Properties

 Label 168.2.ba.c.101.11 Level $168$ Weight $2$ Character 168.101 Analytic conductor $1.341$ Analytic rank $0$ Dimension $48$ CM no Inner twists $8$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$168 = 2^{3} \cdot 3 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 168.ba (of order $$6$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$1.34148675396$$ Analytic rank: $$0$$ Dimension: $$48$$ Relative dimension: $$24$$ over $$\Q(\zeta_{6})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

 Embedding label 101.11 Character $$\chi$$ $$=$$ 168.101 Dual form 168.2.ba.c.5.11

$q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.174432 + 1.40341i) q^{2} +(1.09218 - 1.34430i) q^{3} +(-1.93915 - 0.489600i) q^{4} +(2.46958 - 1.42581i) q^{5} +(1.69610 + 1.76727i) q^{6} +(-1.02032 - 2.44110i) q^{7} +(1.02536 - 2.63603i) q^{8} +(-0.614290 - 2.93643i) q^{9} +O(q^{10})$$ $$q+(-0.174432 + 1.40341i) q^{2} +(1.09218 - 1.34430i) q^{3} +(-1.93915 - 0.489600i) q^{4} +(2.46958 - 1.42581i) q^{5} +(1.69610 + 1.76727i) q^{6} +(-1.02032 - 2.44110i) q^{7} +(1.02536 - 2.63603i) q^{8} +(-0.614290 - 2.93643i) q^{9} +(1.57023 + 3.71455i) q^{10} +(-2.42621 + 4.20231i) q^{11} +(-2.77607 + 2.07207i) q^{12} +2.75221 q^{13} +(3.60385 - 1.00612i) q^{14} +(0.780502 - 4.87710i) q^{15} +(3.52058 + 1.89881i) q^{16} +(-1.75366 + 3.03743i) q^{17} +(4.22819 - 0.349896i) q^{18} +(3.14493 + 5.44717i) q^{19} +(-5.48696 + 1.55575i) q^{20} +(-4.39594 - 1.29450i) q^{21} +(-5.47438 - 4.13799i) q^{22} +(-3.15865 + 1.82365i) q^{23} +(-2.42373 - 4.25741i) q^{24} +(1.56588 - 2.71219i) q^{25} +(-0.480073 + 3.86249i) q^{26} +(-4.61837 - 2.38132i) q^{27} +(0.783383 + 5.23319i) q^{28} +3.90427 q^{29} +(6.70845 + 1.94609i) q^{30} +(-0.858051 - 0.495396i) q^{31} +(-3.27893 + 4.60963i) q^{32} +(2.99932 + 7.85123i) q^{33} +(-3.95689 - 2.99094i) q^{34} +(-6.00030 - 4.57370i) q^{35} +(-0.246481 + 5.99494i) q^{36} +(1.06516 - 0.614970i) q^{37} +(-8.19322 + 3.46348i) q^{38} +(3.00591 - 3.69980i) q^{39} +(-1.22627 - 7.97185i) q^{40} +2.10659 q^{41} +(2.58351 - 5.94352i) q^{42} -5.11768i q^{43} +(6.76223 - 6.96103i) q^{44} +(-5.70384 - 6.37590i) q^{45} +(-2.00837 - 4.75100i) q^{46} +(-5.61268 - 9.72145i) q^{47} +(6.39768 - 2.65888i) q^{48} +(-4.91791 + 4.98138i) q^{49} +(3.53319 + 2.67068i) q^{50} +(2.16791 + 5.67487i) q^{51} +(-5.33694 - 1.34748i) q^{52} +(-1.00417 + 1.73927i) q^{53} +(4.14757 - 6.06611i) q^{54} +13.8373i q^{55} +(-7.48099 + 0.186576i) q^{56} +(10.7575 + 1.72156i) q^{57} +(-0.681029 + 5.47932i) q^{58} +(-0.890996 - 0.514417i) q^{59} +(-3.90134 + 9.07528i) q^{60} +(1.24347 + 2.15376i) q^{61} +(0.844918 - 1.11779i) q^{62} +(-6.54135 + 4.49563i) q^{63} +(-5.89727 - 5.40576i) q^{64} +(6.79681 - 3.92414i) q^{65} +(-11.5417 + 2.83979i) q^{66} +(5.02777 + 2.90279i) q^{67} +(4.88774 - 5.03144i) q^{68} +(-0.998281 + 6.23793i) q^{69} +(7.46545 - 7.62311i) q^{70} +9.75277i q^{71} +(-8.37039 - 1.39162i) q^{72} +(0.291019 + 0.168020i) q^{73} +(0.677260 + 1.60213i) q^{74} +(-1.93577 - 5.06722i) q^{75} +(-3.43154 - 12.1026i) q^{76} +(12.7338 + 1.63491i) q^{77} +(4.66803 + 4.86390i) q^{78} +(-2.80082 - 4.85116i) q^{79} +(11.4017 - 0.330420i) q^{80} +(-8.24530 + 3.60764i) q^{81} +(-0.367457 + 2.95643i) q^{82} +0.138115i q^{83} +(7.89058 + 4.66248i) q^{84} +10.0016i q^{85} +(7.18223 + 0.892686i) q^{86} +(4.26417 - 5.24852i) q^{87} +(8.58967 + 10.7044i) q^{88} +(-0.580993 - 1.00631i) q^{89} +(9.94296 - 6.89270i) q^{90} +(-2.80813 - 6.71841i) q^{91} +(7.01795 - 1.98985i) q^{92} +(-1.60311 + 0.612418i) q^{93} +(14.6223 - 6.18119i) q^{94} +(15.5333 + 8.96815i) q^{95} +(2.61555 + 9.44240i) q^{96} +11.0953i q^{97} +(-6.13311 - 7.77078i) q^{98} +(13.8302 + 4.54296i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$48 q + 6 q^{4} - 4 q^{7} - 14 q^{9}+O(q^{10})$$ 48 * q + 6 * q^4 - 4 * q^7 - 14 * q^9 $$48 q + 6 q^{4} - 4 q^{7} - 14 q^{9} - 30 q^{10} - 18 q^{12} + 4 q^{15} + 6 q^{16} - 36 q^{22} - 12 q^{24} - 8 q^{25} - 10 q^{28} + 22 q^{30} + 48 q^{31} - 42 q^{33} + 52 q^{36} - 8 q^{39} - 18 q^{40} + 12 q^{42} - 8 q^{46} - 36 q^{49} - 48 q^{52} + 60 q^{54} + 4 q^{57} + 30 q^{58} - 32 q^{60} - 6 q^{63} - 60 q^{64} + 54 q^{66} + 42 q^{70} + 42 q^{72} - 36 q^{73} - 68 q^{78} - 56 q^{79} + 42 q^{81} + 48 q^{82} + 48 q^{84} - 132 q^{87} + 6 q^{88} + 48 q^{94} + 90 q^{96}+O(q^{100})$$ 48 * q + 6 * q^4 - 4 * q^7 - 14 * q^9 - 30 * q^10 - 18 * q^12 + 4 * q^15 + 6 * q^16 - 36 * q^22 - 12 * q^24 - 8 * q^25 - 10 * q^28 + 22 * q^30 + 48 * q^31 - 42 * q^33 + 52 * q^36 - 8 * q^39 - 18 * q^40 + 12 * q^42 - 8 * q^46 - 36 * q^49 - 48 * q^52 + 60 * q^54 + 4 * q^57 + 30 * q^58 - 32 * q^60 - 6 * q^63 - 60 * q^64 + 54 * q^66 + 42 * q^70 + 42 * q^72 - 36 * q^73 - 68 * q^78 - 56 * q^79 + 42 * q^81 + 48 * q^82 + 48 * q^84 - 132 * q^87 + 6 * q^88 + 48 * q^94 + 90 * q^96

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/168\mathbb{Z}\right)^\times$$.

