560i
\(131\) 2438.63i 1.62644i 0.581955 + 0.813221i \(0.302288\pi\)
−0.581955 + 0.813221i \(0.697712\pi\)
\(132\) −1100.05 240.048i −0.725358 0.158284i
\(133\) −1719.71 819.868i −1.12118 0.534523i
\(134\) −1285.48 + 1035.22i −0.828722 + 0.667384i
\(135\) 129.814i 0.0827599i
\(136\) 1042.25 520.448i 0.657149 0.328148i
\(137\) −1865.04 −1.16307 −0.581537 0.813520i \(-0.697549\pi\)
−0.581537 + 0.813520i \(0.697549\pi\)
\(138\) 794.707 639.991i 0.490217 0.394780i
\(139\) 898.779i 0.548442i −0.961667 0.274221i \(-0.911580\pi\)
0.961667 0.274221i \(-0.0884200\pi\)
\(140\) −562.873 436.597i −0.339796 0.263566i
\(141\) 788.252i 0.470800i
\(142\) 299.190 + 371.518i 0.176813 + 0.219557i
\(143\) 3396.07 1.98597
\(144\) 523.638 + 239.957i 0.303031 + 0.138864i
\(145\) 319.693i 0.183097i
\(146\) −329.652 409.345i −0.186865 0.232038i
\(147\) 799.444 647.866i 0.448551 0.363504i
\(148\) −1223.75 267.040i −0.679673 0.148315i
\(149\) 1332.55i 0.732665i −0.930484 0.366332i \(-0.880613\pi\)
0.930484 0.366332i \(-0.119387\pi\)
\(150\) 542.238 + 673.322i 0.295157 + 0.366510i
\(151\) 2382.62i 1.28407i 0.766674 + 0.642037i \(0.221910\pi\)
−0.766674 + 0.642037i \(0.778090\pi\)
\(152\) 2082.44 1039.87i 1.11124 0.554899i
\(153\) 463.364i 0.244841i
\(154\) −567.673 2391.05i −0.297042 1.25114i
\(155\) 802.036 0.415620
\(156\) −1697.39 370.396i −0.871156 0.190099i
\(157\) 3040.39 1.54554 0.772769 0.634687i \(-0.218871\pi\)
0.772769 + 0.634687i \(0.218871\pi\)
\(158\) 268.767 + 333.741i 0.135329 + 0.168044i
\(159\) −1121.69 −0.559471
\(160\) 843.638 213.872i 0.416846 0.105675i
\(161\) 2010.31 + 958.414i 0.984067 + 0.469153i
\(162\) −178.435 + 143.697i −0.0865383 + 0.0696908i
\(163\) 1419.40 0.682061 0.341030 0.940052i \(-0.389224\pi\)
0.341030 + 0.940052i \(0.389224\pi\)
\(164\) −3981.59 868.841i −1.89579 0.413689i
\(165\) 676.677i 0.319268i
\(166\) 247.324 + 307.114i 0.115639 + 0.143594i
\(167\) −330.413 −0.153103 −0.0765514 0.997066i \(-0.524391\pi\)
−0.0765514 + 0.997066i \(0.524391\pi\)
\(168\) 22.9470 + 1256.99i 0.0105381 + 0.577254i
\(169\) 3043.17 1.38515
\(170\) 439.136 + 545.295i 0.198119 + 0.246013i
\(171\) 925.813i 0.414027i
\(172\) −626.067 + 2869.04i −0.277542 + 1.27187i
\(173\) 1198.11 0.526537 0.263268 0.964723i \(-0.415200\pi\)
0.263268 + 0.964723i \(0.415200\pi\)
\(174\) −439.433 + 353.883i −0.191456 + 0.154183i
\(175\) −812.024 + 1703.25i −0.350762 + 0.735737i
\(176\) 2729.56 + 1250.82i 1.16902 + 0.535705i
\(177\) −1288.73 −0.547268
\(178\) −1213.88 1507.33i −0.511148 0.634716i
\(179\) −3734.89 −1.55955 −0.779773 0.626063i \(-0.784665\pi\)
−0.779773 + 0.626063i \(0.784665\pi\)
\(180\) −73.8026 + 338.211i −0.0305607 + 0.140049i
\(181\) −2846.85 −1.16909 −0.584544 0.811362i \(-0.698727\pi\)
−0.584544 + 0.811362i \(0.698727\pi\)
\(182\) −875.927 3689.42i −0.356747 1.50262i
\(183\) 2245.96i 0.907247i
\(184\) −2434.35 + 1215.59i −0.975339 + 0.487036i
\(185\) 752.767i 0.299160i
\(186\) −887.813 1102.44i −0.349987 0.434595i
\(187\) 2415.37i 0.944541i
\(188\) 448.143 2053.68i 0.173852 0.796702i
\(189\) −451.375 215.192i −0.173718 0.0828198i
\(190\) 877.405 + 1089.51i 0.335019 + 0.416009i
\(191\) 509.914i 0.193173i −0.995325 0.0965865i \(-0.969208\pi\)
0.995325 0.0965865i \(-0.0307924\pi\)
\(192\) −1227.84 922.877i −0.461520 0.346890i
\(193\) 2507.82 0.935320 0.467660 0.883908i \(-0.345097\pi\)
0.467660 + 0.883908i \(0.345097\pi\)
\(194\) 1869.27 + 2321.16i 0.691784 + 0.859020i
\(195\) 1044.12i 0.383441i
\(196\) −2451.17 + 1233.42i −0.893282 + 0.449496i
\(197\) 2902.21i 1.04961i 0.851222 + 0.524806i \(0.175862\pi\)
−0.851222 + 0.524806i \(0.824138\pi\)
\(198\) −930.126 + 749.047i −0.333844 + 0.268851i
\(199\) 40.6909 0.0144950 0.00724749 0.999974i \(-0.497693\pi\)
0.00724749 + 0.999974i \(0.497693\pi\)
\(200\) −1029.92 2062.52i −0.364132 0.729212i
\(201\) 1750.62i 0.614324i
\(202\) −413.036 + 332.625i −0.143867 + 0.115859i
\(203\) −1111.60 529.955i −0.384331 0.183229i
\(204\) 263.435 1207.23i 0.0904124 0.414328i
\(205\) 2449.20i 0.834437i
\(206\) −3945.94 + 3177.73i −1.33459 + 1.07477i
\(207\) 1082.26i 0.363393i
\(208\) 4211.74 + 1930.03i 1.40400 + 0.643382i
\(209\) 4825.97i 1.59722i
\(210\) −735.128 + 174.531i −0.241565 + 0.0573514i
\(211\) −1097.26 −0.358001 −0.179001 0.983849i \(-0.557286\pi\)
−0.179001 + 0.983849i \(0.557286\pi\)
\(212\) 2922.40 + 637.712i 0.946753 + 0.206595i
\(213\) 505.948 0.162756
\(214\) 4.72963 3.80885i 0.00151080 0.00121667i
\(215\) −1764.84 −0.559818
\(216\) 546.584 272.937i 0.172177 0.0859768i
\(217\) 1329.54 2788.76i 0.415921 0.872411i
\(218\) −927.492 1151.71i −0.288154 0.357815i
\(219\) −557.461 −0.172008
\(220\) −384.710 + 1762.99i −0.117896 + 0.540275i
\(221\) 3726.94i 1.13439i
\(222\) −1034.72 + 833.274i −0.312818 + 0.251918i
\(223\) 2630.89 0.790032 0.395016 0.918674i \(-0.370739\pi\)
0.395016 + 0.918674i \(0.370739\pi\)
\(224\) 654.847 3287.95i 0.195329 0.980738i
\(225\) 916.956 0.271691
\(226\) 4701.19 3785.95i 1.38371 1.11433i
\(227\) 2.95880i 0.000865120i −1.00000 0.000432560i \(-0.999862\pi\)
1.00000 0.000432560i \(-0.000137688\pi\)
\(228\) 526.350 2412.07i 0.152888 0.700629i
\(229\) −453.634 −0.130904 −0.0654520 0.997856i \(-0.520849\pi\)
−0.0654520 + 0.997856i \(0.520849\pi\)
\(230\) −1025.67 1273.63i −0.294047 0.365132i
\(231\) −2352.87 1121.73i −0.670163 0.319500i
\(232\) 1346.07 672.162i 0.380923 0.190214i
\(233\) −4514.35 −1.26929 −0.634646 0.772803i \(-0.718854\pi\)
−0.634646 + 0.772803i \(0.718854\pi\)
\(234\) −1435.20 + 1155.79i −0.400947 + 0.322890i
\(235\) 1263.28 0.350670
