Properties

Label 168.4.i.c.125.71
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(125,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.71
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.69

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.60932 + 1.09154i) q^{2} +(-4.05635 + 3.24747i) q^{3} +(5.61708 + 5.69635i) q^{4} +13.2397i q^{5} +(-14.1290 + 4.04602i) q^{6} +(18.4748 + 1.29729i) q^{7} +(8.43895 + 20.9949i) q^{8} +(5.90788 - 26.3457i) q^{9} +(-14.4516 + 34.5465i) q^{10} -49.5250 q^{11} +(-41.2835 - 4.86507i) q^{12} +28.7924 q^{13} +(46.7905 + 23.5510i) q^{14} +(-42.9954 - 53.7046i) q^{15} +(-0.896814 + 63.9937i) q^{16} -69.2560 q^{17} +(44.1730 - 62.2957i) q^{18} -24.7890 q^{19} +(-75.4177 + 74.3682i) q^{20} +(-79.1529 + 54.7340i) q^{21} +(-129.227 - 54.0585i) q^{22} +85.5006i q^{23} +(-102.411 - 57.7572i) q^{24} -50.2885 q^{25} +(75.1286 + 31.4281i) q^{26} +(61.5925 + 126.053i) q^{27} +(96.3845 + 112.526i) q^{28} +111.594 q^{29} +(-53.5679 - 187.064i) q^{30} -236.812i q^{31} +(-72.1918 + 166.001i) q^{32} +(200.891 - 160.831i) q^{33} +(-180.711 - 75.5957i) q^{34} +(-17.1756 + 244.600i) q^{35} +(183.260 - 114.333i) q^{36} +261.434i q^{37} +(-64.6825 - 27.0582i) q^{38} +(-116.792 + 93.5026i) q^{39} +(-277.965 + 111.729i) q^{40} +471.089 q^{41} +(-266.280 + 56.4198i) q^{42} -261.133i q^{43} +(-278.186 - 282.112i) q^{44} +(348.808 + 78.2183i) q^{45} +(-93.3274 + 223.098i) q^{46} -217.418 q^{47} +(-204.180 - 262.493i) q^{48} +(339.634 + 47.9342i) q^{49} +(-131.219 - 54.8919i) q^{50} +(280.926 - 224.907i) q^{51} +(161.729 + 164.012i) q^{52} +11.8711 q^{53} +(23.1225 + 396.143i) q^{54} -655.694i q^{55} +(128.671 + 398.823i) q^{56} +(100.553 - 80.5016i) q^{57} +(291.184 + 121.809i) q^{58} -236.528i q^{59} +(64.4118 - 546.580i) q^{60} +754.519 q^{61} +(258.490 - 617.917i) q^{62} +(143.325 - 479.067i) q^{63} +(-369.568 + 354.349i) q^{64} +381.202i q^{65} +(699.741 - 200.379i) q^{66} +163.127i q^{67} +(-389.016 - 394.506i) q^{68} +(-277.661 - 346.820i) q^{69} +(-311.807 + 619.490i) q^{70} +478.338i q^{71} +(602.981 - 98.2952i) q^{72} +1038.37i q^{73} +(-285.366 + 682.164i) q^{74} +(203.988 - 163.310i) q^{75} +(-139.242 - 141.207i) q^{76} +(-914.963 - 64.2482i) q^{77} +(-406.810 + 116.495i) q^{78} -148.084 q^{79} +(-847.255 - 11.8735i) q^{80} +(-659.194 - 311.295i) q^{81} +(1229.22 + 514.213i) q^{82} +739.797i q^{83} +(-756.393 - 143.438i) q^{84} -916.925i q^{85} +(285.037 - 681.378i) q^{86} +(-452.664 + 362.398i) q^{87} +(-417.939 - 1039.77i) q^{88} +1347.82 q^{89} +(824.773 + 584.835i) q^{90} +(531.934 + 37.3521i) q^{91} +(-487.042 + 480.264i) q^{92} +(769.039 + 960.590i) q^{93} +(-567.311 - 237.320i) q^{94} -328.198i q^{95} +(-246.249 - 907.798i) q^{96} -183.115i q^{97} +(833.891 + 495.800i) q^{98} +(-292.588 + 1304.77i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.60932 + 1.09154i 0.922533 + 0.385918i
\(3\) −4.05635 + 3.24747i −0.780644 + 0.624976i
\(4\) 5.61708 + 5.69635i 0.702135 + 0.712044i
\(5\) 13.2397i 1.18419i 0.805868 + 0.592095i \(0.201699\pi\)
−0.805868 + 0.592095i \(0.798301\pi\)
\(6\) −14.1290 + 4.04602i −0.961359 + 0.275297i
\(7\) 18.4748 + 1.29729i 0.997544 + 0.0700470i
\(8\) 8.43895 + 20.9949i 0.372953 + 0.927850i
\(9\) 5.90788 26.3457i 0.218810 0.975767i
\(10\) −14.4516 + 34.5465i −0.457000 + 1.09246i
\(11\) −49.5250 −1.35749 −0.678743 0.734376i \(-0.737475\pi\)
−0.678743 + 0.734376i \(0.737475\pi\)
\(12\) −41.2835 4.86507i −0.993128 0.117035i
\(13\) 28.7924 0.614276 0.307138 0.951665i \(-0.400629\pi\)
0.307138 + 0.951665i \(0.400629\pi\)
\(14\) 46.7905 + 23.5510i 0.893235 + 0.449590i
\(15\) −42.9954 53.7046i −0.740091 0.924432i
\(16\) −0.896814 + 63.9937i −0.0140127 + 0.999902i
\(17\) −69.2560 −0.988061 −0.494031 0.869445i \(-0.664477\pi\)
−0.494031 + 0.869445i \(0.664477\pi\)
\(18\) 44.1730 62.2957i 0.578426 0.815735i
\(19\) −24.7890 −0.299315 −0.149658 0.988738i \(-0.547817\pi\)
−0.149658 + 0.988738i \(0.547817\pi\)
\(20\) −75.4177 + 74.3682i −0.843196 + 0.831462i
\(21\) −79.1529 + 54.7340i −0.822504 + 0.568759i
\(22\) −129.227 54.0585i −1.25233 0.523878i
\(23\) 85.5006i 0.775135i 0.921841 + 0.387568i \(0.126685\pi\)
−0.921841 + 0.387568i \(0.873315\pi\)
\(24\) −102.411 57.7572i −0.871027 0.491235i
\(25\) −50.2885 −0.402308
\(26\) 75.1286 + 31.4281i 0.566690 + 0.237060i
\(27\) 61.5925 + 126.053i 0.439018 + 0.898478i
\(28\) 96.3845 + 112.526i 0.650534 + 0.759477i
\(29\) 111.594 0.714569 0.357284 0.933996i \(-0.383703\pi\)
0.357284 + 0.933996i \(0.383703\pi\)
\(30\) −53.5679 187.064i −0.326004 1.13843i
\(31\) 236.812i 1.37202i −0.727592 0.686010i \(-0.759360\pi\)
0.727592 0.686010i \(-0.240640\pi\)
\(32\) −72.1918 + 166.001i −0.398807 + 0.917035i
\(33\) 200.891 160.831i 1.05971 0.848396i
\(34\) −180.711 75.5957i −0.911519 0.381310i
\(35\) −17.1756 + 244.600i −0.0829490 + 1.18128i
\(36\) 183.260 114.333i 0.848424 0.529318i
\(37\) 261.434i 1.16161i 0.814044 + 0.580804i \(0.197262\pi\)
−0.814044 + 0.580804i \(0.802738\pi\)
\(38\) −64.6825 27.0582i −0.276128 0.115511i
\(39\) −116.792 + 93.5026i −0.479531 + 0.383908i
\(40\) −277.965 + 111.729i −1.09875 + 0.441647i
\(41\) 471.089 1.79443 0.897217 0.441590i \(-0.145585\pi\)
0.897217 + 0.441590i \(0.145585\pi\)
\(42\) −266.280 + 56.4198i −0.978282 + 0.207280i
\(43\) 261.133i 0.926101i −0.886332 0.463051i \(-0.846755\pi\)
0.886332 0.463051i \(-0.153245\pi\)
\(44\) −278.186 282.112i −0.953139 0.966590i
\(45\) 348.808 + 78.2183i 1.15549 + 0.259113i
\(46\) −93.3274 + 223.098i −0.299138 + 0.715088i
\(47\) −217.418 −0.674757 −0.337379 0.941369i \(-0.609540\pi\)
−0.337379 + 0.941369i \(0.609540\pi\)
\(48\) −204.180 262.493i −0.613975 0.789325i
\(49\) 339.634 + 47.9342i 0.990187 + 0.139750i
\(50\) −131.219 54.8919i −0.371142 0.155258i
\(51\) 280.926 224.907i 0.771324 0.617514i
\(52\) 161.729 + 164.012i 0.431305 + 0.437391i
\(53\) 11.8711 0.0307665 0.0153832 0.999882i \(-0.495103\pi\)
0.0153832 + 0.999882i \(0.495103\pi\)
\(54\) 23.1225 + 396.143i 0.0582699 + 0.998301i
\(55\) 655.694i 1.60752i
\(56\) 128.671 + 398.823i 0.307043 + 0.951696i
\(57\) 100.553 80.5016i 0.233659 0.187065i
\(58\) 291.184 + 121.809i 0.659213 + 0.275765i
\(59\) 236.528i 0.521921i −0.965350 0.260960i \(-0.915961\pi\)
0.965350 0.260960i \(-0.0840392\pi\)
\(60\) 64.4118 546.580i 0.138592 1.17605i
\(61\) 754.519 1.58371 0.791855 0.610709i \(-0.209116\pi\)
0.791855 + 0.610709i \(0.209116\pi\)
\(62\) 258.490 617.917i 0.529487 1.26573i
\(63\) 143.325 479.067i 0.286623 0.958044i
\(64\) −369.568 + 354.349i −0.721813 + 0.692088i
\(65\) 381.202i 0.727420i
\(66\) 699.741 200.379i 1.30503 0.373711i
\(67\) 163.127i 0.297449i 0.988879 + 0.148725i \(0.0475168\pi\)
−0.988879 + 0.148725i \(0.952483\pi\)
\(68\) −389.016 394.506i −0.693752 0.703543i
\(69\) −277.661 346.820i −0.484441 0.605105i
\(70\) −311.807 + 619.490i −0.532401 + 1.05776i
\(71\) 478.338i 0.799554i 0.916613 + 0.399777i \(0.130912\pi\)
−0.916613 + 0.399777i \(0.869088\pi\)
\(72\) 602.981 98.2952i 0.986972 0.160892i
\(73\) 1038.37i 1.66482i 0.554157 + 0.832412i \(0.313041\pi\)
−0.554157 + 0.832412i \(0.686959\pi\)
\(74\) −285.366 + 682.164i −0.448285 + 1.07162i
\(75\) 203.988 163.310i 0.314059 0.251433i