 $$n$$ $$73$$ $$85$$ $$113$$ $$127$$ $$\chi(n)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$-1$$ $$1$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.174432 + 1.40341i −0.123342 + 0.992364i
$$3$$ 1.09218 1.34430i 0.630570 0.776132i
$$4$$ −1.93915 0.489600i −0.969574 0.244800i
$$5$$ 2.46958 1.42581i 1.10443 0.637643i 0.167049 0.985949i $$-0.446576\pi$$
0.937381 + 0.348306i $$0.113243\pi$$
$$6$$ 1.69610 + 1.76727i 0.692430 + 0.721485i
$$7$$ −1.02032 2.44110i −0.385643 0.922648i
$$8$$ 1.02536 2.63603i 0.362520 0.931976i
$$9$$ −0.614290 2.93643i −0.204763 0.978812i
$$10$$ 1.57023 + 3.71455i 0.496552 + 1.17464i
$$11$$ −2.42621 + 4.20231i −0.731529 + 1.26705i 0.224701 + 0.974428i $$0.427860\pi$$
−0.956230 + 0.292617i $$0.905474\pi$$
$$12$$ −2.77607 + 2.07207i −0.801381 + 0.598154i
$$13$$ 2.75221 0.763326 0.381663 0.924302i $$-0.375351\pi$$
0.381663 + 0.924302i $$0.375351\pi$$
$$14$$ 3.60385 1.00612i 0.963169 0.268898i
$$15$$ 0.780502 4.87710i 0.201525 1.25926i
$$16$$ 3.52058 + 1.89881i 0.880146 + 0.474703i
$$17$$ −1.75366 + 3.03743i −0.425326 + 0.736686i −0.996451 0.0841773i $$-0.973174\pi$$
0.571125 + 0.820863i $$0.306507\pi$$
$$18$$ 4.22819 0.349896i 0.996593 0.0824713i
$$19$$ 3.14493 + 5.44717i 0.721496 + 1.24967i 0.960400 + 0.278624i $$0.0898784\pi$$
−0.238905 + 0.971043i $$0.576788\pi$$
$$20$$ −5.48696 + 1.55575i −1.22692 + 0.347877i
$$21$$ −4.39594 1.29450i −0.959272 0.282484i
$$22$$ −5.47438 4.13799i −1.16714 0.882223i
$$23$$ −3.15865 + 1.82365i −0.658624 + 0.380257i −0.791753 0.610842i $$-0.790831\pi$$
0.133128 + 0.991099i $$0.457498\pi$$
$$24$$ −2.42373 4.25741i −0.494743 0.869039i
$$25$$ 1.56588 2.71219i 0.313177 0.542438i
$$26$$ −0.480073 + 3.86249i −0.0941501 + 0.757498i
$$27$$ −4.61837 2.38132i −0.888805 0.458286i
$$28$$ 0.783383 + 5.23319i 0.148045 + 0.988981i
$$29$$ 3.90427 0.725005 0.362503 0.931983i $$-0.381922\pi$$
0.362503 + 0.931983i $$0.381922\pi$$
$$30$$ 6.70845 + 1.94609i 1.22479 + 0.355306i
$$31$$ −0.858051 0.495396i −0.154111 0.0889758i 0.420962 0.907078i $$-0.361693\pi$$
−0.575072 + 0.818103i $$0.695026\pi$$
$$32$$ −3.27893 + 4.60963i −0.579638 + 0.814874i
$$33$$ 2.99932 + 7.85123i 0.522115 + 1.36672i
$$34$$ −3.95689 2.99094i −0.678600 0.512942i
$$35$$ −6.00030 4.57370i −1.01424 0.773097i
$$36$$ −0.246481 + 5.99494i −0.0410801 + 0.999156i
$$37$$ 1.06516 0.614970i 0.175111 0.101100i −0.409883 0.912138i $$-0.634430\pi$$
0.584994 + 0.811038i $$0.301097\pi$$
$$38$$ −8.19322 + 3.46348i −1.32912 + 0.561850i
$$39$$ 3.00591 3.69980i 0.481330 0.592442i
$$40$$ −1.22627 7.97185i −0.193890 1.26046i
$$41$$ 2.10659 0.328995 0.164497 0.986378i $$-0.447400\pi$$
0.164497 + 0.986378i $$0.447400\pi$$
$$42$$ 2.58351 5.94352i 0.398645 0.917105i
$$43$$ 5.11768i 0.780439i −0.920722 0.390220i $$-0.872399\pi$$
0.920722 0.390220i $$-0.127601\pi$$
$$44$$ 6.76223 6.96103i 1.01944 1.04942i
$$45$$ −5.70384 6.37590i −0.850279 0.950463i
$$46$$ −2.00837 4.75100i −0.296117 0.700497i
$$47$$ −5.61268 9.72145i −0.818693 1.41802i −0.906645 0.421894i $$-0.861365\pi$$
0.0879518 0.996125i $$-0.471968\pi$$
$$48$$ 6.39768 2.65888i 0.923426 0.383776i
$$49$$ −4.91791 + 4.98138i −0.702558 + 0.711626i
$$50$$ 3.53319 + 2.67068i 0.499668 + 0.377691i
$$51$$ 2.16791 + 5.67487i 0.303568 + 0.794641i
$$52$$ −5.33694 1.34748i −0.740101 0.186862i
$$53$$ −1.00417 + 1.73927i −0.137933 + 0.238907i −0.926714 0.375767i $$-0.877379\pi$$
0.788781 + 0.614674i $$0.210712\pi$$
$$54$$ 4.14757 6.06611i 0.564413 0.825492i
$$55$$ 13.8373i 1.86582i
$$56$$ −7.48099 + 0.186576i −0.999689 + 0.0249323i
$$57$$ 10.7575 + 1.72156i 1.42486 + 0.228026i
$$58$$ −0.681029 + 5.47932i −0.0894235 + 0.719469i
$$59$$ −0.890996 0.514417i −0.115998 0.0669714i 0.440879 0.897567i $$-0.354667\pi$$
−0.556876 + 0.830595i $$0.688000\pi$$
$$60$$ −3.90134 + 9.07528i −0.503661 + 1.17161i
$$61$$ 1.24347 + 2.15376i 0.159211 + 0.275761i 0.934584 0.355742i $$-0.115772\pi$$
−0.775374 + 0.631503i $$0.782438\pi$$
$$62$$ 0.844918 1.11779i 0.107305 0.141959i
$$63$$ −6.54135 + 4.49563i −0.824133 + 0.566397i
$$64$$ −5.89727 5.40576i −0.737159 0.675720i
$$65$$ 6.79681 3.92414i 0.843040 0.486729i
$$66$$ −11.5417 + 2.83979i −1.42069 + 0.349554i
$$67$$ 5.02777 + 2.90279i 0.614240 + 0.354632i 0.774623 0.632423i $$-0.217940\pi$$
−0.160383 + 0.987055i $$0.551273\pi$$
$$68$$ 4.88774 5.03144i 0.592725 0.610151i
$$69$$ −0.998281 + 6.23793i −0.120179 + 0.750958i
$$70$$ 7.46545 7.62311i 0.892292 0.911136i
$$71$$ 9.75277i 1.15744i 0.815526 + 0.578720i $$0.196448\pi$$
−0.815526 + 0.578720i $$0.803552\pi$$