\(236\) 3357.59 + 732.676i 0.926104 + 0.202090i
\(237\) 454.501 0.124570
\(238\) 2624.00 622.980i 0.714659 0.169672i
\(239\) 3206.73i 0.867892i 0.900939 + 0.433946i \(0.142879\pi\)
−0.900939 + 0.433946i \(0.857121\pi\)
\(240\) 384.565 839.202i 0.103431 0.225709i
\(241\) 657.422i 0.175719i −0.996133 0.0878595i \(-0.971997\pi\)
0.996133 0.0878595i \(-0.0280027\pi\)
\(242\) −1916.39 + 1543.30i −0.509049 + 0.409946i
\(243\) 243.000i 0.0641500i
\(244\) −1276.89 + 5851.53i −0.335018 + 1.53527i
\(245\) −1038.29 1281.22i −0.270752 0.334098i
\(246\) −3366.55 + 2711.14i −0.872533 + 0.702666i
\(247\) 7446.52i 1.91826i
\(248\) 1686.30 + 3376.99i 0.431776 + 0.864674i
\(249\) 418.240 0.106445
\(250\) 2403.01 1935.19i 0.607920 0.489568i
\(251\) 1192.65i 0.299918i −0.988692 0.149959i \(-0.952086\pi\)
0.988692 0.149959i \(-0.0479141\pi\)
\(252\) 1053.65 + 817.272i 0.263388 + 0.204299i
\(253\) 5641.48i 1.40189i
\(254\) 3136.13 + 3894.28i 0.774718 + 0.962003i
\(255\) 742.604 0.182367
\(256\) 2674.29 + 3102.49i 0.652902 + 0.757443i
\(257\) 970.309i 0.235511i 0.993043 + 0.117755i \(0.0375698\pi\)
−0.993043 + 0.117755i \(0.962430\pi\)
\(258\) 1953.58 + 2425.86i 0.471414 + 0.585377i
\(259\) −2617.45 1247.86i −0.627954 0.299376i
\(260\) −593.611 + 2720.31i −0.141593 + 0.648870i
\(261\) 598.437i 0.141925i
\(262\) −4326.22 5372.07i −1.02013 1.26675i
\(263\) 2045.21i 0.479516i −0.970833 0.239758i \(-0.922932\pi\)
0.970833 0.239758i \(-0.0770681\pi\)
\(264\) 2849.17 1422.73i 0.664220 0.331678i
\(265\) 1797.66i 0.416715i
\(266\) 5242.83 1244.73i 1.20849 0.286915i
\(267\) −2052.74 −0.470509
\(268\) 995.275 4560.99i 0.226851 1.03958i
\(269\) 6862.26 1.55539 0.777694 0.628643i \(-0.216389\pi\)
0.777694 + 0.628643i \(0.216389\pi\)
\(270\) 230.294 + 285.967i 0.0519084 + 0.0644571i
\(271\) −2117.65 −0.474678 −0.237339 0.971427i \(-0.576275\pi\)
−0.237339 + 0.971427i \(0.576275\pi\)
\(272\) −1372.68 + 2995.49i −0.305997 + 0.667751i
\(273\) −3630.51 1730.84i −0.804866 0.383719i
\(274\) 4108.51 3308.65i 0.905855 0.729500i
\(275\) 4779.80 1.04812
\(276\) −615.295 + 2819.68i −0.134190 + 0.614945i
\(277\) 7334.96i 1.59103i −0.605935 0.795514i \(-0.707201\pi\)
0.605935 0.795514i \(-0.292799\pi\)
\(278\) 1594.47 + 1979.93i 0.343992 + 0.427151i
\(279\) −1501.34 −0.322161
\(280\) 2014.50 36.7758i 0.429961 0.00784919i
\(281\) 38.6602 0.00820738 0.00410369 0.999992i \(-0.498694\pi\)
0.00410369 + 0.999992i \(0.498694\pi\)
\(282\) −1398.39 1736.44i −0.295294 0.366680i
\(283\) 3982.79i 0.836581i −0.908313 0.418291i \(-0.862629\pi\)
0.908313 0.418291i \(-0.137371\pi\)
\(284\) −1318.17 287.645i −0.275420 0.0601007i
\(285\) 1483.74 0.308384
\(286\) −7481.22 + 6024.75i −1.54676 + 1.24563i
\(287\) −8516.11 4060.04i −1.75153 0.835041i
\(288\) −1579.22 + 400.350i −0.323112 + 0.0819127i
\(289\) 2262.31 0.460474
\(290\) 567.147 + 704.252i 0.114841 + 0.142604i
\(291\) 3161.05 0.636784
\(292\) 1452.39 + 316.932i 0.291077 + 0.0635173i
\(293\) 4674.36 0.932011 0.466005 0.884782i \(-0.345693\pi\)
0.466005 + 0.884782i \(0.345693\pi\)
\(294\) −611.761 + 2845.43i −0.121356 + 0.564452i
\(295\) 2065.36i 0.407627i
\(296\) 3169.54 1582.71i 0.622385 0.310788i
\(297\) 1266.68i 0.247476i
\(298\) 2364.00 + 2935.49i 0.459540 + 0.570632i
\(299\) 8704.87i 1.68367i
\(300\) −2389.00 521.314i −0.459763 0.100327i
\(301\) −2925.58 + 6136.51i −0.560224 + 1.17509i
\(302\) −4226.86 5248.69i −0.805393 1.00009i
\(303\) 562.488i 0.106647i
\(304\) −2742.66 + 5985.07i −0.517442 + 1.12917i
\(305\) −3599.46 −0.675753
\(306\) −822.024 1020.75i −0.153569 0.190693i
\(307\) 6915.51i 1.28563i −0.766020 0.642816i \(-0.777766\pi\)
0.766020 0.642816i \(-0.222234\pi\)
\(308\) 5492.34 + 4260.18i 1.01609 + 0.788137i
\(309\) 5373.73i 0.989322i
\(310\) −1766.81 + 1422.84i −0.323703 + 0.260684i
\(311\) −6458.69 −1.17762 −0.588808 0.808273i \(-0.700403\pi\)
−0.588808 + 0.808273i \(0.700403\pi\)
\(312\) 4396.29 2195.29i 0.797728 0.398346i
\(313\) 821.073i 0.148274i 0.997248 + 0.0741371i \(0.0236202\pi\)
−0.997248 + 0.0741371i \(0.976380\pi\)
\(314\) −6697.69 + 5393.77i −1.20373 + 0.969388i
\(315\) −344.876 + 723.390i −0.0616874 + 0.129392i
\(316\) −1184.14 258.396i −0.210801 0.0459998i
\(317\) 1884.71i 0.333929i −0.985963 0.166965i \(-0.946603\pi\)
0.985963 0.166965i \(-0.0533966\pi\)
\(318\) 2470.98 1989.92i 0.435741 0.350909i
\(319\) 3119.46i 0.547512i
\(320\) −1479.04 + 1967.79i −0.258377 + 0.343758i
\(321\) 6.44099i 0.00111994i
\(322\) −6128.79 + 1455.07i −1.06070 + 0.251826i
\(323\) −5296.15 −0.912339
\(324\) 138.152 633.102i 0.0236886 0.108557i
\(325\) 7375.28 1.25879
\(326\) −3126.80 + 2518.07i −0.531219 + 0.427800i
\(327\) −1568.44 −0.265245
\(328\) 10312.4 5149.51i 1.73600 0.866872i
\(329\) 2094.15 4392.56i 0.350924 0.736078i
\(330\) 1200.45 + 1490.66i 0.200250 + 0.248660i
\(331\) −10027.1 −1.66507 −0.832535 0.553973i \(-0.813111\pi\)
−0.832535 + 0.553973i \(0.813111\pi\)
\(332\) −1089.66 237.781i −0.180130 0.0393070i
\(333\) 1409.12i 0.231889i
\(334\) 727.870 586.166i 0.119243 0.0960286i
\(335\) 2805.61 0.457573
\(336\) −2280.49 2728.32i −0.370271 0.442982i
\(337\) 6709.98 1.08462 0.542308 0.840179i \(-0.317550\pi\)
0.542308 + 0.840179i \(0.317550\pi\)
\(338\) −6703.82 + 5398.70i −1.07882 + 0.868789i
\(339\) 6402.26i 1.02573i
\(340\) −1934.75 422.191i −0.308607 0.0673427i
\(341\) −7826.02 −1.24282
\(342\) −1642.43 2039.48i −0.259685 0.322463i
\(343\) −6176.11 + 1486.37i −0.972240 + 0.233984i
\(344\) −3710.62 7430.89i −0.581579 1.16467i
\(345\) −1734.47 −0.270669
\(346\) −2639.33 + 2125.50i −0.410090 + 0.330253i