\(76\) −139.242 141.207i −0.210160 0.213126i
\(77\) −914.963 64.2482i −1.35415 0.0950878i
\(78\) −406.810 + 116.495i −0.590540 + 0.169108i
\(79\) −148.084 −0.210895 −0.105448 0.994425i \(-0.533628\pi\)
−0.105448 + 0.994425i \(0.533628\pi\)
\(80\) −847.255 11.8735i −1.18407 0.0165937i
\(81\) −659.194 311.295i −0.904244 0.427016i
\(82\) 1229.22 + 514.213i 1.65542 + 0.692504i
\(83\) 739.797i 0.978353i 0.872185 + 0.489176i \(0.162703\pi\)
−0.872185 + 0.489176i \(0.837297\pi\)
\(84\) −756.393 143.438i −0.982490 0.186313i
\(85\) 916.925i 1.17005i
\(86\) 285.037 681.378i 0.357399 0.854359i
\(87\) −452.664 + 362.398i −0.557824 + 0.446588i
\(88\) −417.939 1039.77i −0.506278 1.25954i
\(89\) 1347.82 1.60527 0.802635 0.596470i \(-0.203431\pi\)
0.802635 + 0.596470i \(0.203431\pi\)
\(90\) 824.773 + 584.835i 0.965986 + 0.684967i
\(91\) 531.934 + 37.3521i 0.612767 + 0.0430282i
\(92\) −487.042 + 480.264i −0.551930 + 0.544250i
\(93\) 769.039 + 960.590i 0.857480 + 1.07106i
\(94\) −567.311 237.320i −0.622486 0.260401i
\(95\) 328.198i 0.354447i
\(96\) −246.249 907.798i −0.261798 0.965123i
\(97\) 183.115i 0.191675i −0.995397 0.0958375i \(-0.969447\pi\)
0.995397 0.0958375i \(-0.0305529\pi\)
\(98\) 833.891 + 495.800i 0.859548 + 0.511054i
\(99\) −292.588 + 1304.77i −0.297032 + 1.32459i
\(100\) −282.475 286.461i −0.282475 0.286461i
\(101\) 857.904i 0.845194i −0.906318 0.422597i \(-0.861118\pi\)
0.906318 0.422597i \(-0.138882\pi\)
\(102\) 978.520 280.211i 0.949882 0.272010i
\(103\) 493.737i 0.472324i −0.971714 0.236162i \(-0.924110\pi\)
0.971714 0.236162i \(-0.0758896\pi\)
\(104\) 242.978 + 604.493i 0.229096 + 0.569956i
\(105\) −724.659 1047.96i −0.673519 0.974002i
\(106\) 30.9755 + 12.9578i 0.0283831 + 0.0118733i
\(107\) 583.614 0.527290 0.263645 0.964620i \(-0.415075\pi\)
0.263645 + 0.964620i \(0.415075\pi\)
\(108\) −372.072 + 1058.90i −0.331506 + 0.943453i
\(109\) 1856.22i 1.63113i −0.578665 0.815565i \(-0.696426\pi\)
0.578665 0.815565i \(-0.303574\pi\)
\(110\) 715.716 1710.91i 0.620372 1.48299i
\(111\) −848.999 1060.47i −0.725976 0.906802i
\(112\) −99.5867 + 1181.11i −0.0840184 + 0.996464i
\(113\) 951.492i 0.792114i 0.918226 + 0.396057i \(0.129622\pi\)
−0.918226 + 0.396057i \(0.870378\pi\)
\(114\) 350.245 100.297i 0.287750 0.0824005i
\(115\) −1132.00 −0.917908
\(116\) 626.833 + 635.679i 0.501724 + 0.508804i
\(117\) 170.102 758.558i 0.134410 0.599390i
\(118\) 258.180 617.177i 0.201418 0.481489i
\(119\) −1279.49 89.8449i −0.985634 0.0692107i
\(120\) 764.685 1355.89i 0.581716 1.03146i
\(121\) 1121.73 0.842770
\(122\) 1968.78 + 823.588i 1.46102 + 0.611182i
\(123\) −1910.90 + 1529.85i −1.40081 + 1.12148i
\(124\) 1348.96 1330.19i 0.976939 0.963344i
\(125\) 989.155i 0.707781i
\(126\) 896.900 1093.59i 0.634145 0.773214i
\(127\) 2550.61 1.78213 0.891065 0.453876i \(-0.149959\pi\)
0.891065 + 0.453876i \(0.149959\pi\)
\(128\) −1351.11 + 521.212i −0.932985 + 0.359914i
\(129\) 848.020 + 1059.24i 0.578791 + 0.722956i
\(130\) −416.097 + 994.677i −0.280724 + 0.671069i
\(131\) 439.670i 0.293238i −0.989193 0.146619i \(-0.953161\pi\)
0.989193 0.146619i \(-0.0468391\pi\)
\(132\) 2044.57 + 240.943i 1.34816 + 0.158874i
\(133\) −457.972 32.1585i −0.298580 0.0209661i
\(134\) −178.059 + 425.650i −0.114791 + 0.274407i
\(135\) −1668.90 + 815.464i −1.06397 + 0.519881i
\(136\) −584.448 1454.02i −0.368500 0.916773i
\(137\) 1126.88i 0.702745i −0.936236 0.351373i \(-0.885715\pi\)
0.936236 0.351373i \(-0.114285\pi\)
\(138\) −345.937 1208.04i −0.213392 0.745184i
\(139\) −2419.55 −1.47643 −0.738215 0.674565i \(-0.764331\pi\)
−0.738215 + 0.674565i \(0.764331\pi\)
\(140\) −1489.80 + 1276.10i −0.899366 + 0.770356i
\(141\) 881.921 706.057i 0.526745 0.421707i
\(142\) −522.125 + 1248.14i −0.308562 + 0.737615i
\(143\) −1425.95 −0.833871
\(144\) 1680.66 + 401.695i 0.972605 + 0.232462i
\(145\) 1477.47i 0.846186i
\(146\) −1133.42 + 2709.44i −0.642485 + 1.53586i
\(147\) −1533.34 + 908.514i −0.860324 + 0.509748i
\(148\) −1489.22 + 1468.50i −0.827115 + 0.815605i
\(149\) −2049.54 −1.12688 −0.563439 0.826158i \(-0.690522\pi\)
−0.563439 + 0.826158i \(0.690522\pi\)
\(150\) 710.528 203.468i 0.386762 0.110754i
\(151\) 288.181 0.155310 0.0776551 0.996980i \(-0.475257\pi\)
0.0776551 + 0.996980i \(0.475257\pi\)
\(152\) −209.193 520.442i −0.111630 0.277720i
\(153\) −409.156 + 1824.60i −0.216198 + 0.964118i
\(154\) −2317.30 1166.36i −1.21255 0.610313i
\(155\) 3135.31 1.62473
\(156\) −1188.65 140.077i −0.610054 0.0718920i
\(157\) −2088.48 −1.06165 −0.530824 0.847482i \(-0.678117\pi\)
−0.530824 + 0.847482i \(0.678117\pi\)
\(158\) −386.398 161.639i −0.194558 0.0813883i
\(159\) −48.1534 + 38.5511i −0.0240177 + 0.0192283i
\(160\) −2197.80 955.794i −1.08594 0.472264i
\(161\) −110.919 + 1579.60i −0.0542959 + 0.773231i
\(162\) −1380.26 1531.80i −0.669402 0.742900i
\(163\) 4111.75i 1.97581i −0.155057 0.987906i \(-0.549556\pi\)
0.155057 0.987906i \(-0.450444\pi\)
\(164\) 2646.15 + 2683.49i 1.25993 + 1.27772i
\(165\) 2129.35 + 2659.72i 1.00466 + 1.25490i
\(166\) −807.518 + 1930.37i −0.377564 + 0.902563i
\(167\) −1224.94 −0.567598 −0.283799 0.958884i \(-0.591595\pi\)
−0.283799 + 0.958884i \(0.591595\pi\)
\(168\) −1817.10 1199.91i −0.834478 0.551041i
\(169\) −1368.00 −0.622665
\(170\) 1000.86 2392.55i 0.451544 1.07941i
\(171\) −146.451 + 653.085i −0.0654934 + 0.292062i
\(172\) 1487.50 1466.80i 0.659425 0.650248i
\(173\) 2451.51i 1.07737i −0.842508 0.538685i \(-0.818921\pi\)
0.842508 0.538685i \(-0.181079\pi\)
\(174\) −1576.72 + 451.511i −0.686957 + 0.196718i
\(175\) −929.068 65.2386i −0.401320 0.0281804i
\(176\) 44.4147 3169.29i 0.0190221 1.35735i
\(177\) 768.118 + 959.439i 0.326188 + 0.407434i
\(178\) 3516.90 + 1471.20i 1.48091 + 0.619502i
\(179\) −926.214 −0.386751 −0.193376 0.981125i \(-0.561944\pi\)
−0.193376 + 0.981125i \(0.561944\pi\)
\(180\) 1513.72 + 2426.29i 0.626813 + 1.00470i
\(181\) −876.720 −0.360034 −0.180017 0.983664i \(-0.557615\pi\)
−0.180017 + 0.983664i \(0.557615\pi\)
\(182\) 1347.21 + 678.090i 0.548693 + 0.276173i
\(183\) −3060.59 + 2450.28i −1.23631 + 0.989780i
\(184\) −1795.07 + 721.536i −0.719210 + 0.289089i
\(185\) −3461.29 −1.37556
\(186\) 958.144 + 3345.92i 0.377713 + 1.31901i
\(187\) 3429.90 1.34128
\(188\) −1221.25 1238.49i −0.473771 0.480457i
\(189\) 974.380 + 2408.70i 0.375004 + 0.927023i
\(190\) 358.242 856.374i 0.136787 0.326989i
\(191\) 2476.56i 0.938208i −0.883143 0.469104i \(-0.844577\pi\)
0.883143 0.469104i \(-0.155423\pi\)
\(192\) 348.358 2637.52i 0.130940 0.991390i
\(193\) 3130.49 1.16755 0.583776 0.811915i \(-0.301575\pi\)
0.583776 + 0.811915i \(0.301575\pi\)
\(194\) 199.877 477.804i 0.0739708 0.176827i
\(195\) −1237.94 1546.29i −0.454620 0.567856i
\(196\) 1634.70 + 2203.92i 0.595737 + 0.803180i
\(197\) −85.4470 −0.0309028 −0.0154514 0.999881i \(-0.504919\pi\)
−0.0154514 + 0.999881i \(0.504919\pi\)
\(198\) −2187.67 + 3085.19i −0.785205 + 1.10735i
\(199\) 3536.74i 1.25986i 0.776650 + 0.629932i \(0.216917\pi\)
−0.776650 + 0.629932i \(0.783083\pi\)
\(200\) −424.382 1055.80i −0.150042 0.373282i
\(201\) −529.749 661.699i −0.185899 0.232202i
\(202\) 936.437 2238.54i 0.326176 0.779720i
\(203\) 2061.67 + 144.770i 0.712814 + 0.0500534i
\(204\) 2859.13 + 336.935i 0.981271 + 0.115638i