$$72$$ −8.37039 1.39162i −0.986460 0.164004i
$$73$$ 0.291019 + 0.168020i 0.0340612 + 0.0196652i 0.516934 0.856025i $$-0.327073\pi$$
−0.482873 + 0.875691i $$0.660407\pi$$
$$74$$ 0.677260 + 1.60213i 0.0787299 + 0.186244i
$$75$$ −1.93577 5.06722i −0.223524 0.585112i
$$76$$ −3.43154 12.1026i −0.393624 1.38827i
$$77$$ 12.7338 + 1.63491i 1.45115 + 0.186316i
$$78$$ 4.66803 + 4.86390i 0.528550 + 0.550728i
$$79$$ −2.80082 4.85116i −0.315117 0.545798i 0.664346 0.747426i $$-0.268710\pi$$
−0.979462 + 0.201627i $$0.935377\pi$$
$$80$$ 11.4017 0.330420i 1.27475 0.0369421i
$$81$$ −8.24530 + 3.60764i −0.916144 + 0.400849i
$$82$$ −0.367457 + 2.95643i −0.0405788 + 0.326483i
$$83$$ 0.138115i 0.0151600i 0.999971 + 0.00758002i $$0.00241282\pi$$
−0.999971 + 0.00758002i $$0.997587\pi$$
$$84$$ 7.89058 + 4.66248i 0.860933 + 0.508718i
$$85$$ 10.0016i 1.08482i
$$86$$ 7.18223 + 0.892686i 0.774480 + 0.0962609i
$$87$$ 4.26417 5.24852i 0.457167 0.562700i
$$88$$ 8.58967 + 10.7044i 0.915662 + 1.14110i
$$89$$ −0.580993 1.00631i −0.0615852 0.106669i 0.833589 0.552385i $$-0.186282\pi$$
−0.895174 + 0.445717i $$0.852949\pi$$
$$90$$ 9.94296 6.89270i 1.04808 0.726554i
$$91$$ −2.80813 6.71841i −0.294372 0.704281i
$$92$$ 7.01795 1.98985i 0.731671 0.207456i
$$93$$ −1.60311 + 0.612418i −0.166234 + 0.0635048i
$$94$$ 14.6223 6.18119i 1.50817 0.637541i
$$95$$ 15.5333 + 8.96815i 1.59368 + 0.920113i
$$96$$ 2.61555 + 9.44240i 0.266949 + 0.963711i
$$97$$ 11.0953i 1.12656i 0.826266 + 0.563280i $$0.190461\pi$$
−0.826266 + 0.563280i $$0.809539\pi$$
$$98$$ −6.13311 7.77078i −0.619538 0.784967i
$$99$$ 13.8302 + 4.54296i 1.38999 + 0.456585i
$$100$$ −4.36437 + 4.49268i −0.436437 + 0.449268i
$$101$$ −6.16256 3.55796i −0.613198 0.354030i 0.161018 0.986951i $$-0.448522\pi$$
−0.774216 + 0.632922i $$0.781856\pi$$
$$102$$ −8.34235 + 2.05260i −0.826016 + 0.203238i
$$103$$ 1.50519 0.869021i 0.148311 0.0856271i −0.424008 0.905658i $$-0.639377\pi$$
0.572319 + 0.820031i $$0.306044\pi$$
$$104$$ 2.82201 7.25490i 0.276721 0.711402i
$$105$$ −12.7018 + 3.07091i −1.23957 + 0.299690i
$$106$$ −2.26576 1.71265i −0.220070 0.166347i
$$107$$ 0.532028 + 0.921500i 0.0514331 + 0.0890847i 0.890596 0.454796i $$-0.150288\pi$$
−0.839163 + 0.543881i $$0.816954\pi$$
$$108$$ 7.78980 + 6.87889i 0.749573 + 0.661921i
$$109$$ −7.85874 4.53725i −0.752731 0.434589i 0.0739489 0.997262i $$-0.476440\pi$$
−0.826680 + 0.562673i $$0.809773\pi$$
$$110$$ −19.4194 2.41366i −1.85157 0.230133i
$$111$$ 0.336640 2.10355i 0.0319524 0.199660i
$$112$$ 1.04308 10.5315i 0.0985616 0.995131i
$$113$$ 16.8126i 1.58159i −0.612078 0.790797i $$-0.709666\pi$$
0.612078 0.790797i $$-0.290334\pi$$
$$114$$ −4.29251 + 14.7969i −0.402030 + 1.38586i
$$115$$ −5.20036 + 9.00729i −0.484936 + 0.839934i
$$116$$ −7.57096 1.91153i −0.702946 0.177481i
$$117$$ −1.69066 8.08169i −0.156301 0.747152i
$$118$$ 0.877358 1.16071i 0.0807674 0.106852i
$$119$$ 9.20396 + 1.18172i 0.843726 + 0.108328i
$$120$$ −12.0559 7.05821i −1.10055 0.644324i
$$121$$ −6.27296 10.8651i −0.570269 0.987735i
$$122$$ −3.23952 + 1.36943i −0.293293 + 0.123982i
$$123$$ 2.30078 2.83190i 0.207454 0.255343i
$$124$$ 1.42134 + 1.38075i 0.127640 + 0.123995i
$$125$$ 5.32750i 0.476506i
$$126$$ −5.16822 9.96441i −0.460422 0.887700i
$$127$$ 15.6371 1.38756 0.693782 0.720185i $$-0.255943\pi$$
0.693782 + 0.720185i $$0.255943\pi$$
$$128$$ 8.61519 7.33338i 0.761483 0.648185i
$$129$$ −6.87971 5.58943i −0.605724 0.492122i
$$130$$ 4.32162 + 10.2232i 0.379031 + 0.896637i
$$131$$ −8.73260 + 5.04177i −0.762971 + 0.440502i −0.830361 0.557225i $$-0.811866\pi$$
0.0673904 + 0.997727i $$0.478533\pi$$
$$132$$ −1.97216 16.6932i −0.171655 1.45295i
$$133$$ 10.0883 13.2349i 0.874763 1.14761i
$$134$$ −4.95082 + 6.54971i −0.427685 + 0.565809i
$$135$$ −14.8007 + 0.704060i −1.27385 + 0.0605958i
$$136$$ 6.20862 + 7.73717i 0.532384 + 0.663457i
$$137$$ −17.0704 9.85557i −1.45842 0.842019i −0.459485 0.888185i $$-0.651966\pi$$
−0.998934 + 0.0461669i $$0.985299\pi$$
$$138$$ −8.58027 2.48909i −0.730401 0.211886i
$$139$$ −0.111832 −0.00948546 −0.00474273 0.999989i $$-0.501510\pi$$
−0.00474273 + 0.999989i $$0.501510\pi$$
$$140$$ 9.39618 + 11.8068i 0.794122 + 0.997860i
$$141$$ −19.1986 3.07243i −1.61681 0.258745i
$$142$$ −13.6872 1.70119i −1.14860 0.142761i
$$143$$ −6.67743 + 11.5657i −0.558395 + 0.967169i
$$144$$ 3.41308 11.5044i 0.284424 0.958699i
$$145$$ 9.64192 5.56676i 0.800718 0.462295i
$$146$$ −0.286564 + 0.379112i −0.0237162 + 0.0313755i
$$147$$ 1.32524 + 12.0517i 0.109304 + 0.994008i