\(347\) 3019.93 0.467199 0.233600 0.972333i \(-0.424949\pi\)
0.233600 + 0.972333i \(0.424949\pi\)
\(348\) 340.228 1559.14i 0.0524084 0.240169i
\(349\) 984.692 0.151030 0.0755149 0.997145i \(-0.475940\pi\)
0.0755149 + 0.997145i \(0.475940\pi\)
\(350\) −1232.82 5192.67i −0.188278 0.793028i
\(351\) 1954.50i 0.297219i
\(352\) −8231.96 + 2086.90i −1.24649 + 0.316000i
\(353\) 6593.78i 0.994198i −0.867694 0.497099i \(-0.834399\pi\)
0.867694 0.497099i \(-0.165601\pi\)
\(354\) 2838.94 2286.25i 0.426237 0.343256i
\(355\) 810.851i 0.121227i
\(356\) 5348.13 + 1167.04i 0.796209 + 0.173745i
\(357\) 1231.02 2582.11i 0.182499 0.382800i
\(358\) 8227.60 6625.83i 1.21464 0.978173i
\(359\) 6343.59i 0.932596i −0.884628 0.466298i \(-0.845588\pi\)
0.884628 0.466298i \(-0.154412\pi\)
\(360\) −437.419 875.975i −0.0640389 0.128244i
\(361\) −3722.84 −0.542768
\(362\) 6271.35 5050.43i 0.910538 0.733272i
\(363\) 2609.81i 0.377353i
\(364\) 8474.74 + 6573.50i 1.22032 + 0.946553i
\(365\) 893.409i 0.128118i
\(366\) 3984.42 + 4947.64i 0.569041 + 0.706604i
\(367\) 9993.35 1.42139 0.710693 0.703502i \(-0.248382\pi\)
0.710693 + 0.703502i \(0.248382\pi\)
\(368\) 3206.13 6996.46i 0.454160 0.991075i
\(369\) 4584.69i 0.646801i
\(370\) 1335.44 + 1658.27i 0.187638 + 0.232999i
\(371\) 6250.65 + 2979.99i 0.874711 + 0.417017i
\(372\) 3911.53 + 853.555i 0.545171 + 0.118964i
\(373\) 125.208i 0.0173808i 0.999962 + 0.00869040i \(0.00276628\pi\)
−0.999962 + 0.00869040i \(0.997234\pi\)
\(374\) −4284.95 5320.82i −0.592432 0.735650i
\(375\) 3272.52i 0.450645i
\(376\) 2656.09 + 5319.08i 0.364301 + 0.729550i
\(377\) 4813.36i 0.657562i
\(378\) 1376.10 326.707i 0.187245 0.0444550i
\(379\) −276.555 −0.0374820 −0.0187410 0.999824i \(-0.505966\pi\)
−0.0187410 + 0.999824i \(0.505966\pi\)
\(380\) −3865.68 843.549i −0.521856 0.113877i
\(381\) 5303.38 0.713124
\(382\) 904.606 + 1123.29i 0.121161 + 0.150452i
\(383\) 1526.11 0.203604 0.101802 0.994805i \(-0.467539\pi\)
0.101802 + 0.994805i \(0.467539\pi\)
\(384\) 4342.04 145.227i 0.577028 0.0192997i
\(385\) −1797.73 + 3770.80i −0.237976 + 0.499163i
\(386\) −5524.49 + 4448.96i −0.728469 + 0.586648i
\(387\) 3303.62 0.433935
\(388\) −8235.67 1797.14i −1.07758 0.235145i
\(389\) 7087.88i 0.923830i −0.886924 0.461915i \(-0.847163\pi\)
0.886924 0.461915i \(-0.152837\pi\)
\(390\) 1852.31 + 2300.10i 0.240501 + 0.298641i
\(391\) 6191.12 0.800763
\(392\) 3211.56 7065.56i 0.413797 0.910369i
\(393\) −7315.88 −0.939027
\(394\) −5148.62 6393.29i −0.658335 0.817485i
\(395\) 728.401i 0.0927844i
\(396\) 720.143 3300.16i 0.0913852 0.418786i
\(397\) −5758.40 −0.727974 −0.363987 0.931404i \(-0.618585\pi\)
−0.363987 + 0.931404i \(0.618585\pi\)
\(398\) −89.6382 + 72.1872i −0.0112893 + 0.00909150i
\(399\) 2459.60 5159.12i 0.308607 0.647316i
\(400\) 5927.81 + 2716.42i 0.740976 + 0.339553i
\(401\) 9286.85 1.15652 0.578258 0.815854i \(-0.303733\pi\)
0.578258 + 0.815854i \(0.303733\pi\)
\(402\) −3105.66 3856.45i −0.385315 0.478463i
\(403\) −12075.6 −1.49263
\(404\) 319.790 1465.48i 0.0393816 0.180472i
\(405\) 389.441 0.0477814
\(406\) 3388.91 804.583i 0.414259 0.0983517i
\(407\) 7345.27i 0.894574i
\(408\) 1561.35 + 3126.75i 0.189456 + 0.379405i
\(409\) 11838.7i 1.43126i −0.698482 0.715628i \(-0.746141\pi\)
0.698482 0.715628i \(-0.253859\pi\)
\(410\) 4344.97 + 5395.35i 0.523373 + 0.649897i
\(411\) 5595.13i 0.671502i
\(412\) 3055.11 14000.5i 0.365326 1.67416i
\(413\) 7181.46 + 3423.75i 0.855633 + 0.407922i
\(414\) 1919.97 + 2384.12i 0.227926 + 0.283027i
\(415\) 670.287i 0.0792845i
\(416\) −12702.0 + 3220.11i −1.49704 + 0.379516i
\(417\) 2696.34 0.316643
\(418\) −8561.45 10631.1i −1.00180 1.24399i
\(419\) 15228.9i 1.77561i −0.460224 0.887803i \(-0.652231\pi\)
0.460224 0.887803i \(-0.347769\pi\)
\(420\) 1309.79 1688.62i 0.152170 0.196181i
\(421\) 8508.48i 0.984983i −0.870317 0.492491i \(-0.836086\pi\)
0.870317 0.492491i \(-0.163914\pi\)
\(422\) 2417.15 1946.57i 0.278827 0.224544i
\(423\) −2364.76 −0.271817
\(424\) −7569.10 + 3779.64i −0.866953 + 0.432914i
\(425\) 5245.48i 0.598690i
\(426\) −1114.55 + 897.570i −0.126761 + 0.102083i
\(427\) −5966.84 + 12515.7i −0.676242 + 1.41845i
\(428\) −3.66188 + 16.7811i −0.000413560 + 0.00189520i
\(429\) 10188.2i 1.14660i
\(430\) 3887.77 3130.89i 0.436011 0.351128i
\(431\) 3202.57i 0.357917i −0.983857 0.178958i \(-0.942727\pi\)
0.983857 0.178958i \(-0.0572728\pi\)
\(432\) −719.872 + 1570.91i −0.0801732 + 0.174955i
\(433\) 6785.78i 0.753126i 0.926391 + 0.376563i \(0.122894\pi\)
−0.926391 + 0.376563i \(0.877106\pi\)
\(434\) 2018.52 + 8502.02i 0.223253 + 0.940346i
\(435\) 959.078 0.105711
\(436\) 4086.35 + 891.702i 0.448855 + 0.0979468i
\(437\) 12370.0 1.35409
\(438\) 1228.03 988.957i 0.133967 0.107886i
\(439\) −18232.6 −1.98222 −0.991108 0.133060i \(-0.957520\pi\)
−0.991108 + 0.133060i \(0.957520\pi\)
\(440\) −2280.12 4566.18i −0.247047 0.494737i
\(441\) 1943.60 + 2398.33i 0.209869 + 0.258971i
\(442\) −6611.73 8210.09i −0.711511 0.883516i
\(443\) 10489.2 1.12496 0.562479 0.826811i \(-0.309848\pi\)
0.562479 + 0.826811i \(0.309848\pi\)
\(444\) 801.121 3671.25i 0.0856295 0.392409i
\(445\) 3289.81i 0.350453i
\(446\) −5795.59 + 4667.29i −0.615312 + 0.495521i
\(447\) 3997.66 0.423004
\(448\) 4390.38 + 8404.76i 0.463004 + 0.886356i
\(449\) 1602.32 0.168414 0.0842071 0.996448i \(-0.473164\pi\)
0.0842071 + 0.996448i \(0.473164\pi\)
\(450\) −2019.97 + 1626.71i −0.211605 + 0.170409i
\(451\) 23898.5i 2.49521i
\(452\) −3639.86 + 16680.2i −0.378771 + 1.73577i
\(453\) −7147.87 −0.741360
\(454\) 5.24902 + 6.51795i 0.000542618 + 0.000673794i