\(205\) 6237.06i 2.12495i
\(206\) 538.934 1288.32i 0.182278 0.435735i
\(207\) 2252.58 + 505.128i 0.756352 + 0.169608i
\(208\) −25.8215 + 1842.54i −0.00860767 + 0.614216i
\(209\) 1227.68 0.406317
\(210\) −746.979 3525.45i −0.245459 1.15847i
\(211\) 1696.15i 0.553403i 0.960956 + 0.276701i \(0.0892413\pi\)
−0.960956 + 0.276701i \(0.910759\pi\)
\(212\) 66.6810 + 67.6221i 0.0216022 + 0.0219071i
\(213\) −1553.39 1940.31i −0.499702 0.624167i
\(214\) 1522.83 + 637.038i 0.486443 + 0.203491i
\(215\) 3457.31 1.09668
\(216\) −2126.69 + 2356.88i −0.669921 + 0.742433i
\(217\) 307.213 4375.04i 0.0961059 1.36865i
\(218\) 2026.13 4843.46i 0.629482 1.50477i
\(219\) −3372.08 4211.99i −1.04047 1.29964i
\(220\) 3735.06 3683.09i 1.14463 1.12870i
\(221\) −1994.05 −0.606942
\(222\) −1057.77 3693.81i −0.319786 1.11672i
\(223\) 3936.51i 1.18210i 0.806635 + 0.591050i \(0.201286\pi\)
−0.806635 + 0.591050i \(0.798714\pi\)
\(224\) −1549.08 + 2973.18i −0.462063 + 0.886847i
\(225\) −297.099 + 1324.89i −0.0880292 + 0.392559i
\(226\) −1038.59 + 2482.75i −0.305691 + 0.730751i
\(227\) 6229.85i 1.82154i −0.412912 0.910771i \(-0.635488\pi\)
0.412912 0.910771i \(-0.364512\pi\)
\(228\) 1023.38 + 120.600i 0.297258 + 0.0350305i
\(229\) 3973.83 1.14672 0.573359 0.819304i \(-0.305640\pi\)
0.573359 + 0.819304i \(0.305640\pi\)
\(230\) −2953.75 1235.62i −0.846801 0.354237i
\(231\) 3920.05 2710.70i 1.11654 0.772083i
\(232\) 941.737 + 2342.90i 0.266500 + 0.663013i
\(233\) 3401.07i 0.956273i −0.878285 0.478137i \(-0.841312\pi\)
0.878285 0.478137i \(-0.158688\pi\)
\(234\) 1271.85 1793.64i 0.355313 0.501086i
\(235\) 2878.53i 0.799042i
\(236\) 1347.35 1328.60i 0.371630 0.366459i
\(237\) 600.679 480.898i 0.164634 0.131804i
\(238\) −3240.52 1631.05i −0.882571 0.444223i
\(239\) 4477.57i 1.21184i −0.795525 0.605920i \(-0.792805\pi\)
0.795525 0.605920i \(-0.207195\pi\)
\(240\) 3475.32 2703.27i 0.934712 0.727064i
\(241\) 2312.70i 0.618151i −0.951037 0.309076i \(-0.899980\pi\)
0.951037 0.309076i \(-0.100020\pi\)
\(242\) 2926.94 + 1224.41i 0.777483 + 0.325240i
\(243\) 3684.84 877.992i 0.972768 0.231783i
\(244\) 4238.20 + 4298.01i 1.11198 + 1.12767i
\(245\) −634.632 + 4496.64i −0.165490 + 1.17257i
\(246\) −6656.04 + 1906.04i −1.72510 + 0.494001i
\(247\) −713.737 −0.183862
\(248\) 4971.83 1998.44i 1.27303 0.511699i
\(249\) −2402.47 3000.87i −0.611447 0.763745i
\(250\) −1079.70 + 2581.02i −0.273145 + 0.652952i
\(251\) 4493.21i 1.12992i 0.825119 + 0.564958i \(0.191108\pi\)
−0.825119 + 0.564958i \(0.808892\pi\)
\(252\) 3534.00 1874.53i 0.883417 0.468588i
\(253\) 4234.42i 1.05224i
\(254\) 6655.36 + 2784.10i 1.64407 + 0.687755i
\(255\) 2977.69 + 3719.37i 0.731255 + 0.913395i
\(256\) −4094.39 114.781i −0.999607 0.0280227i
\(257\) 1431.96 0.347562 0.173781 0.984784i \(-0.444402\pi\)
0.173781 + 0.984784i \(0.444402\pi\)
\(258\) 1056.55 + 3689.55i 0.254953 + 0.890316i
\(259\) −339.155 + 4829.93i −0.0813670 + 1.15875i
\(260\) −2171.46 + 2141.24i −0.517955 + 0.510747i
\(261\) 659.285 2940.03i 0.156355 0.697253i
\(262\) 479.917 1147.24i 0.113166 0.270521i
\(263\) 902.626i 0.211629i 0.994386 + 0.105814i \(0.0337449\pi\)
−0.994386 + 0.105814i \(0.966255\pi\)
\(264\) 5071.93 + 2860.42i 1.18241 + 0.666844i
\(265\) 157.170i 0.0364334i
\(266\) −1159.89 583.806i −0.267359 0.134569i
\(267\) −5467.24 + 4377.02i −1.25314 + 1.00325i
\(268\) −929.227 + 916.296i −0.211797 + 0.208850i
\(269\) 1889.72i 0.428321i −0.976798 0.214160i \(-0.931298\pi\)
0.976798 0.214160i \(-0.0687015\pi\)
\(270\) −5244.80 + 306.134i −1.18218 + 0.0690027i
\(271\) 7620.90i 1.70825i −0.520065 0.854127i \(-0.674092\pi\)
0.520065 0.854127i \(-0.325908\pi\)
\(272\) 62.1097 4431.95i 0.0138454 0.987964i
\(273\) −2279.01 + 1575.93i −0.505245 + 0.349375i
\(274\) 1230.04 2940.40i 0.271202 0.648306i
\(275\) 2490.54 0.546128
\(276\) 415.967 3529.77i 0.0907183 0.769809i
\(277\) 2983.80i 0.647218i −0.946191 0.323609i \(-0.895104\pi\)
0.946191 0.323609i \(-0.104896\pi\)
\(278\) −6313.38 2641.04i −1.36206 0.569781i
\(279\) −6238.98 1399.06i −1.33877 0.300213i
\(280\) −5280.28 + 1703.56i −1.12699 + 0.363598i
\(281\) 2988.80i 0.634508i −0.948341 0.317254i \(-0.897239\pi\)
0.948341 0.317254i \(-0.102761\pi\)
\(282\) 3071.90 879.675i 0.648684 0.185758i
\(283\) 3150.99 0.661861 0.330930 0.943655i \(-0.392637\pi\)
0.330930 + 0.943655i \(0.392637\pi\)
\(284\) −2724.78 + 2686.86i −0.569317 + 0.561395i
\(285\) 1065.81 + 1331.29i 0.221521 + 0.276697i
\(286\) −3720.75 1556.48i −0.769274 0.321806i
\(287\) 8703.27 + 611.138i 1.79003 + 0.125695i
\(288\) 3946.92 + 2882.66i 0.807550 + 0.589800i
\(289\) −116.610 −0.0237350
\(290\) −1612.71 + 3855.18i −0.326558 + 0.780635i
\(291\) 594.659 + 742.776i 0.119792 + 0.149630i
\(292\) −5914.93 + 5832.62i −1.18543 + 1.16893i
\(293\) 1635.98i 0.326194i 0.986610 + 0.163097i \(0.0521484\pi\)
−0.986610 + 0.163097i \(0.947852\pi\)
\(294\) −4992.65 + 696.901i −0.990398 + 0.138245i
\(295\) 3131.55 0.618054
\(296\) −5488.77 + 2206.23i −1.07780 + 0.433224i
\(297\) −3050.37 6242.78i −0.595961 1.21967i
\(298\) −5347.90 2237.15i −1.03958 0.434882i
\(299\) 2461.77i 0.476147i
\(300\) 2076.09 + 244.657i 0.399543 + 0.0470843i
\(301\) 338.764 4824.37i 0.0648706 0.923827i
\(302\) 751.956 + 314.561i 0.143279 + 0.0599369i
\(303\) 2786.02 + 3479.96i 0.528226 + 0.659796i
\(304\) 22.2311 1586.34i 0.00419422 0.299286i
\(305\) 9989.58i 1.87541i
\(306\) −3059.24 + 4314.35i −0.571520 + 0.805996i
\(307\) 3788.51 0.704305 0.352152 0.935943i \(-0.385450\pi\)
0.352152 + 0.935943i \(0.385450\pi\)
\(308\) −4773.44 5572.84i −0.883091 1.03098i
\(309\) 1603.40 + 2002.77i 0.295191 + 0.368717i
\(310\) 8181.01 + 3422.31i 1.49887 + 0.627014i
\(311\) 4998.37 0.911356 0.455678 0.890145i \(-0.349397\pi\)
0.455678 + 0.890145i \(0.349397\pi\)
\(312\) −2948.68 1662.97i −0.535051 0.301754i
\(313\) 1152.65i 0.208152i −0.994569 0.104076i \(-0.966812\pi\)
0.994569 0.104076i \(-0.0331885\pi\)
\(314\) −5449.50 2279.66i −0.979406 0.409709i
\(315\) 6342.68 + 1897.57i 1.13451 + 0.339416i
\(316\) −831.799 843.537i −0.148077 0.150167i
\(317\) 2738.80 0.485256 0.242628 0.970119i \(-0.421991\pi\)
0.242628 + 0.970119i \(0.421991\pi\)
\(318\) −167.728 + 48.0308i −0.0295777 + 0.00846991i
\(319\) −5526.70 −0.970018
\(320\) −4691.46 4892.95i −0.819565 0.854764i
\(321\) −2367.34 + 1895.27i −0.411626 + 0.329544i
\(322\) −2013.62 + 4000.62i −0.348493 + 0.692378i
\(323\) 1716.79 0.295742
\(324\) −1929.50 5503.57i −0.330847 0.943684i
\(325\) −1447.93 −0.247128
\(326\) 4488.14 10728.9i 0.762500 1.82275i
\(327\) 6028.01 + 7529.46i 1.01942 + 1.27333i
\(328\) 3975.50 + 9890.45i 0.669239 + 1.66497i
\(329\) −4016.74 282.053i −0.673100 0.0472647i
\(330\) 2652.95 + 9264.33i 0.442546 + 1.54541i
\(331\) 5222.20i 0.867184i 0.901109 + 0.433592i \(0.142754\pi\)
−0.901109 + 0.433592i \(0.857246\pi\)
\(332\) −4214.14 + 4155.50i −0.696630 + 0.686936i
\(333\) 6887.66 + 1544.52i 1.13346 + 0.254172i
\(334\) −3196.26 1337.07i −0.523628 0.219046i
\(335\) −2159.74 −0.352237
\(336\) −3431.65 5114.38i −0.557178 0.830393i
\(337\) −2898.62 −0.468540 −0.234270 0.972172i \(-0.575270\pi\)
−0.234270 + 0.972172i \(0.575270\pi\)
\(338\) −3569.53 1493.22i −0.574429 0.240297i
