Properties

Label 168.2.c.b
Level 168
Weight 2
Character orbit 168.c
Analytic conductor 1.341
Analytic rank 0
Dimension 8
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 168.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.34148675396\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.386672896.3
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{4} q^{2} -\beta_{2} q^{3} + \beta_{1} q^{4} + ( -\beta_{1} - \beta_{2} + \beta_{3} + \beta_{6} ) q^{5} -\beta_{7} q^{6} + q^{7} + ( -1 - \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} ) q^{8} - q^{9} +O(q^{10})\) \( q -\beta_{4} q^{2} -\beta_{2} q^{3} + \beta_{1} q^{4} + ( -\beta_{1} - \beta_{2} + \beta_{3} + \beta_{6} ) q^{5} -\beta_{7} q^{6} + q^{7} + ( -1 - \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} ) q^{8} - q^{9} + ( -1 + \beta_{1} + \beta_{4} - 2 \beta_{5} + \beta_{6} - \beta_{7} ) q^{10} + ( -\beta_{1} + \beta_{2} + \beta_{5} + \beta_{6} + 2 \beta_{7} ) q^{11} + ( -1 + \beta_{6} ) q^{12} + ( \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{13} -\beta_{4} q^{14} + ( -\beta_{1} - \beta_{2} + \beta_{5} - \beta_{6} ) q^{15} + ( -1 + 2 \beta_{2} + \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} + \beta_{7} ) q^{16} + ( 2 - \beta_{1} - \beta_{2} + \beta_{3} - \beta_{6} + 2 \beta_{7} ) q^{17} + \beta_{4} q^{18} + ( -2 \beta_{2} - \beta_{3} + \beta_{5} + 2 \beta_{7} ) q^{19} + ( 2 - 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{7} ) q^{20} -\beta_{2} q^{21} + ( 1 + \beta_{1} + 4 \beta_{2} + \beta_{4} - 2 \beta_{5} - \beta_{6} + \beta_{7} ) q^{22} + ( \beta_{1} + \beta_{2} - \beta_{3} + \beta_{6} - 2 \beta_{7} ) q^{23} + ( \beta_{1} + 2 \beta_{2} - \beta_{3} + \beta_{4} - \beta_{5} - \beta_{7} ) q^{24} + ( -1 + 3 \beta_{3} + 2 \beta_{4} - \beta_{5} + 4 \beta_{7} ) q^{25} + ( -4 + 2 \beta_{1} ) q^{26} + \beta_{2} q^{27} + \beta_{1} q^{28} + ( 2 \beta_{2} - \beta_{3} + 4 \beta_{4} - 3 \beta_{5} - 2 \beta_{7} ) q^{29} + ( -1 - \beta_{1} + 2 \beta_{3} + \beta_{4} + \beta_{6} + \beta_{7} ) q^{30} + ( 2 - 2 \beta_{1} - 2 \beta_{2} - \beta_{3} - 2 \beta_{4} + \beta_{5} - 2 \beta_{6} ) q^{31} + ( -3 + 2 \beta_{2} - \beta_{3} + \beta_{4} - \beta_{5} - \beta_{6} + \beta_{7} ) q^{32} + ( 2 - \beta_{1} - \beta_{2} - \beta_{3} - 2 \beta_{4} - \beta_{6} ) q^{33} + ( 1 - \beta_{1} - 4 \beta_{2} + 2 \beta_{3} - \beta_{4} - \beta_{6} + \beta_{7} ) q^{34} + ( -\beta_{1} - \beta_{2} + \beta_{3} + \beta_{6} ) q^{35} -\beta_{1} q^{36} + ( 2 \beta_{1} - \beta_{3} - \beta_{5} - 