\(455\) −2773.91 + 5818.39i −0.285809 + 0.599495i
\(456\) 3119.61 + 6247.33i 0.320371 + 0.641575i
\(457\) −5887.93 −0.602682 −0.301341 0.953516i \(-0.597434\pi\)
−0.301341 + 0.953516i \(0.597434\pi\)
\(458\) 999.313 804.764i 0.101954 0.0821052i
\(459\) −1390.09 −0.141359
\(460\) 4518.92 + 986.096i 0.458035 + 0.0999499i
\(461\) −7506.55 −0.758384 −0.379192 0.925318i \(-0.623798\pi\)
−0.379192 + 0.925318i \(0.623798\pi\)
\(462\) 7173.15 1703.02i 0.722348 0.171497i
\(463\) 9799.46i 0.983628i −0.870700 0.491814i \(-0.836334\pi\)
0.870700 0.491814i \(-0.163666\pi\)
\(464\) −1772.83 + 3868.69i −0.177374 + 0.387068i
\(465\) 2406.11i 0.239958i
\(466\) 9944.70 8008.63i 0.988582 0.796122i
\(467\) 13640.0i 1.35157i 0.737097 + 0.675787i \(0.236196\pi\)
−0.737097 + 0.675787i \(0.763804\pi\)
\(468\) 1111.19 5092.18i 0.109754 0.502962i
\(469\) 4650.86 9755.38i 0.457904 0.960472i
\(470\) −2782.89 + 2241.11i −0.273118 + 0.219946i
\(471\) 9121.17i 0.892317i
\(472\) −8696.25 + 4342.48i −0.848045 + 0.423472i
\(473\) 17220.7 1.67402
\(474\) −1001.22 + 806.302i −0.0970205 + 0.0781323i
\(475\) 10480.6i 1.01239i
\(476\) −4675.24 + 6027.44i −0.450187 + 0.580394i
\(477\) 3365.07i 0.323011i
\(478\) −5688.86 7064.12i −0.544356 0.675953i
\(479\) 12957.9 1.23604 0.618018 0.786164i \(-0.287936\pi\)
0.618018 + 0.786164i \(0.287936\pi\)
\(480\) 641.616 + 2530.91i 0.0610118 + 0.240666i
\(481\) 11333.8i 1.07438i
\(482\) 1166.29 + 1448.24i 0.110214 + 0.136858i
\(483\) −2875.24 + 6030.93i −0.270865 + 0.568151i
\(484\) 1483.75 6799.48i 0.139345 0.638569i
\(485\) 5066.02i 0.474301i
\(486\) −431.091 535.306i −0.0402360 0.0499629i
\(487\) 16132.4i 1.50108i 0.660824 + 0.750541i \(0.270207\pi\)
−0.660824 + 0.750541i \(0.729793\pi\)
\(488\) −7567.96 15155.6i −0.702020 1.40587i
\(489\) 4258.20i 0.393788i
\(490\) 4560.20 + 980.431i 0.420426 + 0.0903906i
\(491\) 12630.2 1.16088 0.580442 0.814301i \(-0.302880\pi\)
0.580442 + 0.814301i \(0.302880\pi\)
\(492\) 2606.52 11944.8i 0.238844 1.09454i
\(493\) −3423.38 −0.312741
\(494\) −13210.4 16404.0i −1.20317 1.49403i
\(495\) 2030.03 0.184330
\(496\) −9705.68 4447.63i −0.878625 0.402630i
\(497\) −2819.41 1344.15i −0.254462 0.121315i
\(498\) −921.342 + 741.973i −0.0829043 + 0.0667642i
\(499\) 1838.40 0.164926 0.0824628 0.996594i \(-0.473721\pi\)
0.0824628 + 0.996594i \(0.473721\pi\)
\(500\) −1860.52 + 8526.07i −0.166410 + 0.762595i
\(501\) 991.240i 0.0883939i
\(502\) 2115.80 + 2627.29i 0.188114 + 0.233589i
\(503\) 5570.45 0.493785 0.246893 0.969043i \(-0.420590\pi\)
0.246893 + 0.969043i \(0.420590\pi\)
\(504\) −3770.96 + 68.8411i −0.333278 + 0.00608418i
\(505\) 901.465 0.0794350
\(506\) 10008.2 + 12427.7i 0.879286 + 1.09185i
\(507\) 9129.51i 0.799716i
\(508\) −13817.2 3015.12i −1.20677 0.263335i
\(509\) −21067.8 −1.83460 −0.917302 0.398192i \(-0.869638\pi\)
−0.917302 + 0.398192i \(0.869638\pi\)
\(510\) −1635.89 + 1317.41i −0.142036 + 0.114384i
\(511\) 3106.47 + 1481.01i 0.268928 + 0.128211i
\(512\) −11395.1 2090.20i −0.983590 0.180419i
\(513\) −2777.44 −0.239039
\(514\) −1721.36 2137.50i −0.147716 0.183426i
\(515\) 8612.14 0.736886
\(516\) −8607.12 1878.20i −0.734317 0.160239i
\(517\) −12326.7 −1.04860
\(518\) 7979.74 1894.52i 0.676853 0.160696i
\(519\) 3594.34i 0.303996i
\(520\) −3518.26 7045.67i −0.296704 0.594179i
\(521\) 1657.29i 0.139362i 0.997569 + 0.0696808i \(0.0221981\pi\)
−0.997569 + 0.0696808i \(0.977802\pi\)
\(522\) −1061.65 1318.30i −0.0890175 0.110537i
\(523\) 12353.6i 1.03286i −0.856330 0.516429i \(-0.827261\pi\)
0.856330 0.516429i \(-0.172739\pi\)
\(524\) 19060.5 + 4159.28i 1.58905 + 0.346754i
\(525\) −5109.76 2436.07i −0.424778 0.202512i
\(526\) 3628.27 + 4505.39i 0.300761 + 0.373469i
\(527\) 8588.49i 0.709906i
\(528\) −3752.46 + 8188.67i −0.309290 + 0.674936i
\(529\) −2293.37 −0.188491
\(530\) −3189.12 3960.08i −0.261371 0.324557i
\(531\) 3866.18i 0.315966i
\(532\) −9341.25 + 12043.0i −0.761268 + 0.981447i
\(533\) 36875.7i 2.99674i
\(534\) 4522.00 3641.64i 0.366453 0.295111i
\(535\) −10.3226 −0.000834175
\(536\) 5898.87 + 11813.1i 0.475359 + 0.951954i
\(537\) 11204.7i 0.900404i
\(538\) −15116.9 + 12173.9i −1.21141 + 0.975565i
\(539\) 10131.4 + 12501.7i 0.809626 + 0.999050i
\(540\) −1014.63 221.408i −0.0808571 0.0176442i
\(541\) 1186.11i 0.0942601i 0.998889 + 0.0471301i \(0.0150075\pi\)
−0.998889 + 0.0471301i \(0.984992\pi\)
\(542\) 4664.97 3756.78i 0.369701 0.297726i
\(543\) 8540.56i 0.674974i
\(544\) −2290.22 9033.97i −0.180501 0.712001i
\(545\) 2513.64i 0.197565i
\(546\) 11068.2 2627.78i 0.867541 0.205968i
\(547\) 8057.45 0.629820 0.314910 0.949122i \(-0.398026\pi\)
0.314910 + 0.949122i \(0.398026\pi\)
\(548\) −3180.98 + 14577.3i −0.247965 + 1.13633i
\(549\) 6737.88 0.523799
\(550\) −10529.4 + 8479.54i −0.816322 + 0.657398i
\(551\) −6840.01 −0.528846
\(552\) −3646.78 7303.04i −0.281190 0.563112i
\(553\) −2532.72 1207.47i −0.194760 0.0928516i
\(554\) 13012.5 + 16158.2i 0.997920 + 1.23916i
\(555\) 2258.30 0.172720
\(556\) −7024.92 1532.94i −0.535833 0.116927i
\(557\) 10565.7i 0.803737i −0.915697 0.401868i \(-0.868361\pi\)
0.915697 0.401868i \(-0.131639\pi\)
\(558\) 3307.32 2663.44i 0.250914 0.202065i
\(559\) 26571.8 2.01050
\(560\) −4372.50 + 3654.80i −0.329950 + 0.275792i
\(561\) −7246.10 −0.545331
\(562\) −85.1648 + 68.5846i −0.00639228 + 0.00514781i
\(563\) 9688.27i 0.725243i 0.931936 + 0.362622i \(0.118118\pi\)
−0.931936 + 0.362622i \(0.881882\pi\)
\(564\) 6161.04 + 1344.43i 0.459976 + 0.100374i
\(565\) −10260.5 −0.764005
\(566\) 7065.62 + 8773.72i 0.524718 + 0.651567i