$$148$$ −2.36659 + 0.671015i −0.194532 + 0.0551571i
$$149$$ −5.49834 9.52340i −0.450441 0.780187i 0.547972 0.836497i $$-0.315400\pi$$
−0.998413 + 0.0563094i $$0.982067\pi$$
$$150$$ 7.44907 1.83281i 0.608214 0.149648i
$$151$$ 4.16727 7.21792i 0.339127 0.587386i −0.645141 0.764063i $$-0.723202\pi$$
0.984269 + 0.176677i $$0.0565349\pi$$
$$152$$ 17.5836 2.70479i 1.42622 0.219387i
$$153$$ 9.99648 + 3.28365i 0.808168 + 0.265468i
$$154$$ −4.51563 + 17.5856i −0.363880 + 1.41708i
$$155$$ −2.82537 −0.226939
$$156$$ −7.64032 + 5.70276i −0.611715 + 0.456587i
$$157$$ −5.42198 + 9.39114i −0.432721 + 0.749495i −0.997107 0.0760165i $$-0.975780\pi$$
0.564386 + 0.825511i $$0.309113\pi$$
$$158$$ 7.29674 3.08451i 0.580498 0.245391i
$$159$$ 1.24137 + 3.24949i 0.0984470 + 0.257702i
$$160$$ −1.52510 + 16.0590i −0.120570 + 1.26957i
$$161$$ 7.67452 + 5.84987i 0.604837 + 0.461035i
$$162$$ −3.62478 12.2009i −0.284790 0.958590i
$$163$$ 10.0621 5.80934i 0.788122 0.455022i −0.0511792 0.998689i $$-0.516298\pi$$
0.839301 + 0.543667i $$0.182965\pi$$
$$164$$ −4.08500 1.03139i −0.318985 0.0805379i
$$165$$ 18.6014 + 15.1128i 1.44812 + 1.17653i
$$166$$ −0.193832 0.0240916i −0.0150443 0.00186987i
$$167$$ 7.75061 0.599761 0.299880 0.953977i $$-0.403053\pi$$
0.299880 + 0.953977i $$0.403053\pi$$
$$168$$ −7.91976 + 10.2605i −0.611023 + 0.791613i
$$169$$ −5.42533 −0.417333
$$170$$ −14.0364 1.74459i −1.07654 0.133804i
$$171$$ 14.0634 12.5810i 1.07545 0.962094i
$$172$$ −2.50562 + 9.92394i −0.191052 + 0.756693i
$$173$$ −0.880487 + 0.508349i −0.0669422 + 0.0386491i −0.533098 0.846054i $$-0.678972\pi$$
0.466155 + 0.884703i $$0.345639\pi$$
$$174$$ 6.62204 + 6.89990i 0.502016 + 0.523080i
$$175$$ −8.21842 1.05518i −0.621254 0.0797642i
$$176$$ −16.5211 + 10.1877i −1.24532 + 0.767925i
$$177$$ −1.66466 + 0.635932i −0.125123 + 0.0477996i
$$178$$ 1.51361 0.639843i 0.113450 0.0479582i
$$179$$ 10.8103 18.7240i 0.808002 1.39950i −0.106244 0.994340i $$-0.533883\pi$$
0.914246 0.405160i $$-0.132784\pi$$
$$180$$ 7.93895 + 15.1564i 0.591734 + 1.12969i
$$181$$ −9.37049 −0.696503 −0.348251 0.937401i $$-0.613224\pi$$
−0.348251 + 0.937401i $$0.613224\pi$$
$$182$$ 9.91855 2.76906i 0.735212 0.205257i
$$183$$ 4.25340 + 0.680689i 0.314420 + 0.0503180i
$$184$$ 1.56843 + 10.1962i 0.115626 + 0.751673i
$$185$$ 1.75366 3.03743i 0.128932 0.223317i
$$186$$ −0.579844 2.35665i −0.0425162 0.172798i
$$187$$ −8.50950 14.7389i −0.622276 1.07781i
$$188$$ 6.12419 + 21.5993i 0.446652 + 1.57529i
$$189$$ −1.10084 + 13.7036i −0.0800744 + 0.996789i
$$190$$ −15.2955 + 20.2353i −1.10966 + 1.46803i
$$191$$ −7.70657 + 4.44939i −0.557628 + 0.321947i −0.752193 0.658943i $$-0.771004\pi$$
0.194565 + 0.980890i $$0.437671\pi$$
$$192$$ −13.7078 + 2.02365i −0.989278 + 0.146044i
$$193$$ 7.45779 12.9173i 0.536824 0.929806i −0.462249 0.886750i $$-0.652957\pi$$
0.999073 0.0430556i $$-0.0137093\pi$$
$$194$$ −15.5713 1.93538i −1.11796 0.138952i
$$195$$ 2.14811 13.4228i 0.153829 0.961228i
$$196$$ 11.9754 7.25183i 0.855388 0.517988i
$$197$$ 2.74394 0.195497 0.0977487 0.995211i $$-0.468836\pi$$
0.0977487 + 0.995211i $$0.468836\pi$$
$$198$$ −8.78808 + 18.6171i −0.624542 + 1.32306i
$$199$$ −20.1826 11.6525i −1.43071 0.826021i −0.433535 0.901137i $$-0.642734\pi$$
−0.997175 + 0.0751162i $$0.976067\pi$$
$$200$$ −5.54381 6.90869i −0.392007 0.488518i
$$201$$ 9.39344 3.58848i 0.662562 0.253112i
$$202$$ 6.06823 8.02801i 0.426959 0.564849i
$$203$$ −3.98360 9.53071i −0.279594 0.668925i
$$204$$ −1.42548 12.0658i −0.0998035 0.844776i
$$205$$ 5.20240 3.00361i 0.363352 0.209781i
$$206$$ 0.957044 + 2.26399i 0.0666804 + 0.157740i
$$207$$ 7.29535 + 8.15492i 0.507062 + 0.566806i
$$208$$ 9.68939 + 5.22594i 0.671838 + 0.362354i
$$209$$ −30.5210 −2.11118
$$210$$ −2.09415 18.3616i −0.144510 1.26707i
$$211$$ 20.3918i 1.40383i 0.712259 + 0.701916i $$0.247672\pi$$
−0.712259 + 0.701916i $$0.752328\pi$$
$$212$$ 2.79877 2.88105i 0.192220 0.197872i
$$213$$ 13.1107 + 10.6518i 0.898328 + 0.729847i
$$214$$ −1.38605 + 0.585917i −0.0947484 + 0.0400525i
$$215$$ −7.29686 12.6385i −0.497642 0.861941i
$$216$$ −11.0127 + 9.73242i −0.749321 + 0.662207i
$$217$$ −0.333826 + 2.60005i −0.0226616 + 0.176503i
$$218$$ 7.73845 10.2376i 0.524114 0.693380i
$$219$$ 0.543714 0.207709i 0.0367408 0.0140357i
$$220$$ 6.77473 26.8325i 0.456752 1.80905i
$$221$$ −4.82645 + 8.35966i −0.324662 + 0.562332i
$$222$$ 2.89343 + 0.839371i 0.194195 + 0.0563349i
$$223$$ 11.4666i 0.767860i −0.923362 0.383930i $$-0.874570\pi$$
0.923362 0.383930i $$-0.125430\pi$$
$$224$$ 14.5981 + 3.30090i 0.975376 + 0.220550i