\(339\) −3089.94 3859.58i −0.495052 0.618359i
\(340\) 5223.13 5150.44i 0.833129 0.821535i
\(341\) 11728.1i 1.86250i
\(342\) −1095.00 + 1544.25i −0.173132 + 0.244162i
\(343\) 6212.48 + 1326.18i 0.977966 + 0.208766i
\(344\) 5482.44 2203.69i 0.859284 0.345392i
\(345\) 4591.78 3676.13i 0.716560 0.573670i
\(346\) 2675.92 6396.77i 0.415776 0.993909i
\(347\) 10559.0 1.63353 0.816765 0.576970i \(-0.195765\pi\)
0.816765 + 0.576970i \(0.195765\pi\)
\(348\) −4607.00 542.913i −0.709658 0.0836298i
\(349\) −4344.86 −0.666404 −0.333202 0.942855i \(-0.608129\pi\)
−0.333202 + 0.942855i \(0.608129\pi\)
\(350\) −2353.02 1184.34i −0.359355 0.180874i
\(351\) 1773.40 + 3629.37i 0.269678 + 0.551914i
\(352\) 3575.30 8221.20i 0.541375 1.24486i
\(353\) −9819.24 −1.48053 −0.740263 0.672318i \(-0.765299\pi\)
−0.740263 + 0.672318i \(0.765299\pi\)
\(354\) 956.996 + 3341.91i 0.143683 + 0.501753i
\(355\) −6333.03 −0.946824
\(356\) 7570.83 + 7677.68i 1.12712 + 1.14302i
\(357\) 5481.81 3790.66i 0.812685 0.561969i
\(358\) −2416.79 1011.00i −0.356791 0.149254i
\(359\) 728.937i 0.107164i −0.998563 0.0535820i \(-0.982936\pi\)
0.998563 0.0535820i \(-0.0170638\pi\)
\(360\) 1301.39 + 7983.26i 0.190526 + 1.16876i
\(361\) −6244.50 −0.910410
\(362\) −2287.64 956.975i −0.332143 0.138943i
\(363\) −4550.11 + 3642.77i −0.657903 + 0.526711i
\(364\) 2775.14 + 3239.89i 0.399607 + 0.466529i
\(365\) −13747.7 −1.97147
\(366\) −10660.6 + 3052.80i −1.52251 + 0.435990i
\(367\) 8207.43i 1.16737i 0.811981 + 0.583685i \(0.198390\pi\)
−0.811981 + 0.583685i \(0.801610\pi\)
\(368\) −5471.50 76.6782i −0.775059 0.0108618i
\(369\) 2783.14 12411.2i 0.392641 1.75095i
\(370\) −9031.62 3778.14i −1.26900 0.530855i
\(371\) 219.316 + 15.4003i 0.0306909 + 0.00215510i
\(372\) −1152.11 + 9776.43i −0.160575 + 1.36259i
\(373\) 6620.48i 0.919023i 0.888172 + 0.459511i \(0.151975\pi\)
−0.888172 + 0.459511i \(0.848025\pi\)
\(374\) 8949.71 + 3743.88i 1.23738 + 0.517624i
\(375\) −3212.25 4012.35i −0.442346 0.552525i
\(376\) −1834.78 4564.65i −0.251653 0.626074i
\(377\) 3213.07 0.438942
\(378\) −86.7287 + 7348.65i −0.0118012 + 0.999930i
\(379\) 2808.73i 0.380672i −0.981719 0.190336i \(-0.939042\pi\)
0.981719 0.190336i \(-0.0609578\pi\)
\(380\) 1869.53 1843.52i 0.252382 0.248869i
\(381\) −10346.2 + 8283.04i −1.39121 + 1.11379i
\(382\) 2703.27 6462.13i 0.362071 0.865528i
\(383\) −2395.34 −0.319573 −0.159786 0.987152i \(-0.551081\pi\)
−0.159786 + 0.987152i \(0.551081\pi\)
\(384\) 3787.94 6501.89i 0.503392 0.864058i
\(385\) 850.624 12113.8i 0.112602 1.60357i
\(386\) 8168.44 + 3417.05i 1.07711 + 0.450579i
\(387\) −6879.73 1542.74i −0.903660 0.202641i
\(388\) 1043.09 1028.57i 0.136481 0.134582i
\(389\) −12078.7 −1.57432 −0.787162 0.616746i \(-0.788450\pi\)
−0.787162 + 0.616746i \(0.788450\pi\)
\(390\) −1542.35 5386.02i −0.200256 0.699312i
\(391\) 5921.43i 0.765881i
\(392\) 1859.79 + 7535.08i 0.239626 + 0.970865i
\(393\) 1427.81 + 1783.45i 0.183266 + 0.228914i
\(394\) −222.958 93.2688i −0.0285088 0.0119259i
\(395\) 1960.58i 0.249740i
\(396\) −9075.93 + 5662.33i −1.15172 + 0.718542i
\(397\) 5240.22 0.662466 0.331233 0.943549i \(-0.392535\pi\)
0.331233 + 0.943549i \(0.392535\pi\)
\(398\) −3860.50 + 9228.48i −0.486204 + 1.16227i
\(399\) 1962.12 1356.80i 0.246188 0.170238i
\(400\) 45.0994 3218.15i 0.00563743 0.402268i
\(401\) 10649.8i 1.32625i 0.748509 + 0.663125i \(0.230770\pi\)
−0.748509 + 0.663125i \(0.769230\pi\)
\(402\) −660.014 2304.82i −0.0818868 0.285956i
\(403\) 6818.39i 0.842799i
\(404\) 4886.92 4818.92i 0.601815 0.593441i
\(405\) 4121.44 8727.50i 0.505669 1.07080i
\(406\) 5221.54 + 2628.15i 0.638278 + 0.321263i
\(407\) 12947.5i 1.57687i
\(408\) 7092.61 + 4000.03i 0.860628 + 0.485370i
\(409\) 10197.5i 1.23284i 0.787416 + 0.616421i \(0.211418\pi\)
−0.787416 + 0.616421i \(0.788582\pi\)
\(410\) −6808.00 + 16274.5i −0.820057 + 1.96034i
\(411\) 3659.52 + 4571.03i 0.439199 + 0.548594i
\(412\) 2812.50 2773.36i 0.336315 0.331635i
\(413\) 306.845 4369.80i 0.0365590 0.520639i
\(414\) 5326.32 + 3776.82i 0.632305 + 0.448358i
\(415\) −9794.66 −1.15856
\(416\) −2078.58 + 4779.58i −0.244978 + 0.563312i
\(417\) 9814.54 7857.43i 1.15257 0.922733i
\(418\) 3203.40 + 1340.06i 0.374841 + 0.156805i
\(419\) 9402.75i 1.09631i −0.836376 0.548155i \(-0.815330\pi\)
0.836376 0.548155i \(-0.184670\pi\)
\(420\) 1899.07 10014.4i 0.220631 1.16346i
\(421\) 1525.15i 0.176559i 0.996096 + 0.0882793i \(0.0281368\pi\)
−0.996096 + 0.0882793i \(0.971863\pi\)
\(422\) −1851.42 + 4425.80i −0.213568 + 0.510532i
\(423\) −1284.48 + 5728.02i −0.147644 + 0.658406i
\(424\) 100.180 + 249.233i 0.0114744 + 0.0285467i
\(425\) 3482.78 0.397505
\(426\) −1935.36 6758.46i −0.220114 0.768658i
\(427\) 13939.6 + 978.829i 1.57982 + 0.110934i
\(428\) 3278.20 + 3324.47i 0.370229 + 0.375454i
\(429\) 5784.13 4630.72i 0.650957 0.521149i
\(430\) 9021.21 + 3773.79i 1.01172 + 0.423229i
\(431\) 7819.69i 0.873924i 0.899480 + 0.436962i \(0.143946\pi\)
−0.899480 + 0.436962i \(0.856054\pi\)
\(432\) −8121.84 + 3828.49i −0.904542 + 0.426385i
\(433\) 11246.6i 1.24821i 0.781340 + 0.624106i \(0.214536\pi\)
−0.781340 + 0.624106i \(0.785464\pi\)
\(434\) 5577.15 11080.5i 0.616847 1.22554i
\(435\) −4798.03 5993.12i −0.528846 0.660570i
\(436\) 10573.7 10426.5i 1.16144 1.14527i
\(437\) 2119.48i 0.232010i
\(438\) −4201.27 14671.2i −0.458320 1.60049i
\(439\) 5899.62i 0.641397i −0.947181 0.320698i \(-0.896082\pi\)
0.947181 0.320698i \(-0.103918\pi\)
\(440\) 13766.2 5533.37i 1.49154 0.599530i
\(441\) 3269.38 8664.71i 0.353027 0.935613i
\(442\) −5203.11 2176.58i −0.559924 0.234230i
\(443\) −991.808 −0.106371 −0.0531854 0.998585i \(-0.516937\pi\)
−0.0531854 + 0.998585i \(0.516937\pi\)
\(444\) 1271.89 10792.9i 0.135949 1.15362i
\(445\) 17844.7i 1.90095i
\(446\) −4296.86 + 10271.6i −0.456193 + 1.09053i
\(447\) 8313.64 6655.81i 0.879690 0.704271i
\(448\) −7287.38 + 6067.08i −0.768518 + 0.639828i
\(449\) 13929.7i 1.46411i −0.681248 0.732053i \(-0.738562\pi\)
0.681248 0.732053i \(-0.261438\pi\)
\(450\) −2221.39 + 3132.76i −0.232705 + 0.328177i
\(451\) −23330.7 −2.43592
\(452\) −5420.03 + 5344.61i −0.564020 + 0.556171i
\(453\) −1168.96 + 935.859i −0.121242 + 0.0970651i
\(454\) 6800.14 16255.7i 0.702965 1.68043i
\(455\) −494.529 + 7042.62i −0.0509535 + 0.725633i
\(456\) 2538.68 + 1431.74i 0.260712 + 0.147034i
\(457\) −10005.2 −1.02412 −0.512060 0.858950i \(-0.671117\pi\)
−0.512060 + 0.858950i \(0.671117\pi\)
\(458\) 10369.0 + 4337.60i 1.05789 + 0.442539i
\(459\) −4265.65 8729.92i −0.433777 0.887752i
\(460\) −6358.53 6448.26i −0.644496 0.653591i
\(461\) 15566.9i 1.57272i −0.617770 0.786359i \(-0.711964\pi\)
0.617770 0.786359i \(-0.288036\pi\)
\(462\) 13187.5 2794.19i 1.32800 0.281380i
\(463\) −10866.3 −1.09071 −0.545357 0.838204i \(-0.683606\pi\)
−0.545357 + 0.838204i \(0.683606\pi\)
\(464\) −100.079 + 7141.32i −0.0100131 + 0.714499i
\(465\) −12717.9 + 10181.8i −1.26834 + 1.01542i
\(466\) 3712.41 8874.48i 0.369043 0.882194i
\(467\) 2184.04i 0.216414i 0.994128 + 0.108207i \(0.0345109\pi\)
−0.994128 + 0.108207i \(0.965489\pi\)
\(468\) 5276.49 3291.92i 0.521166 0.325147i
\(469\) −211.622 + 3013.73i −0.0208354 + 0.296719i
\(470\) 3142.03 7511.01i 0.308364 0.737142i
\(471\) 8471.59 6782.27i 0.828769 0.663504i