2 \beta_{6} - 2 \beta_{7} ) q^{37} + ( 2 + 4 \beta_{2} - 2 \beta_{6} - 2 \beta_{7} ) q^{38} + ( -\beta_{3} + \beta_{5} - 2 \beta_{7} ) q^{39} + ( 2 + 4 \beta_{2} - 2 \beta_{4} + 2 \beta_{6} - 2 \beta_{7} ) q^{40} + ( -2 + \beta_{1} + \beta_{2} - \beta_{3} + \beta_{6} - 2 \beta_{7} ) q^{41} -\beta_{7} q^{42} + ( 2 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{7} ) q^{43} + ( 4 - 2 \beta_{1} - 6 \beta_{2} - 2 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} + 4 \beta_{7} ) q^{44} + ( \beta_{1} + \beta_{2} - \beta_{3} - \beta_{6} ) q^{45} + ( -1 + \beta_{1} + 4 \beta_{2} - 2 \beta_{3} - \beta_{4} + \beta_{6} - \beta_{7} ) q^{46} + ( 2 \beta_{3} + 4 \beta_{4} + 2 \beta_{5} ) q^{47} + ( 2 - \beta_{1} - \beta_{3} - \beta_{4} + \beta_{5} + \beta_{7} ) q^{48} + q^{49} + ( -2 \beta_{1} - 8 \beta_{2} + \beta_{4} - 4 \beta_{6} ) q^{50} + ( \beta_{1} - \beta_{2} - 2 \beta_{4} + \beta_{5} - \beta_{6} ) q^{51} + ( -2 - 2 \beta_{3} + 2 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{7} ) q^{52} + ( 2 \beta_{2} + \beta_{3} - \beta_{5} - 2 \beta_{7} ) q^{53} + \beta_{7} q^{54} + ( -2 + 2 \beta_{1} + 2 \beta_{2} - \beta_{3} - 2 \beta_{4} - 3 \beta_{5} + 2 \beta_{6} ) q^{55} + ( -1 - \beta_{3} - \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} ) q^{56} + ( -2 - \beta_{3} - 2 \beta_{4} - \beta_{5} ) q^{57} + ( 6 - 4 \beta_{1} - 4 \beta_{2} + 2 \beta_{6} + 2 \beta_{7} ) q^{58} + 4 \beta_{2} q^{59} + ( -2 - 2 \beta_{2} + 2 \beta_{4} - 2 \beta_{5} ) q^{60} + ( -2 \beta_{1} - 2 \beta_{2} + 3 \beta_{3} - 2 \beta_{4} + \beta_{5} + 2 \beta_{6} ) q^{61} + ( 2 + 4 \beta_{3} + 2 \beta_{6} + 2 \beta_{7} ) q^{62} - q^{63} + ( 5 - 2 \beta_{1} - 2 \beta_{2} + \beta_{3} + 3 \beta_{4} + \beta_{5} - \beta_{6} + 3 \beta_{7} ) q^{64} + ( -4 + 4 \beta_{1} + 4 \beta_{2} - 4 \beta_{5} + 4 \beta_{6} ) q^{65} + ( 3 + \beta_{1} + 2 \beta_{3} - \beta_{4} + \beta_{6} + \beta_{7} ) q^{66} + ( -2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} + 2 \beta_{7} ) q^{67} + ( -2 - 6 \beta_{2} + 2 \beta_{3} - 2 \beta_{7} ) q^{68} + ( -\beta_{1} - \beta_{2} + 2 \beta_{4} - \beta_{5} + \beta_{6} ) q^{69} + ( -1 + \beta_{1} + \beta_{4} - 2 \beta_{5} + \beta_{6} - \beta_{7} ) q^{70} + ( -4 + 3 \beta_{1} + 3 \beta_{2} + 3 \beta_{3} + 4 \beta_{4} - 2 \beta_{5} + 3 \beta_{6} + 2 \beta_{7} ) q^{71} + ( 1 + \beta_{3} + \beta_{4} - \beta_{5} + \beta_{6} + \beta_{7} ) q^{72} + ( -2 - 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + 4 \beta_{5} - 2 \beta_{6} - 4 \beta_{7} ) q^{73} + ( -2 \beta_{1} - 4 \beta_{2} - 2 \beta_{4} + 4 \beta_{5} ) q^{74} + ( \beta_{2} + \beta_{3} - 4 \beta_{4} + 3 \beta_{5} + 2 \beta_{7} ) q^{75} + ( -2 - 2 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} + 6 \beta_{7} ) q^{76} + ( -\beta_{1} + \beta_{2} + \beta_{5} + \beta_{6} + 2 \beta_{7} ) q^{77} + ( -2 + 4 \beta_{2} + 2 \beta_{6} ) q^{78} + ( -8 + 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{6} - 4 \beta_{7} ) q^{79} + ( -2 + 4 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} ) q^{80} + q^{81} + ( -1 + \beta_{1} + 4 \beta_{2} - 2 \beta_{3} + \beta_{4} + \beta_{6} - \beta_{7} ) q^{82} + ( 2 \beta_{1} - 6 \beta_{2} - 2 \beta_{5} - 2 \beta_{6} - 4 \beta_{7} ) q^{83} + ( -1 + \beta_{6} ) q^{84} + ( 2 \beta_{1} + 4 \beta_{2} - \beta_{3} - 4 \beta_{4} + 3 \beta_{5} - 2 \beta_{6} + 2 \beta_{7} ) q^{85} + ( 4 - 4 \beta_{1} - 4 \beta_{2} - 2 \beta_{4} + 4 \beta_{5} + 4 \beta_{7} ) q^{86} + ( 2 + 3 \beta_{3} + 2 \beta_{4} - \beta_{5} + 4 \beta_{7} ) q^{87} + ( 2 + 4 \beta_{3} - 2 \beta_{4} - 2 \beta_{6} - 2 \beta_{7} ) q^{88} + ( 2 + 3 \beta_{1} + 3 \beta_{2} + \beta_{3} - 4 \beta_{5} + 3 \beta_{6} + 2 \beta_{7} ) q^{89} + ( 1 - \beta_{1} - \beta_{4} + 2 \beta_{5} - \beta_{6} + \beta_{7} ) q^{90} + ( \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{91} + ( 2 + 2 \beta_{1} + 6 \beta_{2} - 2 \beta_{3} + 2 \beta_{7} ) q^{92} + ( 2 \beta_{1} - \beta_{3} - \beta_{5} - 2 \beta_{6} - 2 \beta_{7} ) q^{93} + ( -8 - 4 \beta_{1} ) q^{94} + ( 4 - 2 \beta_{1} - 2 \beta_{2} - 4 \beta_{3} - 4 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} - 4 \beta_{7} ) q^{95} + ( 2 + \beta_{1} + 4 \beta_{2} + \beta_{3} - \beta_{4} - \beta_{5} + \beta_{7} ) q^{96} + ( 2 + 2 \beta_{1} + 2 \beta_{2} + 4 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} - 4 \beta_{7} ) q^{97} -\beta_{4} q^{98} + ( \beta_{1} - \beta_{2} - \beta_{5} - \beta_{6} - 2 \beta_{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 2q^{4} + 2q^{6} + 8q^{7} - 6q^{8} - 8q^{9} + O(q^{10}) \) \( 8q + 2q^{4} + 2q^{6} + 8q^{7} - 6q^{8} - 8q^{9} - 4q^{10} - 4q^{12} - 4q^{15} - 6q^{16} + 4q^{17} + 24q^{20} + 12q^{23} + 4q^{24} - 24q^{25} - 28q^{26} + 2q^{28} - 12q^{30} + 8q^{31} - 30q^{32} + 12q^{33} - 4q^{34} - 2q^{36} + 12q^{38} + 8q^{39} + 28q^{40} - 4q^{41} + 2q^{42} + 16q^{44} + 4q^{46} + 16q^{48} + 8q^{49} - 20q^{50} - 12q^{52} - 2q^{54} - 8q^{55} - 6q^{56} - 16q^{57} + 44q^{58} - 20q^{60} + 12q^{62} - 8q^{63} + 26q^{64} - 16q^{65} + 24q^{66} - 16q^{68} - 4q^{70} - 