Properties

Label 168.2.c
Level $168$
Weight $2$
Character orbit 168.c
Rep. character $\chi_{168}(85,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $2$
Sturm bound $64$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 168.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(64\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(168, [\chi])\).

Total New Old
Modular forms 36 12 24
Cusp forms 28 12 16
Eisenstein series 8 0 8

Trace form

\( 12 q + 2 q^{2} + 2 q^{4} + 4 q^{6} + 4 q^{7} + 2 q^{8} - 12 q^{9} + 4 q^{10} - 8 q^{12} - 2 q^{14} - 8 q^{15} + 2 q^{16} + 8 q^{17} - 2 q^{18} + 20 q^{20} + 12 q^{22} - 8 q^{23} - 4 q^{24} - 20 q^{25} - 20 q^{26}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(168, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
168.2.c.a 168.c 8.b $4$ $1.341$ \(\Q(\zeta_{12})\) None 168.2.c.a \(2\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+\beta_1)q^{2}+\beta_{2} q^{3}+(\beta_{3}+\beta_1)q^{4}+\cdots\)
168.2.c.b 168.c 8.b $8$ $1.341$ 8.0.386672896.3 None 168.2.c.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}-\beta _{2}q^{3}+\beta _{1}q^{4}+(-\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(168, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(168, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)