\(567\) 645.577 1354.12i 0.0478161 0.100296i
\(568\) 3414.11 1704.84i 0.252206 0.125939i
\(569\) −1318.86 −0.0971696 −0.0485848 0.998819i \(-0.515471\pi\)
−0.0485848 + 0.998819i \(0.515471\pi\)
\(570\) −3268.54 + 2632.22i −0.240183 + 0.193423i
\(571\) 3264.82 0.239279 0.119640 0.992817i \(-0.461826\pi\)
0.119640 + 0.992817i \(0.461826\pi\)
\(572\) 5792.27 26543.9i 0.423404 1.94031i
\(573\) 1529.74 0.111529
\(574\) 25962.8 6164.00i 1.88792 0.448224i
\(575\) 12251.7i 0.888574i
\(576\) 2768.63 3683.52i 0.200277 0.266459i
\(577\) 10315.0i 0.744227i −0.928187 0.372114i \(-0.878633\pi\)
0.928187 0.372114i \(-0.121367\pi\)
\(578\) −4983.66 + 4013.42i −0.358638 + 0.288817i
\(579\) 7523.46i 0.540007i
\(580\) −2498.74 545.262i −0.178887 0.0390358i
\(581\) −2330.65 1111.14i −0.166423 0.0793420i
\(582\) −6963.49 + 5607.82i −0.495955 + 0.399401i
\(583\) 17541.0i 1.24610i
\(584\) −3761.72 + 1878.42i −0.266543 + 0.133098i
\(585\) 3132.36 0.221380
\(586\) −10297.2 + 8292.49i −0.725891 + 0.584573i
\(587\) 17199.2i 1.20934i −0.796474 0.604672i \(-0.793304\pi\)
0.796474 0.604672i \(-0.206696\pi\)
\(588\) −3700.25 7353.50i −0.259517 0.515737i
\(589\) 17160.0i 1.20045i
\(590\) −3664.03 4549.79i −0.255670 0.317478i
\(591\) −8706.62 −0.605994
\(592\) −4174.41 + 9109.46i −0.289810 + 0.632426i
\(593\) 26004.5i 1.80081i −0.435056 0.900403i \(-0.643271\pi\)
0.435056 0.900403i \(-0.356729\pi\)
\(594\) −2247.14 2790.38i −0.155221 0.192745i
\(595\) −4138.18 1972.87i −0.285124 0.135933i
\(596\) −10415.3 2272.78i −0.715820 0.156203i
\(597\) 122.073i 0.00836868i
\(598\) 15442.8 + 19176.0i 1.05602 + 1.31131i
\(599\) 4097.99i 0.279531i −0.990185 0.139766i \(-0.955365\pi\)
0.990185 0.139766i \(-0.0446349\pi\)
\(600\) 6187.57 3089.76i 0.421011 0.210232i
\(601\) 12434.6i 0.843959i 0.906605 + 0.421979i \(0.138665\pi\)
−0.906605 + 0.421979i \(0.861335\pi\)
\(602\) −4441.64 18708.2i −0.300710 1.26660i
\(603\) −5251.86 −0.354680
\(604\) 18622.7 + 4063.76i 1.25455 + 0.273762i
\(605\) 4182.57 0.281067
\(606\) −997.875 1239.11i −0.0668910 0.0830616i
\(607\) 20334.3 1.35971 0.679855 0.733347i \(-0.262043\pi\)
0.679855 + 0.733347i \(0.262043\pi\)
\(608\) −4575.92 18050.1i −0.305227 1.20400i
\(609\) 1589.87 3334.81i 0.105788 0.221894i
\(610\) 7929.27 6385.58i 0.526306 0.423843i
\(611\) −19020.3 −1.25937
\(612\) 3621.68 + 790.305i 0.239212 + 0.0521996i
\(613\) 25493.7i 1.67974i 0.542785 + 0.839871i \(0.317370\pi\)
−0.542785 + 0.839871i \(0.682630\pi\)
\(614\) 12268.4 + 15234.2i 0.806371 + 1.00131i
\(615\) 7347.60 0.481762
\(616\) −19656.8 + 358.847i −1.28571 + 0.0234713i
\(617\) 6936.29 0.452584 0.226292 0.974059i \(-0.427340\pi\)
0.226292 + 0.974059i \(0.427340\pi\)
\(618\) −9533.19 11837.8i −0.620520 0.770528i
\(619\) 2598.37i 0.168719i −0.996435 0.0843597i \(-0.973116\pi\)
0.996435 0.0843597i \(-0.0268845\pi\)
\(620\) 1367.94 6268.77i 0.0886093 0.406065i
\(621\) 3246.78 0.209805
\(622\) 14227.9 11458.0i 0.917180 0.738621i
\(623\) 11439.0 + 5453.52i 0.735623 + 0.350707i
\(624\) −5790.09 + 12635.2i −0.371457 + 0.810598i
\(625\) 7490.84 0.479414
\(626\) −1456.62 1808.75i −0.0930001 0.115483i
\(627\) −14477.9 −0.922156
\(628\) 5185.64 23763.9i 0.329505 1.51001i
\(629\) −8060.90 −0.510984
\(630\) −523.593 2205.38i −0.0331118 0.139468i
\(631\) 10697.0i 0.674867i −0.941349 0.337433i \(-0.890441\pi\)
0.941349 0.337433i \(-0.109559\pi\)
\(632\) 3066.95 1531.48i 0.193033 0.0963910i
\(633\) 3291.77i 0.206692i
\(634\) 3343.54 + 4151.83i 0.209446 + 0.260079i
\(635\) 8499.40i 0.531163i
\(636\) −1913.14 + 8767.21i −0.119278 + 0.546608i
\(637\) 15632.8 + 19290.3i 0.972361 + 1.19986i
\(638\) −5534.04 6871.88i −0.343409 0.426427i
\(639\) 1517.84i 0.0939671i
\(640\) −232.746 6958.71i −0.0143751 0.429793i
\(641\) −13670.9 −0.842386 −0.421193 0.906971i \(-0.638388\pi\)
−0.421193 + 0.906971i \(0.638388\pi\)
\(642\) 11.4266 + 14.1889i 0.000702446 + 0.000872260i
\(643\) 20308.3i 1.24554i −0.782405 0.622770i \(-0.786007\pi\)
0.782405 0.622770i \(-0.213993\pi\)
\(644\) 10919.8 14078.1i 0.668167 0.861420i
\(645\) 5294.51i 0.323211i
\(646\) 11666.9 9395.56i 0.710570 0.572235i
\(647\) −23231.7 −1.41164 −0.705820 0.708391i \(-0.749421\pi\)
−0.705820 + 0.708391i \(0.749421\pi\)
\(648\) 818.810 + 1639.75i 0.0496387 + 0.0994066i
\(649\) 20153.1i 1.21892i
\(650\) −16247.0 + 13084.0i −0.980402 + 0.789535i
\(651\) 8366.28 + 3988.61i 0.503687 + 0.240132i
\(652\) 2420.90 11094.1i 0.145414 0.666379i
\(653\) 9477.68i 0.567979i −0.958827 0.283990i \(-0.908342\pi\)
0.958827 0.283990i \(-0.0916581\pi\)
\(654\) 3455.13 2782.47i 0.206584 0.166366i
\(655\) 11724.7i 0.699424i
\(656\) −13581.8 + 29638.5i −0.808357 + 1.76401i
\(657\) 1672.38i 0.0993089i
\(658\) 3179.35 + 13391.5i 0.188365 + 0.793396i
\(659\) −13928.5 −0.823334 −0.411667 0.911334i \(-0.635053\pi\)
−0.411667 + 0.911334i \(0.635053\pi\)
\(660\) −5288.96 1154.13i −0.311928 0.0680673i
\(661\) −191.102 −0.0112451 −0.00562256 0.999984i \(-0.501790\pi\)
−0.00562256 + 0.999984i \(0.501790\pi\)
\(662\) 22088.7 17788.4i 1.29683 1.04436i
\(663\) −11180.8 −0.654942
\(664\) 2822.26 1409.30i 0.164947 0.0823664i
\(665\) −8268.20 3941.85i −0.482146 0.229863i
\(666\) −2499.82 3104.15i −0.145445 0.180606i
\(667\) 7995.87 0.464170
\(668\) −563.547 + 2582.54i −0.0326412 + 0.149583i
\(669\) 7892.66i 0.456125i
\(670\) −6180.49 + 4977.26i −0.356378 + 0.286997i
\(671\) 35122.4 2.02069
\(672\) 9863.84 + 1964.54i 0.566229 + 0.112773i
\(673\) −31526.8 −1.80575 −0.902874 0.429905i \(-0.858547\pi\)
−0.902874 + 0.429905i \(0.858547\pi\)
\(674\) −14781.5 + 11903.8i −0.844748 + 0.680290i