28q^{71} + 6q^{72} - 8q^{73} + 4q^{74} - 24q^{76} - 8q^{78} - 40q^{79} - 4q^{80} + 8q^{81} + 4q^{82} - 4q^{84} + 24q^{86} + 4q^{88} + 20q^{89} + 4q^{90} + 20q^{92} - 72q^{94} + 40q^{95} + 12q^{96} + 40q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - x^{6} - 2 x^{5} + 2 x^{4} - 4 x^{3} - 4 x^{2} + 16\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -\nu^{6} + \nu^{4} + 2 \nu^{3} - 2 \nu^{2} + 4 \nu + 4 \)\()/4\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{7} + 2 \nu^{6} + 3 \nu^{5} - 4 \nu^{4} + 2 \nu^{3} - 4 \nu - 24 \)\()/16\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{7} + 2 \nu^{6} - \nu^{5} + 2 \nu^{3} - 4 \nu - 8 \)\()/8\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{7} + \nu^{5} + 2 \nu^{4} - 2 \nu^{3} + 4 \nu^{2} + 4 \nu \)\()/8\)
\(\beta_{5}\)\(=\)\((\)\( -\nu^{7} - 2 \nu^{6} + \nu^{5} - 2 \nu^{3} + 20 \nu + 8 \)\()/8\)
\(\beta_{6}\)\(=\)\((\)\( -\nu^{7} - 6 \nu^{6} - 3 \nu^{5} - 2 \nu^{3} + 8 \nu^{2} + 20 \nu + 40 \)\()/16\)
\(\beta_{7}\)\(=\)\((\)\( -3 \nu^{7} - 2 \nu^{6} - \nu^{5} + 2 \nu^{3} + 8 \nu^{2} + 12 \nu + 8 \)\()/16\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{5} + \beta_{3}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(2 \beta_{6} - \beta_{5} + 2 \beta_{4} + \beta_{3} + 2 \beta_{2}\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(2 \beta_{7} - \beta_{5} + \beta_{3} + 2 \beta_{2} + 2 \beta_{1} + 2\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(-2 \beta_{7} - \beta_{5} + 4 \beta_{4} + \beta_{3} - 2 \beta_{2} + 2 \beta_{1} - 2\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(-2 \beta_{7} - \beta_{5} + 4 \beta_{4} - 3 \beta_{3} + 6 \beta_{2} + 2 \beta_{1} + 6\)\()/2\)
\(\nu^{6}\)\(=\)\((\)\(2 \beta_{7} - 4 \beta_{6} + 3 \beta_{5} + 5 \beta_{3} - 2 \beta_{2} - 2 \beta_{1} + 10\)\()/2\)
\(\nu^{7}\)\(=\)\((\)\(-10 \beta_{7} + 8 \beta_{6} - \beta_{5} + 4 \beta_{4} + 5 \beta_{3} + 6 \beta_{2} + 2 \beta_{1} - 2\)\()/2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
85.1
1.40961 0.114062i
1.40961 + 0.114062i
0.621372 1.27039i
0.621372 + 1.27039i
−0.835949 1.14070i
−0.835949 + 1.14070i
−1.19503 0.756243i
−1.19503 + 0.756243i
−1.40961 0.114062i 1.00000i 1.97398 + 0.321565i 1.12875i 0.114062 1.40961i 1.00000 −2.74586 0.678435i −1.00000 0.128747 1.59109i
85.2 −1.40961 + 0.114062i 1.00000i 1.97398 0.321565i 1.12875i 0.114062 + 1.40961i 1.00000 −2.74586 + 0.678435i −1.00000 0.128747 + 1.59109i
85.3 −0.621372 1.27039i 1.00000i −1.22779 + 1.57877i 3.69833i 1.27039 0.621372i 1.00000 2.76858 + 0.578773i −1.00000 −4.69833 + 2.29804i