\(472\) 4965.87 1996.05i 0.484264 0.194652i
\(473\) 12932.6i 1.25717i
\(474\) 2092.28 599.150i 0.202746 0.0580588i
\(475\) 1246.60 0.120417
\(476\) −6675.20 7793.08i −0.642767 0.750410i
\(477\) 70.1332 312.753i 0.00673203 0.0300209i
\(478\) 4887.45 11683.4i 0.467671 1.11796i
\(479\) −7028.43 −0.670433 −0.335216 0.942141i \(-0.608809\pi\)
−0.335216 + 0.942141i \(0.608809\pi\)
\(480\) 12018.9 3260.25i 1.14289 0.310019i
\(481\) 7527.32i 0.713547i
\(482\) 2524.41 6034.58i 0.238555 0.570265i
\(483\) −4679.79 6767.63i −0.440865 0.637552i
\(484\) 6300.83 + 6389.75i 0.591738 + 0.600089i
\(485\) 2424.37 0.226980
\(486\) 10573.3 + 1731.19i 0.986859 + 0.161581i
\(487\) 3566.36 0.331842 0.165921 0.986139i \(-0.446940\pi\)
0.165921 + 0.986139i \(0.446940\pi\)
\(488\) 6367.35 + 15841.0i 0.590649 + 1.46945i
\(489\) 13352.8 + 16678.7i 1.23483 + 1.54241i
\(490\) −6564.22 + 11040.4i −0.605186 + 1.01787i
\(491\) 2231.72 0.205124 0.102562 0.994727i \(-0.467296\pi\)
0.102562 + 0.994727i \(0.467296\pi\)
\(492\) −19448.2 2291.88i −1.78210 0.210012i
\(493\) −7728.56 −0.706038
\(494\) −1862.37 779.072i −0.169619 0.0709557i
\(495\) −17274.7 3873.76i −1.56857 0.351743i
\(496\) 15154.5 + 212.376i 1.37189 + 0.0192257i
\(497\) −620.542 + 8837.19i −0.0560063 + 0.797590i
\(498\) −2993.23 10452.6i −0.269337 0.940548i
\(499\) 20669.1i 1.85426i 0.374743 + 0.927129i \(0.377731\pi\)
−0.374743 + 0.927129i \(0.622269\pi\)
\(500\) −5634.57 + 5556.16i −0.503971 + 0.496958i
\(501\) 4968.79 3977.96i 0.443092 0.354735i
\(502\) −4904.52 + 11724.2i −0.436055 + 1.04239i
\(503\) −17146.1 −1.51990 −0.759948 0.649984i \(-0.774775\pi\)
−0.759948 + 0.649984i \(0.774775\pi\)
\(504\) 11267.5 1033.74i 0.995818 0.0913620i
\(505\) 11358.4 1.00087
\(506\) 4622.04 11048.9i 0.406076 0.970723i
\(507\) 5549.06 4442.52i 0.486080 0.389151i
\(508\) 14327.0 + 14529.2i 1.25130 + 1.26895i
\(509\) 7036.98i 0.612787i −0.951905 0.306393i \(-0.900878\pi\)
0.951905 0.306393i \(-0.0991223\pi\)
\(510\) 3709.89 + 12955.3i 0.322112 + 1.12484i
\(511\) −1347.07 + 19183.7i −0.116616 + 1.66074i
\(512\) −10558.3 4768.69i −0.911356 0.411618i
\(513\) −1526.82 3124.73i −0.131405 0.268928i
\(514\) 3736.44 + 1563.04i 0.320637 + 0.134130i
\(515\) 6536.91 0.559322
\(516\) −1270.43 + 10780.5i −0.108387 + 0.919737i
\(517\) 10767.6 0.915974
\(518\) −6157.03 + 12232.6i −0.522247 + 1.03759i
\(519\) 7961.20 + 9944.17i 0.673330 + 0.841042i
\(520\) −8003.28 + 3216.95i −0.674937 + 0.271293i
\(521\) −5554.16 −0.467048 −0.233524 0.972351i \(-0.575026\pi\)
−0.233524 + 0.972351i \(0.575026\pi\)
\(522\) 4929.44 6951.83i 0.413325 0.582899i
\(523\) 1129.07 0.0943994 0.0471997 0.998885i \(-0.484970\pi\)
0.0471997 + 0.998885i \(0.484970\pi\)
\(524\) 2504.51 2469.66i 0.208798 0.205892i
\(525\) 3980.48 2752.49i 0.330900 0.228816i
\(526\) −985.253 + 2355.24i −0.0816712 + 0.195234i
\(527\) 16400.6i 1.35564i
\(528\) 10112.0 + 13000.0i 0.833464 + 1.07150i
\(529\) 4856.64 0.399165
\(530\) −171.557 + 410.105i −0.0140603 + 0.0336110i
\(531\) −6231.50 1397.38i −0.509273 0.114202i
\(532\) −2389.28 2789.40i −0.194715 0.227323i
\(533\) 13563.8 1.10228
\(534\) −19043.5 + 5453.32i −1.54324 + 0.441925i
\(535\) 7726.84i 0.624412i
\(536\) −3424.82 + 1376.62i −0.275989 + 0.110935i
\(537\) 3757.04 3007.85i 0.301915 0.241710i
\(538\) 2062.71 4930.88i 0.165297 0.395140i
\(539\) −16820.4 2373.94i −1.34417 0.189708i
\(540\) −14019.5 4926.11i −1.11723 0.392566i
\(541\) 13088.7i 1.04016i −0.854118 0.520079i \(-0.825903\pi\)
0.854118 0.520079i \(-0.174097\pi\)
\(542\) 8318.52 19885.4i 0.659245 1.57592i
\(543\) 3556.28 2847.12i 0.281058 0.225012i
\(544\) 4999.71 11496.6i 0.394046 0.906087i
\(545\) 24575.7 1.93157
\(546\) −7666.84 + 1624.46i −0.600935 + 0.127327i
\(547\) 134.806i 0.0105373i 0.999986 + 0.00526863i \(0.00167706\pi\)
−0.999986 + 0.00526863i \(0.998323\pi\)
\(548\) 6419.12 6329.79i 0.500385 0.493422i
\(549\) 4457.61 19878.4i 0.346532 1.54533i
\(550\) 6498.61 + 2718.52i 0.503821 + 0.210760i
\(551\) −2766.31 −0.213881
\(552\) 4938.27 8756.25i 0.380773 0.675164i
\(553\) −2735.81 192.107i −0.210377 0.0147726i
\(554\) 3256.94 7785.69i 0.249773 0.597080i
\(555\) 14040.2 11240.4i 1.07383 0.859695i
\(556\) −13590.8 13782.6i −1.03665 1.05128i
\(557\) −949.790 −0.0722512 −0.0361256 0.999347i \(-0.511502\pi\)
−0.0361256 + 0.999347i \(0.511502\pi\)
\(558\) −14752.3 10460.7i −1.11921 0.793612i
\(559\) 7518.65i 0.568882i
\(560\) −15637.4 1318.49i −1.18000 0.0994938i
\(561\) −13912.9 + 11138.5i −1.04706 + 0.838267i
\(562\) 3262.40 7798.73i 0.244868 0.585355i
\(563\) 3122.65i 0.233755i −0.993146 0.116877i \(-0.962712\pi\)
0.993146 0.116877i \(-0.0372884\pi\)
\(564\) 8975.77 + 1057.75i 0.670120 + 0.0789705i
\(565\) −12597.4 −0.938014
\(566\) 8221.92 + 3439.43i 0.610589 + 0.255424i
\(567\) −11774.6 6606.26i −0.872112 0.489307i
\(568\) −10042.6 + 4036.67i −0.741866 + 0.298196i
\(569\) 15497.7i 1.14182i −0.821011 0.570912i \(-0.806590\pi\)
0.821011 0.570912i \(-0.193410\pi\)
\(570\) 1327.90 + 4637.13i 0.0975779 + 0.340751i
\(571\) 11912.4i 0.873063i 0.899689 + 0.436531i \(0.143793\pi\)
−0.899689 + 0.436531i \(0.856207\pi\)
\(572\) −8009.65 8122.69i −0.585490 0.593753i
\(573\) 8042.56 + 10045.8i 0.586357 + 0.732406i
\(574\) 22042.5 + 11094.6i 1.60285 + 0.806760i
\(575\) 4299.70i 0.311843i
\(576\) 7152.22 + 11830.0i 0.517377 + 0.855757i
\(577\) 5650.41i 0.407677i −0.979005 0.203838i \(-0.934658\pi\)
0.979005 0.203838i \(-0.0653417\pi\)
\(578\) −304.273 127.285i −0.0218963 0.00915977i
\(579\) −12698.3 + 10166.2i −0.911443 + 0.729692i
\(580\) −8416.17 + 8299.05i −0.602521 + 0.594137i
\(581\) −959.729 + 13667.6i −0.0685306 + 0.975949i
\(582\) 740.885 + 2587.23i 0.0527675 + 0.184269i
\(583\) −587.917 −0.0417651
\(584\) −21800.5 + 8762.77i −1.54471 + 0.620901i
\(585\) 10043.0 + 2252.10i 0.709793 + 0.159167i
\(586\) −1785.74 + 4268.79i −0.125884 + 0.300925i
\(587\) 9396.05i 0.660675i 0.943863 + 0.330338i \(0.107163\pi\)
−0.943863 + 0.330338i \(0.892837\pi\)
\(588\) −13788.1 3631.24i −0.967026 0.254676i
\(589\) 5870.33i 0.410667i
\(590\) 8171.21 + 3418.21i 0.570175 + 0.238518i
\(591\) 346.603 277.487i 0.0241241 0.0193135i
\(592\) −16730.1 234.458i −1.16149 0.0162773i
\(593\) 5680.51 0.393374 0.196687 0.980466i \(-0.436982\pi\)
0.196687 + 0.980466i \(0.436982\pi\)
\(594\) −1145.14 19619.0i −0.0791006 1.35518i
\(595\) 1189.52 16940.0i 0.0819587 1.16718i
\(596\) −11512.4 11674.9i −0.791220 0.802386i
\(597\) −11485.5 14346.2i −0.787385 0.983506i
\(598\) −2687.12 + 6423.55i −0.183754 + 0.439261i
\(599\) 11213.1i 0.764866i −0.923983 0.382433i \(-0.875086\pi\)
0.923983 0.382433i \(-0.124914\pi\)
\(600\) 5150.12 + 2904.52i 0.350421 + 0.197628i
\(601\) 4599.55i 0.312179i −0.987743 0.156089i \(-0.950111\pi\)
0.987743 0.156089i \(-0.0498888\pi\)
\(602\) 6149.93 12218.5i 0.416366 0.827226i
\(603\) 4297.69 + 963.734i 0.290241 + 0.0650850i
\(604\) 1618.74 + 1641.58i 0.109049 + 0.110588i
\(605\) 14851.3i 0.998000i
\(606\) 3471.09 + 12121.4i 0.232679 + 0.812536i
\(607\) 27115.8i 1.81318i −0.422017 0.906588i \(-0.638678\pi\)
0.422017 0.906588i \(-0.361322\pi\)
\(608\) 1789.56 4115.00i 0.119369 0.274483i
\(609\) −8833.00 + 6107.99i −0.587736 + 0.406417i