\(675\) 2750.87i 0.156861i
\(676\) 5190.38 23785.6i 0.295311 1.35330i
\(677\) 3711.82 0.210719 0.105360 0.994434i \(-0.466401\pi\)
0.105360 + 0.994434i \(0.466401\pi\)
\(678\) 11357.8 + 14103.6i 0.643356 + 0.798886i
\(679\) −17615.0 8397.95i −0.995587 0.474645i
\(680\) 5011.05 2502.27i 0.282596 0.141114i
\(681\) 8.87639 0.000499477
\(682\) 17240.0 13883.7i 0.967966 0.779520i
\(683\) −8296.57 −0.464802 −0.232401 0.972620i \(-0.574658\pi\)
−0.232401 + 0.972620i \(0.574658\pi\)
\(684\) 7236.22 + 1579.05i 0.404508 + 0.0882697i
\(685\) −8966.96 −0.500160
\(686\) 10968.5 14231.0i 0.610466 0.792043i
\(687\) 1360.90i 0.0755774i
\(688\) 21356.8 + 9786.77i 1.18346 + 0.542321i
\(689\) 27066.0i 1.49657i
\(690\) 3820.88 3077.02i 0.210809 0.169768i
\(691\) 1001.26i 0.0551228i −0.999620 0.0275614i \(-0.991226\pi\)
0.999620 0.0275614i \(-0.00877418\pi\)
\(692\) 2043.48 9364.54i 0.112256 0.514431i
\(693\) 3365.19 7058.62i 0.184463 0.386919i
\(694\) −6652.61 + 5357.46i −0.363876 + 0.293035i
\(695\) 4321.25i 0.235848i
\(696\) 2016.49 + 4038.22i 0.109820 + 0.219926i
\(697\) −26226.9 −1.42527
\(698\) −2169.18 + 1746.88i −0.117629 + 0.0947284i
\(699\) 13543.1i 0.732827i
\(700\) 11927.8 + 9251.88i 0.644040 + 0.499555i
\(701\) 19889.7i 1.07165i −0.844330 0.535824i \(-0.820001\pi\)
0.844330 0.535824i \(-0.179999\pi\)
\(702\) −3467.36 4305.59i −0.186420 0.231487i
\(703\) −16105.9 −0.864076
\(704\) 14432.0 19201.0i 0.772622 1.02794i
\(705\) 3789.85i 0.202460i
\(706\) 11697.6 + 14525.5i 0.623578 + 0.774325i
\(707\) 1494.36 3134.48i 0.0794926 0.166739i
\(708\) −2198.03 + 10072.8i −0.116676 + 0.534686i
\(709\) 33973.1i 1.79956i 0.436349 + 0.899778i \(0.356271\pi\)
−0.436349 + 0.899778i \(0.643729\pi\)
\(710\) 1438.48 + 1786.23i 0.0760355 + 0.0944168i
\(711\) 1363.50i 0.0719204i
\(712\) −13851.8 + 6916.91i −0.729099 + 0.364076i
\(713\) 20059.8i 1.05364i
\(714\) 1868.94 + 7872.01i 0.0979599 + 0.412608i
\(715\) 16328.0 0.854032
\(716\) −6370.16 + 29192.2i −0.332492 + 1.52369i
\(717\) −9620.19 −0.501078
\(718\) 11253.8 + 13974.3i 0.584940 + 0.726347i
\(719\) 1323.81 0.0686644 0.0343322 0.999410i \(-0.489070\pi\)
0.0343322 + 0.999410i \(0.489070\pi\)
\(720\) 2517.61 + 1153.69i 0.130313 + 0.0597161i
\(721\) 14276.4 29945.2i 0.737419 1.54677i
\(722\) 8201.07 6604.46i 0.422732 0.340433i
\(723\) 1972.27 0.101451
\(724\) −4855.55 + 22251.2i −0.249247 + 1.14221i
\(725\) 6774.57i 0.347036i
\(726\) −4629.89 5749.16i −0.236682 0.293900i
\(727\) −334.178 −0.0170481 −0.00852406 0.999964i \(-0.502713\pi\)
−0.00852406 + 0.999964i \(0.502713\pi\)
\(728\) −30330.7 + 553.705i −1.54414 + 0.0281891i
\(729\) −729.000 −0.0370370
\(730\) −1584.94 1968.09i −0.0803579 0.0997842i
\(731\) 18898.5i 0.956206i
\(732\) −17554.6 3830.67i −0.886388 0.193423i
\(733\) 2748.20 0.138482 0.0692409 0.997600i \(-0.477942\pi\)
0.0692409 + 0.997600i \(0.477942\pi\)
\(734\) −22014.4 + 17728.6i −1.10704 + 0.891517i
\(735\) 3843.66 3114.88i 0.192892 0.156319i
\(736\) 5349.18 + 21100.3i 0.267899 + 1.05675i
\(737\) −27376.3 −1.36827
\(738\) −8133.41 10099.6i −0.405684 0.503757i
\(739\) 33184.3 1.65183 0.825916 0.563793i \(-0.190659\pi\)
0.825916 + 0.563793i \(0.190659\pi\)
\(740\) −5883.68 1283.91i −0.292282 0.0637802i
\(741\) −22339.6 −1.10751
\(742\) −19056.2 + 4524.25i −0.942824 + 0.223842i
\(743\) 35492.4i 1.75248i 0.481877 + 0.876239i \(0.339955\pi\)
−0.481877 + 0.876239i \(0.660045\pi\)
\(744\) −10131.0 + 5058.91i −0.499220 + 0.249286i
\(745\) 6406.80i 0.315070i
\(746\) −222.124 275.822i −0.0109015 0.0135369i
\(747\) 1254.72i 0.0614562i
\(748\) 18878.7 + 4119.61i 0.922825 + 0.201374i
\(749\) −17.1118 + 35.8926i −0.000834780 + 0.00175098i
\(750\) 5805.57 + 7209.04i 0.282652 + 0.350983i
\(751\) 2319.93i 0.112723i 0.998410 + 0.0563617i \(0.0179500\pi\)
−0.998410 + 0.0563617i \(0.982050\pi\)
\(752\) −15287.4 7005.44i −0.741320 0.339710i
\(753\) 3577.95 0.173158
\(754\) −8539.09 10603.4i −0.412434 0.512138i
\(755\) 11455.4i 0.552194i
\(756\) −2451.82 + 3160.95i −0.117952 + 0.152067i
\(757\) 22007.9i 1.05666i −0.849040 0.528329i \(-0.822819\pi\)
0.849040 0.528329i \(-0.177181\pi\)
\(758\) 609.225 490.619i 0.0291927 0.0235094i
\(759\) 16924.5 0.809379
\(760\) 10012.2 4999.60i 0.477870 0.238625i
\(761\) 14464.1i 0.688991i 0.938788 + 0.344495i \(0.111950\pi\)
−0.938788 + 0.344495i \(0.888050\pi\)
\(762\) −11682.8 + 9408.39i −0.555413 + 0.447284i
\(763\) 8740.19 + 4166.88i 0.414700 + 0.197708i
\(764\) −3985.52 869.700i −0.188732 0.0411841i
\(765\) 2227.81i 0.105290i
\(766\) −3361.87 + 2707.37i −0.158576 + 0.127704i
\(767\) 31096.5i 1.46392i
\(768\) −9307.46 + 8022.86i −0.437310 + 0.376953i
\(769\) 3889.51i 0.182392i 0.995833 + 0.0911960i \(0.0290690\pi\)
−0.995833 + 0.0911960i \(0.970931\pi\)
\(770\) −2729.33 11496.0i −0.127738 0.538033i
\(771\) −2910.93 −0.135972
\(772\) 4277.29 19601.3i 0.199408 0.913816i
\(773\) −16998.7 −0.790946 −0.395473 0.918478i \(-0.629419\pi\)
−0.395473 + 0.918478i \(0.629419\pi\)
\(774\) −7277.57 + 5860.75i −0.337968 + 0.272171i
\(775\) −16995.9 −0.787754
\(776\) 21330.6 10651.4i 0.986757 0.492738i
\(777\) 3743.59 7852.34i 0.172845 0.362549i
\(778\) 12574.2 + 15613.9i 0.579442 + 0.719520i
\(779\) −52402.0 −2.41014
\(780\) −8160.92 1780.83i −0.374626 0.0817488i
\(781\) 7912.03i 0.362503i
\(782\) −13638.4 + 10983.3i −0.623670 + 0.502252i
\(783\) −1795.31 −0.0819402
\(784\) 5459.80 + 21262.2i 0.248716 + 0.968577i
\(785\) 14617.9 0.664633
\(786\) 16116.2 12978.7i 0.731356 0.588973i
\(787\) 11983.2i 0.542763i −0.962472 0.271381i \(-0.912520\pi\)