85.4 −0.621372 + 1.27039i 1.00000i −1.22779 1.57877i 3.69833i 1.27039 + 0.621372i 1.00000 2.76858 0.578773i −1.00000 −4.69833 2.29804i
85.5 0.835949 1.14070i 1.00000i −0.602380 1.90713i 0.467138i −1.14070 0.835949i 1.00000 −2.67901 0.907128i −1.00000 −0.532862 0.390503i
85.6 0.835949 + 1.14070i 1.00000i −0.602380 + 1.90713i 0.467138i −1.14070 + 0.835949i 1.00000 −2.67901 + 0.907128i −1.00000 −0.532862 + 0.390503i
85.7 1.19503 0.756243i 1.00000i 0.856193 1.80747i 4.10245i 0.756243 + 1.19503i 1.00000 −0.343707 2.80747i −1.00000 3.10245 + 4.90255i
85.8 1.19503 + 0.756243i 1.00000i 0.856193 + 1.80747i 4.10245i 0.756243 1.19503i 1.00000 −0.343707 + 2.80747i −1.00000 3.10245 4.90255i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 85.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 168.2.c.b 8
3.b odd 2 1 504.2.c.f 8
4.b odd 2 1 672.2.c.b 8
7.b odd 2 1 1176.2.c.c 8
8.b even 2 1 inner 168.2.c.b 8
8.d odd 2 1 672.2.c.b 8
12.b even 2 1 2016.2.c.e 8
16.e even 4 1 5376.2.a.bm 4
16.e even 4 1 5376.2.a.bp 4
16.f odd 4 1 5376.2.a.bl 4
16.f odd 4 1 5376.2.a.bq 4
24.f even 2 1 2016.2.c.e 8
24.h odd 2 1 504.2.c.f 8
28.d even 2 1 4704.2.c.c 8
56.e even 2 1 4704.2.c.c 8
56.h odd 2 1 1176.2.c.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.2.c.b 8 1.a even 1 1 trivial
168.2.c.b 8 8.b even 2 1 inner
504.2.c.f 8 3.b odd 2 1
504.2.c.f 8 24.h odd 2 1
672.2.c.b 8 4.b odd 2 1
672.2.c.b 8 8.d odd 2 1
1176.2.c.c 8 7.b odd 2 1
1176.2.c.c 8 56.h odd 2 1
2016.2.c.e 8 12.b even 2 1
2016.2.c.e 8 24.f even 2 1
4704.2.c.c 8 28.d even 2 1
4704.2.c.c 8 56.e even 2 1
5376.2.a.bl 4 16.f odd 4 1
5376.2.a.bm 4 16.e even 4 1
5376.2.a.bp 4 16.e even 4 1
5376.2.a.bq 4 16.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{8} + 32 T_{5}^{6} + 276 T_{5}^{4} + 352 T_{5}^{2} + 64 \) acting on \(S_{2}^{\mathrm{new}}(168, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{2} + 2 T^{3} + 2 T^{4} + 4 T^{5} - 4 T^{6} + 16 T^{8} \)
$3$ \( ( 1 + T^{2} )^{4} \)
$5$ \( 1 - 8 T^{2} + 16 T^{4} - 168 T^{6} + 1694 T^{8} - 4200 T^{10} + 10000 T^{12} - 125000 T^{14} + 390625 T^{16} \)
$7$ \( ( 1 - T )^{8} \)
$11$ \( 1 - 24 T^{2} + 592 T^{4} - 8312 T^{6} + 114206 T^{8} - 1005752 T^{10} + 8667472 T^{12} - 42517464 T^{14} + 214358881 T^{16} \)
$13$ \( 1 - 48 T^{2} + 1340 T^{4} - 26704 T^{6} + 396198 T^{8} - 4512976 T^{10} + 38271740 T^{12} - 231686832 T^{14} + 815730721 T^{16} \)
$17$ \( ( 1 - 2 T + 38 T^{2} - 70 T^{3} + 706 T^{4} - 1190 T^{5} + 10982 T^{6} - 9826 T^{7} + 83521 T^{8} )^{2} \)