$$225$$ −8.92608 2.93204i −0.595072 0.195470i
$$226$$ 23.5950 + 2.93265i 1.56952 + 0.195077i
$$227$$ 18.3699 + 10.6059i 1.21926 + 0.703938i 0.964759 0.263136i $$-0.0847567\pi$$
0.254497 + 0.967073i $$0.418090\pi$$
$$228$$ −20.0174 8.60521i −1.32569 0.569894i
$$229$$ 1.13465 + 1.96528i 0.0749800 + 0.129869i 0.901078 0.433658i $$-0.142777\pi$$
−0.826098 + 0.563527i $$0.809444\pi$$
$$230$$ −11.7339 8.86942i −0.773707 0.584832i
$$231$$ 16.1054 15.3324i 1.05965 1.00880i
$$232$$ 4.00329 10.2918i 0.262829 0.675688i
$$233$$ 22.5624 13.0264i 1.47811 0.853389i 0.478420 0.878131i $$-0.341210\pi$$
0.999694 + 0.0247423i $$0.00787651\pi$$
$$234$$ 11.6369 0.962988i 0.760726 0.0629525i
$$235$$ −27.7219 16.0053i −1.80838 1.04407i
$$236$$ 1.47591 + 1.43376i 0.0960738 + 0.0933300i
$$237$$ −9.58042 1.53319i −0.622315 0.0995916i
$$238$$ −3.26390 + 12.7108i −0.211567 + 0.823922i
$$239$$ 8.32874i 0.538742i 0.963037 + 0.269371i $$0.0868157\pi$$
−0.963037 + 0.269371i $$0.913184\pi$$
$$240$$ 12.0085 15.6882i 0.775147 1.01267i
$$241$$ 6.24112 + 3.60331i 0.402026 + 0.232110i 0.687358 0.726319i $$-0.258771\pi$$
−0.285332 + 0.958429i $$0.592104\pi$$
$$242$$ 16.3424 6.90835i 1.05053 0.444085i
$$243$$ −4.15558 + 15.0244i −0.266581 + 0.963813i
$$244$$ −1.35680 4.78527i −0.0868601 0.306345i
$$245$$ −5.04265 + 19.3139i −0.322163 + 1.23392i
$$246$$ 3.57300 + 3.72292i 0.227806 + 0.237365i
$$247$$ 8.65550 + 14.9918i 0.550736 + 0.953904i
$$248$$ −2.18569 + 1.75389i −0.138791 + 0.111372i
$$249$$ 0.185668 + 0.150846i 0.0117662 + 0.00955947i
$$250$$ −7.47669 0.929285i −0.472867 0.0587731i
$$251$$ 8.41270i 0.531005i 0.964110 + 0.265502i $$0.0855378\pi$$
−0.964110 + 0.265502i $$0.914462\pi$$
$$252$$ 14.8857 5.51505i 0.937711 0.347415i
$$253$$ 17.6982i 1.11268i
$$254$$ −2.72760 + 21.9453i −0.171145 + 1.37697i
$$255$$ 13.4451 + 10.9235i 0.841967 + 0.684057i
$$256$$ 8.78901 + 13.3699i 0.549313 + 0.835616i
$$257$$ 15.1284 + 26.2032i 0.943685 + 1.63451i 0.758364 + 0.651832i $$0.225999\pi$$
0.185321 + 0.982678i $$0.440668\pi$$
$$258$$ 9.04432 8.68011i 0.563075 0.540400i
$$259$$ −2.58800 1.97269i −0.160810 0.122577i
$$260$$ −15.1013 + 4.28176i −0.936541 + 0.265544i
$$261$$ −2.39836 11.4646i −0.148454 0.709644i
$$262$$ −5.55245 13.1349i −0.343032 0.811478i
$$263$$ −20.9078 12.0711i −1.28923 0.744338i −0.310714 0.950504i $$-0.600568\pi$$
−0.978517 + 0.206166i $$0.933901\pi$$
$$264$$ 23.7714 + 0.144056i 1.46303 + 0.00886604i
$$265$$ 5.72701i 0.351808i
$$266$$ 16.8144 + 16.4666i 1.03095 + 1.00963i
$$267$$ −1.98733 0.318041i −0.121623 0.0194638i
$$268$$ −8.32839 8.09053i −0.508737 0.494208i
$$269$$ 17.4083 + 10.0507i 1.06140 + 0.612800i 0.925819 0.377966i $$-0.123377\pi$$
0.135581 + 0.990766i $$0.456710\pi$$
$$270$$ 1.59363 20.8944i 0.0969853 1.27159i
$$271$$ −1.57903 + 0.911656i −0.0959195 + 0.0553791i −0.547192 0.837007i $$-0.684303\pi$$
0.451273 + 0.892386i $$0.350970\pi$$
$$272$$ −11.9414 + 7.36366i −0.724056 + 0.446487i
$$273$$ −12.0985 3.56274i −0.732237 0.215627i
$$274$$ 16.8091 22.2377i 1.01547 1.34343i
$$275$$ 7.59832 + 13.1607i 0.458196 + 0.793618i
$$276$$ 4.98990 11.6075i 0.300357 0.698689i
$$277$$ −11.4072 6.58598i −0.685395 0.395713i 0.116490 0.993192i $$-0.462836\pi$$
−0.801885 + 0.597479i $$0.796169\pi$$
$$278$$ 0.0195070 0.156947i 0.00116995 0.00941303i
$$279$$ −0.927606 + 2.82393i −0.0555343 + 0.169064i
$$280$$ −18.2089 + 11.1273i −1.08819 + 0.664981i
$$281$$ 15.3821i 0.917618i 0.888535 + 0.458809i $$0.151724\pi$$
−0.888535 + 0.458809i $$0.848276\pi$$
$$282$$ 7.66074 26.4077i 0.456190 1.57255i
$$283$$ −4.64882 + 8.05200i −0.276344 + 0.478641i −0.970473 0.241209i $$-0.922456\pi$$
0.694129 + 0.719850i $$0.255790\pi$$
$$284$$ 4.77496 18.9121i 0.283342 1.12222i
$$285$$ 29.0210 11.0866i 1.71906 0.656713i
$$286$$ −15.0667 11.3886i −0.890910 0.673424i
$$287$$ −2.14939 5.14240i −0.126875 0.303546i
$$288$$ 15.5501 + 6.79670i 0.916297 + 0.400500i
$$289$$ 2.34933 + 4.06916i 0.138196 + 0.239362i
$$290$$ 6.13062 + 14.5026i 0.360003 + 0.851624i
$$291$$ 14.9154 + 12.1181i 0.874359 + 0.710374i
$$292$$ −0.482066 0.468298i −0.0282108 0.0274051i
$$293$$ 17.8462i 1.04258i −0.853378 0.521292i $$-0.825450\pi$$
0.853378 0.521292i $$-0.174550\pi$$
$$294$$ −17.1447 0.242334i −0.999900 0.0141332i
$$295$$ −2.93385 −0.170815
$$296$$ −0.528904 3.43835i −0.0307419 0.199850i
$$297$$ 21.2122 13.6302i 1.23086 0.790907i
$$298$$ 14.3244 6.05527i 0.829788 0.350772i
$$299$$ −8.69327 + 5.01906i −0.502745 + 0.290260i
$$300$$ 1.27284 + 10.7738i 0.0734875 + 0.622028i