0.962472 0.271381i \(-0.0874805\pi\)
\(788\) 22683.9 + 4949.95i 1.02548 + 0.223775i
\(789\) 6135.62 0.276849
\(790\) 1292.21 + 1604.60i 0.0581959 + 0.0722646i
\(791\) −17008.9 + 35676.8i −0.764558 + 1.60369i
\(792\) 4268.20 + 8547.50i 0.191495 + 0.383487i
\(793\) 54194.3 2.42685
\(794\) 12685.2 10215.6i 0.566979 0.456598i
\(795\) −5392.99 −0.240591
\(796\) 69.4017 318.043i 0.00309030 0.0141617i
\(797\) −14904.3 −0.662405 −0.331203 0.943560i \(-0.607454\pi\)
−0.331203 + 0.943560i \(0.607454\pi\)
\(798\) 3734.19 + 15728.5i 0.165650 + 0.697722i
\(799\) 13527.7i 0.598967i
\(800\) −17877.4 + 4532.14i −0.790079 + 0.200294i
\(801\) 6158.23i 0.271648i
\(802\) −20458.1 + 16475.2i −0.900747 + 0.725387i
\(803\) 8717.60i 0.383110i
\(804\) 13683.0 + 2985.83i 0.600200 + 0.130973i
\(805\) 9665.40 + 4607.97i 0.423181 + 0.201751i
\(806\) 26601.5 21422.6i 1.16253 0.936204i
\(807\) 20586.8i 0.898003i
\(808\) 1895.36 + 3795.64i 0.0825227 + 0.165260i
\(809\) 7044.51 0.306146 0.153073 0.988215i \(-0.451083\pi\)
0.153073 + 0.988215i \(0.451083\pi\)
\(810\) −857.902 + 690.883i −0.0372143 + 0.0299693i
\(811\) 15142.8i 0.655656i −0.944737 0.327828i \(-0.893683\pi\)
0.944737 0.327828i \(-0.106317\pi\)
\(812\) −6038.10 + 7784.48i −0.260955 + 0.336431i
\(813\) 6352.94i 0.274056i
\(814\) −13030.8 16180.9i −0.561092 0.696734i
\(815\) 6824.35 0.293308
\(816\) −8986.47 4118.05i −0.385526 0.176668i
\(817\) 37759.7i 1.61695i
\(818\) 21002.2 + 26079.4i 0.897708 + 1.11473i
\(819\) 5192.52 10891.5i 0.221540 0.464690i
\(820\) −19143.1 4177.31i −0.815252 0.177900i
\(821\) 20471.5i 0.870232i −0.900374 0.435116i \(-0.856707\pi\)
0.900374 0.435116i \(-0.143293\pi\)
\(822\) 9925.96 + 12325.5i 0.421177 + 0.522995i
\(823\) 1542.13i 0.0653165i −0.999467 0.0326582i \(-0.989603\pi\)
0.999467 0.0326582i \(-0.0103973\pi\)
\(824\) 18107.2 + 36261.6i 0.765529 + 1.53305i
\(825\) 14339.4i 0.605132i
\(826\) −21893.9 + 5197.97i −0.922261 + 0.218960i
\(827\) −11150.2 −0.468842 −0.234421 0.972135i \(-0.575319\pi\)
−0.234421 + 0.972135i \(0.575319\pi\)
\(828\) −8459.03 1845.89i −0.355038 0.0774746i
\(829\) 23834.5 0.998562 0.499281 0.866440i \(-0.333598\pi\)
0.499281 + 0.866440i \(0.333598\pi\)
\(830\) 1189.11 + 1476.58i 0.0497286 + 0.0617503i
\(831\) 22004.9 0.918581
\(832\) 22268.7 29627.4i 0.927919 1.23455i
\(833\) −13719.8 + 11118.4i −0.570662 + 0.462462i
\(834\) −5939.78 + 4783.40i −0.246616 + 0.198604i
\(835\) −1588.60 −0.0658392
\(836\) 37720.1 + 8231.08i 1.56050 + 0.340524i
\(837\) 4504.03i 0.186000i
\(838\) 27016.6 + 33547.7i 1.11369 + 1.38292i
\(839\) −36842.7 −1.51603 −0.758015 0.652237i \(-0.773831\pi\)
−0.758015 + 0.652237i \(0.773831\pi\)
\(840\) 110.327 + 6043.49i 0.00453173 + 0.248238i
\(841\) 19967.7 0.818717
\(842\) 15094.4 + 18743.4i 0.617798 + 0.767149i
\(843\) 115.981i 0.00473853i
\(844\) −1871.46 + 8576.24i −0.0763251 + 0.349770i
\(845\) 14631.3 0.595659
\(846\) 5209.33 4195.17i 0.211703 0.170488i
\(847\) 6933.46 14543.2i 0.281271 0.589977i
\(848\) 9968.80 21754.1i 0.403691 0.880940i
\(849\) 11948.4 0.483000
\(850\) −9305.68 11555.3i −0.375508 0.466286i
\(851\) 18827.5 0.758402
\(852\) 862.936 3954.52i 0.0346992 0.159014i
\(853\) 1901.29 0.0763175 0.0381587 0.999272i \(-0.487851\pi\)
0.0381587 + 0.999272i \(0.487851\pi\)
\(854\) −9058.91 38156.2i −0.362985 1.52890i
\(855\) 4451.23i 0.178045i
\(856\) −21.7035 43.4634i −0.000866601 0.00173546i
\(857\) 4434.92i 0.176772i −0.996086 0.0883862i \(-0.971829\pi\)
0.996086 0.0883862i \(-0.0281710\pi\)
\(858\) −18074.3 22443.6i −0.719167 0.893023i
\(859\) 7098.21i 0.281941i −0.990014 0.140971i \(-0.954978\pi\)
0.990014 0.140971i \(-0.0450223\pi\)
\(860\) −3010.08 + 13794.1i −0.119352 + 0.546948i
\(861\) 12180.1 25548.3i 0.482111 1.01125i
\(862\) 5681.47 + 7054.95i 0.224492 + 0.278762i
\(863\) 27367.3i 1.07948i −0.841830 0.539742i \(-0.818522\pi\)
0.841830 0.539742i \(-0.181478\pi\)
\(864\) −1201.05 4737.65i −0.0472923 0.186549i
\(865\) 5760.42 0.226428
\(866\) −12038.2 14948.4i −0.472374 0.586568i
\(867\) 6786.93i 0.265855i
\(868\) −19529.5 15148.2i −0.763680 0.592355i
\(869\) 7107.51i 0.277452i
\(870\) −2112.76 + 1701.44i −0.0823324 + 0.0663037i
\(871\) −42241.9 −1.64330
\(872\) −10583.8 + 5285.01i −0.411022 + 0.205244i
\(873\) 9483.15i 0.367647i
\(874\) −27250.0 + 21944.9i −1.05463 + 0.849310i
\(875\) −8694.08 + 18236.2i −0.335901 + 0.704566i
\(876\) −950.796 + 4357.16i −0.0366717 + 0.168053i
\(877\) 14135.7i 0.544273i 0.962259 + 0.272137i \(0.0877303\pi\)
−0.962259 + 0.272137i \(0.912270\pi\)
\(878\) 40164.6 32345.2i 1.54384 1.24328i
\(879\) 14023.1i 0.538097i
\(880\) 13123.5 + 6013.84i 0.502718 + 0.230371i
\(881\) 28867.0i 1.10392i 0.833870 + 0.551960i \(0.186120\pi\)
−0.833870 + 0.551960i \(0.813880\pi\)
\(882\) −8536.29 1835.28i −0.325887 0.0700648i
\(883\) 20027.1 0.763268 0.381634 0.924314i \(-0.375361\pi\)
0.381634 + 0.924314i \(0.375361\pi\)
\(884\) 29130.0 + 6356.60i 1.10831 + 0.241850i
\(885\) −6196.08 −0.235343
\(886\) −23106.7 + 18608.2i −0.876168 + 0.705593i
\(887\) 42737.7 1.61780 0.808902 0.587943i \(-0.200062\pi\)
0.808902 + 0.587943i \(0.200062\pi\)
\(888\) 4748.14 + 9508.63i 0.179434 + 0.359334i
\(889\) −29553.2 14089.5i −1.11494 0.531547i
\(890\) −5836.24 7247.13i −0.219810 0.272949i
\(891\) −3800.04 −0.142880
\(892\) 4487.19 20563.2i 0.168433 0.771868i
\(893\) 27028.7i 1.01286i
\(894\) −8806.47 + 7092.00i −0.329455 + 0.265315i
\(895\) −17957.0 −0.670656
\(896\) −24581.9 10726.2i −0.916546 0.399930i
\(897\) 26114.6 0.972064
\(898\) −3529.75 + 2842.57i −0.131168 + 0.105632i
\(899\) 11092.1i 0.411504i