\(610\) −10904.0 + 26066.0i −0.723756 + 1.73013i
\(611\) −6259.98 −0.414487
\(612\) −12691.8 + 7918.22i −0.838294 + 0.522998i
\(613\) 2010.26i 0.132453i −0.997805 0.0662263i \(-0.978904\pi\)
0.997805 0.0662263i \(-0.0210959\pi\)
\(614\) 9885.42 + 4135.31i 0.649745 + 0.271804i
\(615\) −20254.7 25299.7i −1.32804 1.65883i
\(616\) −6372.45 19751.7i −0.416807 1.29191i
\(617\) 15659.8i 1.02178i 0.859646 + 0.510891i \(0.170684\pi\)
−0.859646 + 0.510891i \(0.829316\pi\)
\(618\) 1997.67 + 6976.03i 0.130029 + 0.454073i
\(619\) 27135.8 1.76200 0.881001 0.473115i \(-0.156870\pi\)
0.881001 + 0.473115i \(0.156870\pi\)
\(620\) 17611.3 + 17859.8i 1.14078 + 1.15688i
\(621\) −10777.6 + 5266.20i −0.696442 + 0.340298i
\(622\) 13042.3 + 5455.92i 0.840756 + 0.351708i
\(623\) 24900.7 + 1748.52i 1.60133 + 0.112444i
\(624\) −5878.84 7557.82i −0.377150 0.484863i
\(625\) −19382.1 −1.24046
\(626\) 1258.16 3007.62i 0.0803294 0.192027i
\(627\) −4979.88 + 3986.84i −0.317189 + 0.253938i
\(628\) −11731.2 11896.7i −0.745420 0.755940i
\(629\) 18105.9i 1.14774i
\(630\) 14478.8 + 11874.7i 0.915633 + 0.750948i
\(631\) 854.200 0.0538909 0.0269455 0.999637i \(-0.491422\pi\)
0.0269455 + 0.999637i \(0.491422\pi\)
\(632\) −1249.67 3109.00i −0.0786540 0.195679i
\(633\) −5508.20 6880.18i −0.345863 0.432011i
\(634\) 7146.39 + 2989.51i 0.447665 + 0.187269i
\(635\) 33769.3i 2.11038i
\(636\) −490.082 57.7538i −0.0305551 0.00360077i
\(637\) 9778.89 + 1380.14i 0.608248 + 0.0858449i
\(638\) −14420.9 6032.61i −0.894873 0.374347i
\(639\) 12602.2 + 2825.97i 0.780178 + 0.174951i
\(640\) −6900.66 17888.2i −0.426207 1.10483i
\(641\) 29337.9i 1.80777i −0.427779 0.903884i \(-0.640704\pi\)
0.427779 0.903884i \(-0.359296\pi\)
\(642\) −8245.90 + 2361.31i −0.506915 + 0.145161i
\(643\) −24076.1 −1.47662 −0.738310 0.674461i \(-0.764376\pi\)
−0.738310 + 0.674461i \(0.764376\pi\)
\(644\) −9621.02 + 8240.93i −0.588698 + 0.504252i
\(645\) −14024.0 + 11227.5i −0.856117 + 0.685399i
\(646\) 4479.65 + 1873.94i 0.272832 + 0.114132i
\(647\) 9606.99 0.583755 0.291878 0.956456i \(-0.405720\pi\)
0.291878 + 0.956456i \(0.405720\pi\)
\(648\) 972.685 16466.7i 0.0589671 0.998260i
\(649\) 11714.1i 0.708500i
\(650\) −3778.11 1580.47i −0.227984 0.0953711i
\(651\) 12961.7 + 18744.3i 0.780349 + 1.12849i
\(652\) 23422.0 23096.0i 1.40686 1.38729i
\(653\) −5450.16 −0.326618 −0.163309 0.986575i \(-0.552217\pi\)
−0.163309 + 0.986575i \(0.552217\pi\)
\(654\) 7510.28 + 26226.6i 0.449045 + 1.56810i
\(655\) 5821.08 0.347249
\(656\) −422.479 + 30146.8i −0.0251449 + 1.79426i
\(657\) 27356.6 + 6134.58i 1.62448 + 0.364281i
\(658\) −10173.1 5120.40i −0.602717 0.303364i
\(659\) 15534.8 0.918287 0.459144 0.888362i \(-0.348156\pi\)
0.459144 + 0.888362i \(0.348156\pi\)
\(660\) −3190.00 + 27069.4i −0.188137 + 1.59648i
\(661\) −10381.1 −0.610858 −0.305429 0.952215i \(-0.598800\pi\)
−0.305429 + 0.952215i \(0.598800\pi\)
\(662\) −5700.24 + 13626.4i −0.334662 + 0.800006i
\(663\) 8088.55 6475.61i 0.473806 0.379324i
\(664\) −15531.9 + 6243.11i −0.907765 + 0.364879i
\(665\) 425.768 6063.39i 0.0248279 0.353576i
\(666\) 16286.2 + 11548.3i 0.947564 + 0.671904i
\(667\) 9541.36i 0.553888i
\(668\) −6880.59 6977.69i −0.398530 0.404154i
\(669\) −12783.7 15967.9i −0.738784 0.922799i
\(670\) −5635.46 2357.45i −0.324950 0.135934i
\(671\) −37367.6 −2.14986
\(672\) −3371.71 17090.8i −0.193551 0.981090i
\(673\) 29748.6 1.70390 0.851948 0.523626i \(-0.175421\pi\)
0.851948 + 0.523626i \(0.175421\pi\)
\(674\) −7563.42 3163.96i −0.432244 0.180818i
\(675\) −3097.39 6339.02i −0.176620 0.361465i
\(676\) −7684.14 7792.58i −0.437195 0.443365i
\(677\) 6845.80i 0.388634i 0.980939 + 0.194317i \(0.0622491\pi\)
−0.980939 + 0.194317i \(0.937751\pi\)
\(678\) −3849.75 13443.7i −0.218066 0.761506i
\(679\) 237.552 3383.00i 0.0134262 0.191204i
\(680\) 19250.7 7737.89i 1.08563 0.436374i
\(681\) 20231.3 + 25270.4i 1.13842 + 1.42198i
\(682\) −12801.7 + 30602.4i −0.718772 + 1.71822i
\(683\) −13901.9 −0.778833 −0.389417 0.921062i \(-0.627323\pi\)
−0.389417 + 0.921062i \(0.627323\pi\)
\(684\) −4542.83 + 2834.20i −0.253946 + 0.158433i
\(685\) 14919.5 0.832184
\(686\) 14762.8 + 10241.6i 0.821639 + 0.570008i
\(687\) −16119.2 + 12904.9i −0.895178 + 0.716671i
\(688\) 16710.9 + 234.187i 0.926011 + 0.0129772i
\(689\) 341.799 0.0188991
\(690\) 15994.1 4580.09i 0.882440 0.252697i
\(691\) −7713.20 −0.424637 −0.212318 0.977201i \(-0.568101\pi\)
−0.212318 + 0.977201i \(0.568101\pi\)
\(692\) 13964.7 13770.3i 0.767134 0.756459i
\(693\) −7098.16 + 23725.8i −0.389086 + 1.30053i
\(694\) 27551.7 + 11525.5i 1.50699 + 0.630408i
\(695\) 32034.1i 1.74838i
\(696\) −11428.5 6445.36i −0.622409 0.351021i
\(697\) −32625.7 −1.77301
\(698\) −11337.1 4742.59i −0.614780 0.257177i
\(699\) 11044.9 + 13795.9i 0.597648 + 0.746509i
\(700\) −4847.03 5658.75i −0.261715 0.305544i
\(701\) 28716.9 1.54725 0.773626 0.633643i \(-0.218441\pi\)
0.773626 + 0.633643i \(0.218441\pi\)
\(702\) 665.753 + 11405.9i 0.0357938 + 0.613232i
\(703\) 6480.69i 0.347687i
\(704\) 18302.9 17549.2i 0.979851 0.939501i
\(705\) 9347.95 + 11676.3i 0.499382 + 0.623767i
\(706\) −25621.5 10718.1i −1.36583 0.571361i
\(707\) 1112.95 15849.6i 0.0592033 0.843118i
\(708\) −1150.73 + 9764.72i −0.0610832 + 0.518334i
\(709\) 6971.08i 0.369259i −0.982808 0.184629i \(-0.940892\pi\)
0.982808 0.184629i \(-0.0591085\pi\)
\(710\) −16524.9 6912.76i −0.873477 0.365396i
\(711\) −874.862 + 3901.38i −0.0461461 + 0.205785i
\(712\) 11374.2 + 28297.4i 0.598690 + 1.48945i
\(713\) 20247.6 1.06350
\(714\) 18441.5 3907.41i 0.966602 0.204805i
\(715\) 18879.0i 0.987463i
\(716\) −5202.62 5276.04i −0.271552 0.275384i
\(717\) 14540.8 + 18162.6i 0.757371 + 0.946016i
\(718\) 795.664 1902.03i 0.0413565 0.0988623i
\(719\) −19292.8 −1.00070 −0.500348 0.865825i \(-0.666795\pi\)
−0.500348 + 0.865825i \(0.666795\pi\)
\(720\) −5318.30 + 22251.4i −0.275280 + 1.15175i
\(721\) 640.519 9121.68i 0.0330849 0.471164i
\(722\) −16293.9 6816.13i −0.839884 0.351343i
\(723\) 7510.44 + 9381.13i 0.386329 + 0.482556i
\(724\) −4924.61 4994.10i −0.252792 0.256360i
\(725\) −5611.90 −0.287477
\(726\) −15848.9 + 4538.53i −0.810205 + 0.232012i
\(727\) 12461.6i 0.635732i −0.948136 0.317866i \(-0.897034\pi\)
0.948136 0.317866i \(-0.102966\pi\)
\(728\) 3704.76 + 11483.1i 0.188609 + 0.584604i
\(729\) −12095.7 + 15527.8i −0.614527 + 0.788896i
\(730\) −35872.1 15006.1i −1.81875 0.760825i
\(731\) 18085.0i 0.915045i
\(732\) −31149.2 3670.79i −1.57283 0.185350i
\(733\) 26437.4 1.33218 0.666090 0.745872i \(-0.267967\pi\)
0.666090 + 0.745872i \(0.267967\pi\)
\(734\) −8958.74 + 21415.8i −0.450508 + 1.07694i
\(735\) −12028.4 20300.9i −0.603639 1.01879i
\(736\) −14193.2 6172.44i −0.710826 0.309129i
\(737\) 8078.86i 0.403784i
\(738\) 20809.4 29346.8i 1.03795 1.46378i
\(739\) 24642.5i 1.22664i 0.789834 + 0.613321i \(0.210167\pi\)
−0.789834 + 0.613321i \(0.789833\pi\)
\(740\) −19442.4 19716.7i −0.965832 0.979462i
\(741\) 2895.16 2317.84i 0.143531 0.114909i
\(742\) 555.456 + 279.577i 0.0274817 + 0.0138323i
\(743\) 29736.2i 1.46826i 0.679012 + 0.734128i \(0.262409\pi\)
−0.679012 + 0.734128i \(0.737591\pi\)
\(744\) −13677.6 + 24252.2i −0.673984 + 1.19507i
\(745\) 27135.2i 1.33444i
\(746\) −7226.52 + 17274.9i −0.354667 + 0.847829i