$$301$$ −12.4928 + 5.22166i −0.720071 + 0.300971i
$$302$$ 9.40283 + 7.10744i 0.541072 + 0.408987i
$$303$$ −11.5136 + 4.39841i −0.661438 + 0.252682i
$$304$$ 0.728810 + 25.1489i 0.0418001 + 1.44239i
$$305$$ 6.14172 + 3.54592i 0.351674 + 0.203039i
$$306$$ −6.35203 + 13.4564i −0.363121 + 0.769253i
$$307$$ 17.6654 1.00822 0.504110 0.863640i $$-0.331821\pi$$
0.504110 + 0.863640i $$0.331821\pi$$
$$308$$ −23.8922 9.40479i −1.36138 0.535888i
$$309$$ 0.475709 2.97255i 0.0270622 0.169103i
$$310$$ 0.492834 3.96516i 0.0279911 0.225206i
$$311$$ 4.15091 7.18958i 0.235376 0.407684i −0.724006 0.689794i $$-0.757701\pi$$
0.959382 + 0.282110i $$0.0910344\pi$$
$$312$$ −6.67063 11.7173i −0.377650 0.663360i
$$313$$ −23.0954 + 13.3342i −1.30543 + 0.753691i −0.981330 0.192332i $$-0.938395\pi$$
−0.324101 + 0.946023i $$0.605062\pi$$
$$314$$ −12.2339 9.24740i −0.690399 0.521861i
$$315$$ −9.74446 + 20.4291i −0.549038 + 1.15105i
$$316$$ 3.05607 + 10.7784i 0.171917 + 0.606332i
$$317$$ −14.4097 24.9584i −0.809331 1.40180i −0.913328 0.407225i $$-0.866496\pi$$
0.103996 0.994578i $$-0.466837\pi$$
$$318$$ −4.77692 + 1.17534i −0.267876 + 0.0659099i
$$319$$ −9.47258 + 16.4070i −0.530362 + 0.918615i
$$320$$ −22.2714 4.94155i −1.24501 0.276241i
$$321$$ 1.81984 + 0.291237i 0.101574 + 0.0162553i
$$322$$ −9.54848 + 9.75014i −0.532116 + 0.543354i
$$323$$ −22.0606 −1.22748
$$324$$ 17.7551 2.95885i 0.986397 0.164381i
$$325$$ 4.30964 7.46452i 0.239056 0.414057i
$$326$$ 6.39776 + 15.1346i 0.354339 + 0.838227i
$$327$$ −14.6826 + 5.60903i −0.811948 + 0.310180i
$$328$$ 2.16002 5.55304i 0.119267 0.306615i
$$329$$ −18.0043 + 23.6200i −0.992608 + 1.30222i
$$330$$ −24.4542 + 23.4694i −1.34616 + 1.29195i
$$331$$ 2.24514 1.29623i 0.123404 0.0712472i −0.437027 0.899448i $$-0.643969\pi$$
0.560431 + 0.828201i $$0.310635\pi$$
$$332$$ 0.0676209 0.267825i 0.00371118 0.0146988i
$$333$$ −2.46013 2.75000i −0.134815 0.150699i
$$334$$ −1.35195 + 10.8773i −0.0739756 + 0.595181i
$$335$$ 16.5553 0.904513
$$336$$ −13.0182 12.9045i −0.710203 0.703996i
$$337$$ 11.1713 0.608541 0.304271 0.952586i $$-0.401587\pi$$
0.304271 + 0.952586i $$0.401587\pi$$
$$338$$ 0.946350 7.61399i 0.0514747 0.414147i
$$339$$ −22.6012 18.3623i −1.22753 0.997306i
$$340$$ 4.89678 19.3945i 0.265565 1.05182i
$$341$$ 4.16362 2.40387i 0.225473 0.130177i
$$342$$ 15.2033 + 21.9313i 0.822100 + 1.18591i
$$343$$ 17.1779 + 6.92250i 0.927517 + 0.373780i
$$344$$ −13.4903 5.24747i −0.727351 0.282925i
$$345$$ 6.42878 + 16.8284i 0.346114 + 0.906012i
$$346$$ −0.559840 1.32436i −0.0300972 0.0711981i
$$347$$ 7.23643 12.5339i 0.388472 0.672853i −0.603772 0.797157i $$-0.706336\pi$$
0.992244 + 0.124304i $$0.0396697\pi$$
$$348$$ −10.8385 + 8.08991i −0.581006 + 0.433665i
$$349$$ 22.8018 1.22055 0.610275 0.792189i $$-0.291059\pi$$
0.610275 + 0.792189i $$0.291059\pi$$
$$350$$ 2.91441 11.3498i 0.155782 0.606672i
$$351$$ −12.7107 6.55390i −0.678448 0.349821i
$$352$$ −11.4157 24.9630i −0.608461 1.33053i
$$353$$ −2.06060 + 3.56907i −0.109675 + 0.189962i −0.915639 0.402003i $$-0.868314\pi$$
0.805964 + 0.591965i $$0.201648\pi$$
$$354$$ −0.602107 2.44713i −0.0320016 0.130064i
$$355$$ 13.9056 + 24.0852i 0.738034 + 1.27831i
$$356$$ 0.633942 + 2.23584i 0.0335989 + 0.118499i
$$357$$ 11.6410 11.0822i 0.616105 0.586535i
$$358$$ 24.3919 + 18.4374i 1.28915 + 0.974449i
$$359$$ 9.83790 5.67992i 0.519225 0.299775i −0.217393 0.976084i $$-0.569755\pi$$
0.736617 + 0.676310i $$0.236422\pi$$
$$360$$ −22.6555 + 8.49788i −1.19405 + 0.447878i
$$361$$ −10.2811 + 17.8074i −0.541112 + 0.937234i
$$362$$ 1.63451 13.1507i 0.0859080 0.691185i
$$363$$ −21.4571 3.43387i −1.12621 0.180232i
$$364$$ 2.15603 + 14.4029i 0.113007 + 0.754915i
$$365$$ 0.958259 0.0501576
$$366$$ −1.69722 + 5.85055i −0.0887149 + 0.305813i
$$367$$ 24.2527 + 14.0023i 1.26598 + 0.730914i 0.974225 0.225580i $$-0.0724275\pi$$
0.291755 + 0.956493i $$0.405761\pi$$
$$368$$ −14.5831 + 0.422615i −0.760194 + 0.0220303i
$$369$$ −1.29406 6.18587i −0.0673660 0.322024i
$$370$$ 3.95689 + 2.99094i 0.205709 + 0.155492i
$$371$$ 5.27029 + 0.676664i 0.273620 + 0.0351306i
$$372$$ 3.40850 0.402687i 0.176723 0.0208783i
$$373$$ −27.1273 + 15.6619i −1.40460 + 0.810944i −0.994860 0.101259i $$-0.967713\pi$$
−0.409737 + 0.912204i $$0.634379\pi$$
$$374$$ 22.1691 9.37143i 1.14634 0.484585i
$$375$$ 7.16176 + 5.81858i 0.369832 + 0.300470i
$$376$$ −31.3810 + 4.82718i −1.61835 + 0.248943i
$$377$$ 10.7454 0.553416
$$378$$ −19.0398 3.93528i −0.979301 0.202409i
$$379$$ 28.8128i 1.48001i −0.672600 0.740006i $$-0.734822\pi$$
0.672600 0.740006i $$-0.265178\pi$$