\(900\) 1563.94 7166.99i 0.0579238 0.265444i
\(901\) 19250.0 0.711777
\(902\) −42396.9 52646.2i −1.56504 1.94338i
\(903\) −18409.5 8776.73i −0.678440 0.323445i
\(904\) −21573.0 43202.1i −0.793702 1.58947i
\(905\) −13687.4 −0.502747
\(906\) 15746.1 12680.6i 0.577404 0.464994i
\(907\) −14324.5 −0.524406 −0.262203 0.965013i \(-0.584449\pi\)
−0.262203 + 0.965013i \(0.584449\pi\)
\(908\) −23.1262 5.04647i −0.000845230 0.000184442i
\(909\) −1687.47 −0.0615728
\(910\) −4211.38 17738.4i −0.153413 0.646178i
\(911\) 39329.0i 1.43033i 0.698956 + 0.715164i \(0.253648\pi\)
−0.698956 + 0.715164i \(0.746352\pi\)
\(912\) −17955.2 8227.98i −0.651926 0.298745i
\(913\) 6540.45i 0.237084i
\(914\) 12970.6 10445.4i 0.469396 0.378012i
\(915\) 10798.4i 0.390146i
\(916\) −773.711 + 3545.64i −0.0279084 + 0.127894i
\(917\) 40768.0 + 19436.1i 1.46813 + 0.699930i
\(918\) 3062.24 2466.07i 0.110097 0.0886629i
\(919\) 22629.0i 0.812256i 0.913816 + 0.406128i \(0.133121\pi\)
−0.913816 + 0.406128i \(0.866879\pi\)
\(920\) −11704.1 + 5844.46i −0.419428 + 0.209442i
\(921\) 20746.5 0.742260
\(922\) 16536.2 13316.9i 0.590663 0.475671i
\(923\) 12208.4i 0.435366i
\(924\) −12780.5 + 16477.0i −0.455031 + 0.586639i
\(925\) 15951.8i 0.567019i
\(926\) 17384.6 + 21587.3i 0.616948 + 0.766093i
\(927\) −16121.2 −0.571185
\(928\) −2957.83 11667.4i −0.104629 0.412718i
\(929\) 27943.8i 0.986876i 0.869781 + 0.493438i \(0.164260\pi\)
−0.869781 + 0.493438i \(0.835740\pi\)
\(930\) −4268.53 5300.43i −0.150506 0.186890i
\(931\) −27412.4 + 22214.9i −0.964990 + 0.782024i
\(932\) −7699.60 + 35284.5i −0.270610 + 1.24011i
\(933\) 19376.1i 0.679897i
\(934\) −24197.9 30047.7i −0.847730 1.05267i
\(935\) 11612.9i 0.406184i
\(936\) 6585.88 + 13188.9i 0.229985 + 0.460569i
\(937\) 53676.0i 1.87142i 0.352775 + 0.935708i \(0.385238\pi\)
−0.352775 + 0.935708i \(0.614762\pi\)
\(938\) 7060.99 + 29741.0i 0.245788 + 1.03526i
\(939\) −2463.22 −0.0856061
\(940\) 2154.63 9873.91i 0.0747621 0.342608i
\(941\) −10563.7 −0.365957 −0.182978 0.983117i \(-0.558574\pi\)
−0.182978 + 0.983117i \(0.558574\pi\)
\(942\) −16181.3 20093.1i −0.559677 0.694976i
\(943\) 61257.2 2.11539
\(944\) 11453.3 24993.5i 0.394887 0.861727i
\(945\) −2170.17 1034.63i −0.0747044 0.0356153i
\(946\) −37935.7 + 30550.2i −1.30380 + 1.04997i
\(947\) 25873.4 0.887827 0.443913 0.896070i \(-0.353590\pi\)
0.443913 + 0.896070i \(0.353590\pi\)
\(948\) 775.189 3552.42i 0.0265580 0.121706i
\(949\) 13451.4i 0.460116i
\(950\) −18593.0 23087.8i −0.634986 0.788491i
\(951\) 5654.12 0.192794
\(952\) −393.808 21571.9i −0.0134069 0.734402i
\(953\) −38689.7 −1.31509 −0.657546 0.753414i \(-0.728406\pi\)
−0.657546 + 0.753414i \(0.728406\pi\)
\(954\) 5969.76 + 7412.93i 0.202598 + 0.251575i
\(955\) 2451.62i 0.0830708i
\(956\) 25064.0 + 5469.34i 0.847938 + 0.185033i
\(957\) −9358.38 −0.316106
\(958\) −28545.0 + 22987.8i −0.962680 + 0.775262i
\(959\) −14864.6 + 31179.0i −0.500523 + 1.04987i
\(960\) −5903.36 4437.11i −0.198469 0.149174i
\(961\) −1963.46 −0.0659079
\(962\) −20106.6 24967.4i −0.673871 0.836777i
\(963\) 19.3230 0.000646598
\(964\) −5138.46 1121.29i −0.171679 0.0374629i
\(965\) 12057.4 0.402218
\(966\) −4365.22 18386.4i −0.145392 0.612393i
\(967\) 33968.4i 1.12963i −0.825219 0.564813i \(-0.808948\pi\)
0.825219 0.564813i \(-0.191052\pi\)
\(968\) 8793.98 + 17610.8i 0.291993 + 0.584745i
\(969\) 15888.4i 0.526739i
\(970\) 8987.31 + 11160.0i 0.297490 + 0.369407i
\(971\) 5733.66i 0.189497i 0.995501 + 0.0947486i \(0.0302047\pi\)
−0.995501 + 0.0947486i \(0.969795\pi\)
\(972\) 1899.31 + 414.457i 0.0626752 + 0.0136766i
\(973\) −15025.4 7163.35i −0.495059 0.236019i
\(974\) −28619.4 35538.0i −0.941504 1.16911i
\(975\) 22125.8i 0.726763i
\(976\) 43558.1 + 19960.5i 1.42855 + 0.654632i
\(977\) 60487.2 1.98071 0.990357 0.138536i \(-0.0442396\pi\)
0.990357 + 0.138536i \(0.0442396\pi\)
\(978\) −7554.20 9380.40i −0.246990 0.306700i
\(979\) 32100.9i 1.04796i
\(980\) −11785.0 + 5930.16i −0.384141 + 0.193298i
\(981\) 4705.33i 0.153139i
\(982\) −27823.2 + 22406.5i −0.904149 + 0.728127i
\(983\) −55135.5 −1.78896 −0.894481 0.447107i \(-0.852454\pi\)
−0.894481 + 0.447107i \(0.852454\pi\)
\(984\) 15448.5 + 30937.2i 0.500489 + 1.00228i
\(985\) 13953.6i 0.451368i
\(986\) 7541.38 6073.21i 0.243577 0.196156i
\(987\) 13177.7 + 6282.44i 0.424975 + 0.202606i
\(988\) 58202.5 + 12700.7i 1.87416 + 0.408969i
\(989\) 44140.6i 1.41920i
\(990\) −4471.97 + 3601.35i −0.143564 + 0.115615i
\(991\) 40791.1i 1.30754i −0.756693 0.653771i \(-0.773186\pi\)
0.756693 0.653771i \(-0.226814\pi\)
\(992\) 29270.9 7420.53i 0.936848 0.237502i
\(993\) 30081.2i 0.961328i
\(994\) 8595.46 2040.70i 0.274277 0.0651178i
\(995\) 195.638 0.00623332
\(996\) 713.342 3268.99i 0.0226939 0.103998i
\(997\) 17582.4 0.558515 0.279257 0.960216i \(-0.409912\pi\)
0.279257 + 0.960216i \(0.409912\pi\)
\(998\) −4049.81 + 3261.38i −0.128451 + 0.103444i
\(999\) −4227.35 −0.133881
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.p.a.139.12 yes 48
4.3 odd 2 672.4.p.a.559.31 48
7.6 odd 2 inner 168.4.p.a.139.11 yes 48
8.3 odd 2 inner 168.4.p.a.139.10 yes 48
8.5 even 2 672.4.p.a.559.45 48
28.27 even 2 672.4.p.a.559.46 48
56.13 odd 2 672.4.p.a.559.32 48
56.27 even 2 inner 168.4.p.a.139.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.p.a.139.9 48 56.27 even 2 inner
168.4.p.a.139.10 yes 48 8.3 odd 2 inner
168.4.p.a.139.11 yes 48 7.6 odd 2 inner
168.4.p.a.139.12 yes 48 1.1 even 1 trivial
672.4.p.a.559.31 48 4.3 odd 2
672.4.p.a.559.32 48 56.13 odd 2
672.4.p.a.559.45 48 8.5 even 2
672.4.p.a.559.46 48 28.27 even 2