\(747\) 19490.5 + 4370.63i 0.954645 + 0.214074i
\(748\) 19266.0 + 19537.9i 0.941760 + 0.955050i
\(749\) 10782.1 + 757.115i 0.525995 + 0.0369351i
\(750\) −4002.14 13975.8i −0.194850 0.680432i
\(751\) 8068.95 0.392064 0.196032 0.980597i \(-0.437194\pi\)
0.196032 + 0.980597i \(0.437194\pi\)
\(752\) 194.983 13913.4i 0.00945519 0.674691i
\(753\) −14591.6 18226.0i −0.706171 0.882063i
\(754\) 8383.91 + 3507.19i 0.404939 + 0.169396i
\(755\) 3815.42i 0.183917i
\(756\) −8247.65 + 19080.3i −0.396778 + 0.917915i
\(757\) 10634.4i 0.510587i −0.966864 0.255293i \(-0.917828\pi\)
0.966864 0.255293i \(-0.0821720\pi\)
\(758\) 3065.84 7328.87i 0.146908 0.351183i
\(759\) 13751.1 + 17176.3i 0.657622 + 0.821422i
\(760\) 6890.48 2769.65i 0.328873 0.132192i
\(761\) −3296.31 −0.157019 −0.0785094 0.996913i \(-0.525016\pi\)
−0.0785094 + 0.996913i \(0.525016\pi\)
\(762\) −36037.7 + 10319.8i −1.71327 + 0.490614i
\(763\) 2408.05 34293.2i 0.114256 1.62712i
\(764\) 14107.4 13911.0i 0.668045 0.658748i
\(765\) −24157.1 5417.09i −1.14170 0.256020i
\(766\) −6250.21 2614.61i −0.294816 0.123329i
\(767\) 6810.22i 0.320603i
\(768\) 16981.0 12830.8i 0.797851 0.602855i
\(769\) 29295.6i 1.37376i 0.726769 + 0.686882i \(0.241021\pi\)
−0.726769 + 0.686882i \(0.758979\pi\)
\(770\) 15442.2 30680.3i 0.722727 1.43590i
\(771\) −5808.53 + 4650.25i −0.271322 + 0.217218i
\(772\) 17584.2 + 17832.4i 0.819779 + 0.831348i
\(773\) 3337.03i 0.155271i 0.996982 + 0.0776356i \(0.0247371\pi\)
−0.996982 + 0.0776356i \(0.975263\pi\)
\(774\) −16267.4 11535.0i −0.755453 0.535681i
\(775\) 11908.9i 0.551975i
\(776\) 3844.47 1545.30i 0.177846 0.0714857i
\(777\) −14309.3 20693.3i −0.660674 0.955427i
\(778\) −31517.0 13184.3i −1.45237 0.607559i
\(779\) −11677.8 −0.537102
\(780\) 1854.57 15737.4i 0.0851339 0.722421i
\(781\) 23689.7i 1.08538i
\(782\) 6463.48 15450.9i 0.295567 0.706551i
\(783\) 6873.36 + 14066.8i 0.313709 + 0.642025i
\(784\) −3372.07 + 21691.5i −0.153611 + 0.988131i
\(785\) 27650.7i 1.25719i
\(786\) 1778.91 + 6212.11i 0.0807273 + 0.281907i
\(787\) 643.131 0.0291298 0.0145649 0.999894i \(-0.495364\pi\)
0.0145649 + 0.999894i \(0.495364\pi\)
\(788\) −479.963 486.736i −0.0216979 0.0220041i
\(789\) −2931.25 3661.37i −0.132263 0.165207i
\(790\) 2140.05 5115.77i 0.0963792 0.230394i
\(791\) −1234.36 + 17578.6i −0.0554851 + 0.790168i
\(792\) −29862.6 + 4868.07i −1.33980 + 0.218408i
\(793\) 21724.5 0.972835
\(794\) 13673.4 + 5719.91i 0.611147 + 0.255657i
\(795\) −510.403 637.534i −0.0227700 0.0284415i
\(796\) −20146.5 + 19866.2i −0.897079 + 0.884595i
\(797\) 12470.7i 0.554248i −0.960834 0.277124i \(-0.910619\pi\)
0.960834 0.277124i \(-0.0893813\pi\)
\(798\) 6600.81 1398.59i 0.292815 0.0620421i
\(799\) 15057.5 0.666702
\(800\) 3630.42 8347.94i 0.160443 0.368930i
\(801\) 7962.79 35509.4i 0.351250 1.56637i
\(802\) −11624.7 + 27788.7i −0.511823 + 1.22351i
\(803\) 51425.4i 2.25998i
\(804\) 793.623 6734.45i 0.0348121 0.295405i
\(805\) −20913.4 1468.53i −0.915654 0.0642967i
\(806\) 7442.54 17791.3i 0.325251 0.777510i
\(807\) 6136.81 + 7665.36i 0.267690 + 0.334366i
\(808\) 18011.6 7239.81i 0.784214 0.315217i
\(809\) 36823.8i 1.60032i 0.599789 + 0.800158i \(0.295251\pi\)
−0.599789 + 0.800158i \(0.704749\pi\)
\(810\) 20280.6 18274.1i 0.879736 0.792700i
\(811\) 28331.7 1.22671 0.613354 0.789808i \(-0.289820\pi\)
0.613354 + 0.789808i \(0.289820\pi\)
\(812\) 10755.9 + 12557.2i 0.464851 + 0.542699i
\(813\) 24748.6 + 30913.0i 1.06762 + 1.33354i
\(814\) 14132.7 33784.2i 0.608541 1.45471i
\(815\) 54438.2 2.33974
\(816\) 14140.7 + 18179.2i 0.606645 + 0.779902i
\(817\) 6473.23i 0.277196i
\(818\) −11131.0 + 26608.5i −0.475776 + 1.13734i
\(819\) 4126.67 13793.5i 0.176065 0.588503i
\(820\) −35528.5 + 35034.1i −1.51306 + 1.49200i
\(821\) 24314.1 1.03358 0.516789 0.856113i \(-0.327127\pi\)
0.516789 + 0.856113i \(0.327127\pi\)
\(822\) 4559.39 + 15921.8i 0.193463 + 0.675591i
\(823\) −7780.71 −0.329549 −0.164774 0.986331i \(-0.552690\pi\)
−0.164774 + 0.986331i \(0.552690\pi\)
\(824\) 10365.9 4166.63i 0.438246 0.176154i
\(825\) −10102.5 + 8087.95i −0.426331 + 0.341317i
\(826\) 5570.47 11067.3i 0.234651 0.466198i
\(827\) −9658.38 −0.406112 −0.203056 0.979167i \(-0.565087\pi\)
−0.203056 + 0.979167i \(0.565087\pi\)
\(828\) 9775.51 + 15668.8i 0.410293 + 0.657643i
\(829\) −4178.46 −0.175059 −0.0875296 0.996162i \(-0.527897\pi\)
−0.0875296 + 0.996162i \(0.527897\pi\)
\(830\) −25557.4 10691.3i −1.06881 0.447107i
\(831\) 9689.81 + 12103.3i 0.404496 + 0.505247i
\(832\) −10640.8 + 10202.6i −0.443392 + 0.425133i
\(833\) −23521.7 3319.73i −0.978365 0.138081i
\(834\) 34186.0 9789.55i 1.41938 0.406456i
\(835\) 16217.8i 0.672144i
\(836\) 6895.96 + 6993.28i 0.285289 + 0.289315i
\(837\) 29850.8 14585.8i 1.23273 0.602342i
\(838\) 10263.5 24534.8i 0.423086 1.01138i
\(839\) 937.651 0.0385832 0.0192916 0.999814i \(-0.493859\pi\)
0.0192916 + 0.999814i \(0.493859\pi\)
\(840\) 15886.4 24057.8i 0.652537 0.988182i
\(841\) −11935.8 −0.489391
\(842\) −1664.76 + 3979.60i −0.0681371 + 0.162881i
\(843\) 9706.04 + 12123.6i 0.396552 + 0.495325i
\(844\) −9661.88 + 9527.43i −0.394047 + 0.388563i
\(845\) 18111.8i 0.737354i
\(846\) −9603.97 + 13544.2i −0.390297 + 0.550423i
\(847\) 20723.6 + 1455.20i 0.840700 + 0.0590335i
\(848\) −10.6462 + 759.677i −0.000431122 + 0.0307635i
\(849\) −12781.5 + 10232.7i −0.516678 + 0.413647i
\(850\) 9087.68 + 3801.59i 0.366711 + 0.153404i
\(851\) −22352.8 −0.900403
\(852\) 2327.15 19747.5i 0.0935761 0.794059i
\(853\) 5791.89 0.232486 0.116243 0.993221i \(-0.462915\pi\)
0.116243 + 0.993221i \(0.462915\pi\)
\(854\) 35304.3 + 17769.7i 1.41462 + 0.712021i
\(855\) −8646.62 1938.96i −0.345857 0.0775566i
\(856\) 4925.09 + 12252.9i 0.196654 + 0.489246i
\(857\) −1880.84 −0.0749687 −0.0374843 0.999297i \(-0.511934\pi\)
−0.0374843 + 0.999297i \(0.511934\pi\)
\(858\) 20147.2 5769.40i 0.801650 0.229562i
\(859\) −9503.79 −0.377491 −0.188746 0.982026i \(-0.560442\pi\)
−0.188746 + 0.982026i \(0.560442\pi\)
\(860\) 19420.0 + 19694.0i 0.770018 + 0.780885i
\(861\) −37288.1 + 25784.6i −1.47593 + 1.02060i
\(862\) −8535.51 + 20404.1i −0.337263 + 0.806224i
\(863\) 5322.63i 0.209947i 0.994475 + 0.104974i \(0.0334758\pi\)
−0.994475 + 0.104974i \(0.966524\pi\)
\(864\) −25371.4 + 1124.43i −0.999019 + 0.0442753i
\(865\) 32457.2 1.27581
\(866\) −12276.1 + 29345.9i −0.481707 + 1.15152i
\(867\) 473.011 378.688i 0.0185286 0.0148338i
\(868\) 26647.4 22825.0i 1.04202 0.892546i
\(869\) 7333.85 0.286288
\(870\) −5977.86 20875.2i −0.232952 0.813489i
\(871\) 4696.82i 0.182716i
\(872\) 38971.0 15664.5i 1.51345 0.608335i
\(873\) −4824.29 1081.82i −0.187030 0.0419405i
\(874\) 2313.49 5530.39i 0.0895368 0.214037i
\(875\) −1283.22 + 18274.4i −0.0495779 + 0.706043i
\(876\) 5051.75 42867.7i 0.194843 1.65338i
\(877\) 15099.1i 0.581369i 0.956819 + 0.290684i \(0.0938829\pi\)
−0.956819 + 0.290684i \(0.906117\pi\)
\(878\) 6439.67 15394.0i 0.247526 0.591710i
\(879\) −5312.79 6636.09i −0.203863 0.254641i
\(880\) 41960.3 + 588.036i 1.60737 + 0.0225258i
\(881\) −25460.6 −0.973654 −0.486827 0.873498i \(-0.661846\pi\)
−0.486827 + 0.873498i \(0.661846\pi\)
\(882\) 17988.7 19040.3i 0.686748 0.726895i
\(883\) 29492.7i 1.12402i −0.827131 0.562009i \(-0.810028\pi\)