$$380$$ −25.7305 24.9957i −1.31995 1.28225i
$$381$$ 17.0785 21.0209i 0.874956 1.07693i
$$382$$ −4.90007 11.5916i −0.250710 0.593080i
$$383$$ −12.6701 21.9453i −0.647413 1.12135i −0.983738 0.179607i $$-0.942517\pi$$
0.336325 0.941746i $$-0.390816\pi$$
$$384$$ −0.448937 19.5908i −0.0229097 0.999738i
$$385$$ 33.7781 14.1184i 1.72149 0.719540i
$$386$$ 16.8274 + 12.7196i 0.856493 + 0.647409i
$$387$$ −15.0277 + 3.14374i −0.763903 + 0.159805i
$$388$$ 5.43227 21.5155i 0.275782 1.09228i
$$389$$ −2.20886 + 3.82586i −0.111994 + 0.193979i −0.916574 0.399865i $$-0.869057\pi$$
0.804580 + 0.593844i $$0.202390\pi$$
$$390$$ 18.4631 + 5.35605i 0.934914 + 0.271214i
$$391$$ 12.7923i 0.646932i
$$392$$ 8.08843 + 18.0715i 0.408527 + 0.912746i
$$393$$ −2.75991 + 17.2458i −0.139219 + 0.869934i
$$394$$ −0.478629 + 3.85088i −0.0241130 + 0.194005i
$$395$$ −13.8337 7.98689i −0.696049 0.401864i
$$396$$ −24.5946 15.5807i −1.23592 0.782962i
$$397$$ 8.01775 + 13.8871i 0.402399 + 0.696976i 0.994015 0.109244i $$-0.0348430\pi$$
−0.591616 + 0.806220i $$0.701510\pi$$
$$398$$ 19.8737 26.2921i 0.996180 1.31790i
$$399$$ −6.77352 28.0165i −0.339100 1.40258i
$$400$$ 10.6628 6.57517i 0.533139 0.328759i
$$401$$ −6.53545 + 3.77324i −0.326365 + 0.188427i −0.654226 0.756299i $$-0.727006\pi$$
0.327861 + 0.944726i $$0.393672\pi$$
$$402$$ 3.39761 + 13.8088i 0.169457 + 0.688723i
$$403$$ −2.36154 1.36343i −0.117637 0.0679175i
$$404$$ 10.2081 + 9.91659i 0.507874 + 0.493369i
$$405$$ −15.2186 + 20.6656i −0.756218 + 1.02688i
$$406$$ 14.0704 3.92818i 0.698303 0.194952i
$$407$$ 5.96817i 0.295831i
$$408$$ 17.1820 + 0.104124i 0.850636 + 0.00515490i
$$409$$ −24.3612 14.0650i −1.20458 0.695467i −0.243013 0.970023i $$-0.578136\pi$$
−0.961571 + 0.274556i $$0.911469\pi$$
$$410$$ 3.30784 + 7.82505i 0.163363 + 0.386452i
$$411$$ −31.8927 + 12.1836i −1.57315 + 0.600975i
$$412$$ −3.34425 + 0.948219i −0.164760 + 0.0467154i
$$413$$ −0.346643 + 2.69988i −0.0170572 + 0.132852i
$$414$$ −12.7173 + 8.81592i −0.625020 + 0.433279i
$$415$$ 0.196926 + 0.341085i 0.00966670 + 0.0167432i
$$416$$ −9.02429 + 12.6867i −0.442452 + 0.622015i
$$417$$ −0.122140 + 0.150336i −0.00598125 + 0.00736197i
$$418$$ 5.32383 42.8336i 0.260397 2.09506i
$$419$$ 19.5661i 0.955866i 0.878396 + 0.477933i $$0.158614\pi$$
−0.878396 + 0.477933i $$0.841386\pi$$
$$420$$ 26.1342 + 0.263882i 1.27522 + 0.0128761i
$$421$$ 26.0983i 1.27195i 0.771708 + 0.635977i $$0.219403\pi$$
−0.771708 + 0.635977i $$0.780597\pi$$
$$422$$ −28.6182 3.55699i −1.39311 0.173151i
$$423$$ −25.0986 + 22.4531i −1.22033 + 1.09170i
$$424$$ 3.55512 + 4.43039i 0.172652 + 0.215159i
$$425$$ 5.49207 + 9.51254i 0.266404 + 0.461426i
$$426$$ −17.2358 + 16.5417i −0.835076 + 0.801447i
$$427$$ 3.98880 5.23296i 0.193032 0.253241i
$$428$$ −0.580514 2.04740i −0.0280602 0.0989650i
$$429$$ 8.25477 + 21.6082i 0.398544 + 1.04326i
$$430$$ 19.0099 8.03596i 0.916739 0.387528i
$$431$$ −10.4072 6.00858i −0.501296 0.289423i 0.227953 0.973672i $$-0.426797\pi$$
−0.729248 + 0.684249i $$0.760130\pi$$
$$432$$ −11.7377 17.1531i −0.564728 0.825277i
$$433$$ 35.6343i 1.71247i −0.516583 0.856237i $$-0.672796\pi$$
0.516583 0.856237i $$-0.327204\pi$$
$$434$$ −3.59072 0.922027i −0.172360 0.0442587i
$$435$$ 3.04729 19.0415i 0.146107 0.912972i
$$436$$ 13.0178 + 12.6460i 0.623440 + 0.605635i
$$437$$ −19.8674 11.4705i −0.950389 0.548707i
$$438$$ 0.196661 + 0.799287i 0.00939683 + 0.0381914i
$$439$$ −11.6950 + 6.75210i −0.558171 + 0.322260i −0.752411 0.658694i $$-0.771109\pi$$
0.194240 + 0.980954i $$0.437776\pi$$
$$440$$ 36.4754 + 14.1882i 1.73890 + 0.676396i
$$441$$ 17.6485 + 11.3811i 0.840406 + 0.541957i
$$442$$ −10.8902 8.23170i −0.517993 0.391542i
$$443$$ 11.7659 + 20.3791i 0.559014 + 0.968241i 0.997579 + 0.0695416i $$0.0221536\pi$$
−0.438565 + 0.898700i $$0.644513\pi$$
$$444$$ −1.68269 + 3.91428i −0.0798571 + 0.185763i
$$445$$ −2.86962 1.65678i −0.136033 0.0785387i
$$446$$ 16.0924 + 2.00014i 0.761996 + 0.0947092i
$$447$$ −18.8075 3.00984i −0.889563 0.142360i
$$448$$ −7.17890 + 19.9114i −0.339171 + 0.940725i
$$449$$ 30.6292i 1.44548i −0.691120 0.722740i $$-0.742883\pi$$
0.691120 0.722740i $$-0.257117\pi$$
$$450$$ 5.67187 12.0155i 0.267374 0.566418i
$$451$$ −5.11103 + 8.85257i −0.240669 + 0.416851i
$$452$$ −8.23144 + 32.6021i −0.387174 + 1.53347i
$$453$$ −5.15165 13.4853i −0.242046 0.633596i
$$454$$ −18.0888 + 23.9307i −0.848948 + 1.12312i
$$455$$ −16.5141 12.5878i −0.774193 0.590125i
$$456$$ 15.5684 26.5917i 0.729055 1.24527i
$$457$$ 5.80736 + 10.0587i 0.271657 + 0.470524i 0.969286 0.245935i $$-0.0790950\pi$$