$19$ \( 1 - 64 T^{2} + 2012 T^{4} - 42432 T^{6} + 793446 T^{8} - 15317952 T^{10} + 262205852 T^{12} - 3010936384 T^{14} + 16983563041 T^{16} \)
$23$ \( ( 1 - 6 T + 74 T^{2} - 334 T^{3} + 2282 T^{4} - 7682 T^{5} + 39146 T^{6} - 73002 T^{7} + 279841 T^{8} )^{2} \)
$29$ \( 1 - 16 T^{2} + 2876 T^{4} - 34928 T^{6} + 3439654 T^{8} - 29374448 T^{10} + 2034140156 T^{12} - 9517173136 T^{14} + 500246412961 T^{16} \)
$31$ \( ( 1 - 4 T + 80 T^{2} - 244 T^{3} + 3294 T^{4} - 7564 T^{5} + 76880 T^{6} - 119164 T^{7} + 923521 T^{8} )^{2} \)
$37$ \( 1 - 192 T^{2} + 18716 T^{4} - 1175872 T^{6} + 51538086 T^{8} - 1609768768 T^{10} + 35076797276 T^{12} - 492619470528 T^{14} + 3512479453921 T^{16} \)
$41$ \( ( 1 + 2 T + 134 T^{2} + 214 T^{3} + 7618 T^{4} + 8774 T^{5} + 225254 T^{6} + 137842 T^{7} + 2825761 T^{8} )^{2} \)
$43$ \( 1 - 168 T^{2} + 15676 T^{4} - 1026520 T^{6} + 50753126 T^{8} - 1898035480 T^{10} + 53593124476 T^{12} - 1061988992232 T^{14} + 11688200277601 T^{16} \)
$47$ \( ( 1 + 44 T^{2} - 128 T^{3} + 3302 T^{4} - 6016 T^{5} + 97196 T^{6} + 4879681 T^{8} )^{2} \)
$53$ \( 1 - 336 T^{2} + 52604 T^{4} - 5027376 T^{6} + 321653350 T^{8} - 14121899184 T^{10} + 415070862524 T^{12} - 7447225339344 T^{14} + 62259690411361 T^{16} \)
$59$ \( ( 1 - 102 T^{2} + 3481 T^{4} )^{4} \)
$61$ \( 1 - 272 T^{2} + 35516 T^{4} - 3030896 T^{6} + 201654822 T^{8} - 11277964016 T^{10} + 491748888956 T^{12} - 14013541826192 T^{14} + 191707312997281 T^{16} \)
$67$ \( 1 - 344 T^{2} + 59996 T^{4} - 6783272 T^{6} + 536949606 T^{8} - 30450108008 T^{10} + 1208986655516 T^{12} - 31117683466136 T^{14} + 406067677556641 T^{16} \)
$71$ \( ( 1 + 14 T + 194 T^{2} + 1686 T^{3} + 14330 T^{4} + 119706 T^{5} + 977954 T^{6} + 5010754 T^{7} + 25411681 T^{8} )^{2} \)
$73$ \( ( 1 + 4 T + 92 T^{2} - 580 T^{3} + 166 T^{4} - 42340 T^{5} + 490268 T^{6} + 1556068 T^{7} + 28398241 T^{8} )^{2} \)
$79$ \( ( 1 + 20 T + 340 T^{2} + 3972 T^{3} + 38678 T^{4} + 313788 T^{5} + 2121940 T^{6} + 9860780 T^{7} + 38950081 T^{8} )^{2} \)
$83$ \( 1 - 248 T^{2} + 44156 T^{4} - 5204488 T^{6} + 499369126 T^{8} - 35853717832 T^{10} + 2095569622076 T^{12} - 81081212595512 T^{14} + 2252292232139041 T^{16} \)
$89$ \( ( 1 - 10 T + 198 T^{2} - 494 T^{3} + 13122 T^{4} - 43966 T^{5} + 1568358 T^{6} - 7049690 T^{7} + 62742241 T^{8} )^{2} \)
$97$ \( ( 1 - 20 T + 300 T^{2} - 2572 T^{3} + 25574 T^{4} - 249484 T^{5} + 2822700 T^{6} - 18253460 T^{7} + 88529281 T^{8} )^{2} \)
show more
show less