0.827131 0.562009i \(-0.189972\pi\)
\(884\) −11200.7 11358.8i −0.426155 0.432169i
\(885\) −12702.6 + 10169.6i −0.482480 + 0.386269i
\(886\) −2587.94 1082.60i −0.0981305 0.0410504i
\(887\) 11558.8 0.437550 0.218775 0.975775i \(-0.429794\pi\)
0.218775 + 0.975775i \(0.429794\pi\)
\(888\) 15099.7 26773.8i 0.570622 1.01179i
\(889\) 47122.0 + 3308.88i 1.77775 + 0.124833i
\(890\) −19478.2 + 46562.6i −0.733609 + 1.75369i
\(891\) 32646.6 + 15416.9i 1.22750 + 0.579669i
\(892\) −22423.7 + 22111.7i −0.841707 + 0.829994i
\(893\) 5389.57 0.201965
\(894\) 28958.0 8292.47i 1.08333 0.310225i
\(895\) 12262.8i 0.457987i
\(896\) −25637.6 + 7876.49i −0.955905 + 0.293677i
\(897\) −7994.53 9985.80i −0.297580 0.371701i
\(898\) 15204.8 36347.0i 0.565024 1.35069i
\(899\) 26426.8i 0.980403i
\(900\) −9215.84 + 5749.62i −0.341328 + 0.212949i
\(901\) −822.146 −0.0303992
\(902\) −60877.2 25466.4i −2.24722 0.940065i
\(903\) 14292.8 + 20669.4i 0.526728 + 0.761722i
\(904\) −19976.4 + 8029.60i −0.734963 + 0.295421i
\(905\) 11607.5i 0.426348i
\(906\) −4071.72 + 1165.98i −0.149309 + 0.0427563i
\(907\) 10190.2i 0.373053i 0.982450 + 0.186527i \(0.0597231\pi\)
−0.982450 + 0.186527i \(0.940277\pi\)
\(908\) 35487.4 34993.6i 1.29702 1.27897i
\(909\) −22602.1 5068.40i −0.824713 0.184937i
\(910\) −8977.68 + 17836.6i −0.327041 + 0.649757i
\(911\) 33432.8i 1.21589i −0.793978 0.607947i \(-0.791993\pi\)
0.793978 0.607947i \(-0.208007\pi\)
\(912\) 5061.42 + 6506.95i 0.183772 + 0.236257i
\(913\) 36638.5i 1.32810i
\(914\) −26106.7 10921.1i −0.944784 0.395226i
\(915\) −32440.8 40521.2i −1.17209 1.46403i
\(916\) 22321.3 + 22636.3i 0.805151 + 0.816513i
\(917\) 570.378 8122.80i 0.0205404 0.292517i
\(918\) −1601.37 27435.3i −0.0575742 0.986382i
\(919\) −38879.2 −1.39554 −0.697772 0.716320i \(-0.745825\pi\)
−0.697772 + 0.716320i \(0.745825\pi\)
\(920\) −9552.89 23766.2i −0.342336 0.851682i
\(921\) −15367.5 + 12303.1i −0.549812 + 0.440174i
\(922\) 16991.9 40619.0i 0.606940 1.45088i
\(923\) 13772.5i 0.491146i
\(924\) 37460.3 + 7103.75i 1.33372 + 0.252918i
\(925\) 13147.1i 0.467324i
\(926\) −28353.7 11861.0i −1.00622 0.420926i
\(927\) −13007.9 2916.94i −0.460878 0.103349i
\(928\) −8056.17 + 18524.7i −0.284975 + 0.655285i
\(929\) −19916.3 −0.703370 −0.351685 0.936118i \(-0.614391\pi\)
−0.351685 + 0.936118i \(0.614391\pi\)
\(930\) −44298.9 + 12685.5i −1.56195 + 0.447284i
\(931\) −8419.20 1188.24i −0.296378 0.0418293i
\(932\) 19373.7 19104.1i 0.680908 0.671433i
\(933\) −20275.1 + 16232.1i −0.711444 + 0.569575i
\(934\) −2383.97 + 5698.86i −0.0835180 + 0.199649i
\(935\) 45410.7i 1.58833i
\(936\) 17361.3 2830.16i 0.606273 0.0988318i
\(937\) 27614.4i 0.962779i 0.876507 + 0.481390i \(0.159868\pi\)
−0.876507 + 0.481390i \(0.840132\pi\)
\(938\) −3841.80 + 7632.78i −0.133730 + 0.265692i
\(939\) 3743.19 + 4675.54i 0.130090 + 0.162492i
\(940\) 16397.1 16169.0i 0.568953 0.561035i
\(941\) 33189.4i 1.14978i 0.818231 + 0.574890i \(0.194955\pi\)
−0.818231 + 0.574890i \(0.805045\pi\)
\(942\) 29508.2 8450.02i 1.02063 0.292268i
\(943\) 40278.4i 1.39093i
\(944\) 15136.3 + 212.122i 0.521870 + 0.00731353i
\(945\) −31890.4 + 12900.5i −1.09777 + 0.444076i
\(946\) −14116.5 + 33745.3i −0.485164 + 1.15978i
\(947\) 6141.76 0.210750 0.105375 0.994433i \(-0.466396\pi\)
0.105375 + 0.994433i \(0.466396\pi\)
\(948\) 6113.43 + 720.438i 0.209446 + 0.0246822i
\(949\) 29897.2i 1.02266i
\(950\) 3252.78 + 1360.72i 0.111089 + 0.0464710i
\(951\) −11109.5 + 8894.16i −0.378812 + 0.303273i
\(952\) −8911.26 27620.9i −0.303378 0.940333i
\(953\) 7097.85i 0.241261i 0.992697 + 0.120631i \(0.0384916\pi\)
−0.992697 + 0.120631i \(0.961508\pi\)
\(954\) 524.383 739.519i 0.0177961 0.0250973i
\(955\) 32788.8 1.11102
\(956\) 25505.8 25150.9i 0.862883 0.850876i
\(957\) 22418.2 17947.8i 0.757239 0.606238i
\(958\) −18339.4 7671.82i −0.618497 0.258732i
\(959\) 1461.89 20818.9i 0.0492252 0.701019i
\(960\) 34919.9 + 4612.13i 1.17400 + 0.155058i
\(961\) −26288.8 −0.882441
\(962\) −8216.37 + 19641.2i −0.275371 + 0.658271i
\(963\) 3447.92 15375.7i 0.115377 0.514513i
\(964\) 13174.0 12990.6i 0.440151 0.434026i
\(965\) 41446.6i 1.38260i
\(966\) −4823.93 22767.1i −0.160670 0.758301i
\(967\) 10526.5 0.350063 0.175031 0.984563i \(-0.443997\pi\)
0.175031 + 0.984563i \(0.443997\pi\)
\(968\) 9466.20 + 23550.5i 0.314313 + 0.781964i
\(969\) −6963.89 + 5575.22i −0.230869 + 0.184832i
\(970\) 6325.96 + 2646.30i 0.209396 + 0.0875955i
\(971\) 10918.3i 0.360848i −0.983589 0.180424i \(-0.942253\pi\)
0.983589 0.180424i \(-0.0577470\pi\)
\(972\) 25699.4 + 16058.4i 0.848054 + 0.529910i
\(973\) −44700.7 3138.86i −1.47280 0.103419i
\(974\) 9305.75 + 3892.82i 0.306135 + 0.128064i
\(975\) 5873.30 4702.10i 0.192919 0.154449i
\(976\) −676.663 + 48284.5i −0.0221921 + 1.58355i
\(977\) 23312.8i 0.763400i −0.924286 0.381700i \(-0.875339\pi\)
0.924286 0.381700i \(-0.124661\pi\)
\(978\) 16636.2 + 58095.1i 0.543934 + 1.89946i
\(979\) −66751.0 −2.17913
\(980\) −29179.2 + 21642.9i −0.951118 + 0.705466i
\(981\) −48903.4 10966.3i −1.59160 0.356909i
\(982\) 5823.26 + 2436.01i 0.189234 + 0.0791611i
\(983\) 17319.7 0.561965 0.280982 0.959713i \(-0.409340\pi\)
0.280982 + 0.959713i \(0.409340\pi\)
\(984\) −48245.0 27208.8i −1.56300 0.881488i
\(985\) 1131.29i 0.0365948i
\(986\) −20166.3 8436.03i −0.651343 0.272472i
\(987\) 17209.2 11900.1i 0.554991 0.383774i
\(988\) −4009.12 4065.69i −0.129096 0.130918i
\(989\) 22327.0 0.717854
\(990\) −40846.9 28963.9i −1.31131 0.929833i
\(991\) 20423.3 0.654660 0.327330 0.944910i \(-0.393851\pi\)
0.327330 + 0.944910i \(0.393851\pi\)
\(992\) 39311.0 + 17095.9i 1.25819 + 0.547172i
\(993\) −16958.9 21183.0i −0.541969 0.676962i
\(994\) −11265.3 + 22381.7i −0.359472 + 0.714189i
\(995\) −46825.2 −1.49192
\(996\) 3599.16 30541.4i 0.114502 0.971629i
\(997\) 47651.1 1.51367 0.756833 0.653608i \(-0.226745\pi\)
0.756833 + 0.653608i \(0.226745\pi\)
\(998\) −22561.1 + 53932.2i −0.715591 + 1.71061i
\(999\) −32954.5 + 16102.4i −1.04368 + 0.509966i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.71 yes 80
3.2 odd 2 inner 168.4.i.c.125.9 80
4.3 odd 2 672.4.i.c.209.61 80
7.6 odd 2 inner 168.4.i.c.125.72 yes 80
8.3 odd 2 672.4.i.c.209.20 80
8.5 even 2 inner 168.4.i.c.125.12 yes 80
12.11 even 2 672.4.i.c.209.64 80
21.20 even 2 inner 168.4.i.c.125.10 yes 80
24.5 odd 2 inner 168.4.i.c.125.70 yes 80
24.11 even 2 672.4.i.c.209.17 80
28.27 even 2 672.4.i.c.209.19 80
56.13 odd 2 inner 168.4.i.c.125.11 yes 80
56.27 even 2 672.4.i.c.209.62 80
84.83 odd 2 672.4.i.c.209.18 80
168.83 odd 2 672.4.i.c.209.63 80
168.125 even 2 inner 168.4.i.c.125.69 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.9 80 3.2 odd 2 inner
168.4.i.c.125.10 yes 80 21.20 even 2 inner
168.4.i.c.125.11 yes 80 56.13 odd 2 inner
168.4.i.c.125.12 yes 80 8.5 even 2 inner
168.4.i.c.125.69 yes 80 168.125 even 2 inner
168.4.i.c.125.70 yes 80 24.5 odd 2 inner
168.4.i.c.125.71 yes 80 1.1 even 1 trivial
168.4.i.c.125.72 yes 80 7.6 odd 2 inner
672.4.i.c.209.17 80 24.11 even 2
672.4.i.c.209.18 80 84.83 odd 2
672.4.i.c.209.19 80 28.27 even 2
672.4.i.c.209.20 80 8.3 odd 2
672.4.i.c.209.61 80 4.3 odd 2
672.4.i.c.209.62 80 56.27 even 2
672.4.i.c.209.63 80 168.83 odd 2
672.4.i.c.209.64 80 12.11 even 2