−0.697629 + 0.716459i $$0.745762\pi$$
$$458$$ −2.95602 + 1.24958i −0.138126 + 0.0583892i
$$459$$ 15.3322 9.85194i 0.715644 0.459849i
$$460$$ 14.4942 14.9204i 0.675797 0.695665i
$$461$$ 30.8362i 1.43618i −0.695948 0.718092i $$-0.745015\pi$$
0.695948 0.718092i $$-0.254985\pi$$
$$462$$ 18.7084 + 25.2770i 0.870394 + 1.17599i
$$463$$ −32.3199 −1.50203 −0.751016 0.660284i $$-0.770436\pi$$
−0.751016 + 0.660284i $$0.770436\pi$$
$$464$$ 13.7453 + 7.41349i 0.638111 + 0.344163i
$$465$$ −3.08581 + 3.79815i −0.143101 + 0.176135i
$$466$$ 14.3459 + 33.9367i 0.664560 + 1.57209i
$$467$$ 29.3749 16.9596i 1.35931 0.784797i 0.369778 0.929120i $$-0.379434\pi$$
0.989531 + 0.144323i $$0.0461004\pi$$
$$468$$ −0.678367 + 16.4993i −0.0313575 + 0.762682i
$$469$$ 1.95606 15.2350i 0.0903225 0.703489i
$$470$$ 27.2976 36.1135i 1.25914 1.66579i
$$471$$ 6.70275 + 17.5456i 0.308846 + 0.808458i
$$472$$ −2.26961 + 1.82123i −0.104467 + 0.0838287i
$$473$$ 21.5061 + 12.4166i 0.988852 + 0.570914i
$$474$$ 3.82283 13.1779i 0.175589 0.605279i
$$475$$ 19.6984 0.903823
$$476$$ −17.2693 6.79778i −0.791535 0.311576i
$$477$$ 5.72409 + 1.88025i 0.262088 + 0.0860910i
$$478$$ −11.6887 1.45280i −0.534628 0.0664494i
$$479$$ 17.6827 30.6273i 0.807943 1.39940i −0.106344 0.994329i $$-0.533914\pi$$
0.914286 0.405068i $$-0.132752\pi$$
$$480$$ 19.9224 + 19.5895i 0.909329 + 0.894133i
$$481$$ 2.93154 1.69253i 0.133667 0.0771726i
$$482$$ −6.14559 + 8.13034i −0.279924 + 0.370327i
$$483$$ 16.2459 3.92776i 0.739216 0.178719i
$$484$$ 6.84464 + 24.1402i 0.311120 + 1.09728i
$$485$$ 15.8198 + 27.4008i 0.718342 + 1.24421i
$$486$$ −20.3605 8.45273i −0.923573 0.383424i
$$487$$ 16.4191 28.4386i 0.744018 1.28868i −0.206634 0.978418i $$-0.566251\pi$$
0.950652 0.310259i $$-0.100416\pi$$
$$488$$ 6.95238 1.06945i 0.314720 0.0484117i
$$489$$ 3.18008 19.8713i 0.143808 0.898610i
$$490$$ −26.2259 10.4459i −1.18476 0.471897i
$$491$$ 22.5295 1.01674 0.508371 0.861138i $$-0.330248\pi$$
0.508371 + 0.861138i $$0.330248\pi$$
$$492$$ −5.84804 + 4.36500i −0.263650 + 0.196789i
$$493$$ −6.84678 + 11.8590i −0.308363 + 0.534101i
$$494$$ −22.5495 + 9.53222i −1.01455 + 0.428875i
$$495$$ 40.6322 8.50009i 1.82628 0.382051i
$$496$$ −2.08018 3.37336i −0.0934027 0.151468i
$$497$$ 23.8075 9.95092i 1.06791 0.446360i
$$498$$ −0.244086 + 0.234256i −0.0109377 + 0.0104973i
$$499$$ −11.3117 + 6.53084i −0.506383 + 0.292361i −0.731346 0.682007i $$-0.761107\pi$$
0.224962 + 0.974367i $$0.427774\pi$$
$$500$$ 2.60834 10.3308i 0.116649 0.462007i
$$501$$ 8.46506 10.4192i 0.378191 0.465494i
$$502$$ −11.8065 1.46744i −0.526950 0.0654951i
$$503$$ 2.77607 0.123779 0.0618894 0.998083i $$-0.480287\pi$$
0.0618894 + 0.998083i $$0.480287\pi$$
$$504$$ 5.14336 + 21.8528i 0.229104 + 0.973402i
$$505$$ −20.2919 −0.902978
$$506$$ 24.8379 + 3.08712i 1.10418 + 0.137239i
$$507$$ −5.92543 + 7.29328i −0.263158 + 0.323906i
$$508$$ −30.3225 7.65590i −1.34535 0.339676i
$$509$$ −27.2704 + 15.7446i −1.20874 + 0.697866i −0.962484 0.271339i $$-0.912534\pi$$
−0.246255 + 0.969205i $$0.579200\pi$$
$$510$$ −17.6755 + 16.9637i −0.782684 + 0.751165i
$$511$$ 0.113221 0.881838i 0.00500861 0.0390102i
$$512$$ −20.2965 + 10.0025i −0.896989 + 0.442052i
$$513$$ −1.55295 32.6461i −0.0685645 1.44136i
$$514$$ −39.4128 + 16.6608i −1.73842 + 0.734875i
$$515$$ 2.47812 4.29223i 0.109199 0.189138i
$$516$$ 10.6042 + 14.2070i 0.466823 + 0.625429i
$$517$$ 54.4701 2.39559
$$518$$ 3.21993 3.28794i 0.141476 0.144464i
$$519$$ −0.278275 + 1.73885i −0.0122149 + 0.0763270i
$$520$$ −3.37495 21.9402i −0.148001 0.962142i
$$521$$ −2.92633 + 5.06856i −0.128205 + 0.222058i −0.922981 0.384845i $$-0.874255\pi$$
0.794776 + 0.606903i $$0.207588\pi$$
$$522$$ 16.5080 1.36609i 0.722536 0.0597922i
$$523$$ 9.81038 + 16.9921i 0.428978 + 0.743012i 0.996783 0.0801516i $$-0.0255405\pi$$
−0.567805 + 0.823163i $$0.692207\pi$$
$$524$$ 19.4023 5.50125i 0.847591 0.240323i
$$525$$ −10.3945 + 9.89558i −0.453652 + 0.431879i
$$526$$ 20.5878 27.2367i 0.897670 1.18758i
$$527$$ 3.00947 1.73752i 0.131094 0.0756874i
$$528$$ −4.34866 + 33.3361i −0.189251 + 1.45077i
$$529$$ −4.84862 + 8.39806i −0.210810 + 0.365133i
$$530$$ −8.03738 0.998973i −0.349121 0.0433926i
$$531$$ −0.963222 + 2.93235i −0.0418003 + 0.127253i
$$532$$ −26.0424 + 20.7252i −1.12908 + 0.898553i
$$533$$ 5.79779 0.251130
$$534$$ 0.792997 2.73358i 0.0343163 0.118293i
$$535$$ 2.62777 + 1.51715i 0.113609 + 0.0655919i
$$536$$ 12.8071 10.2769i 0.553183 0.443896i
$$537$$ −13.3639 34.9823i −0.576696 1.50960i
$$538$$ −17.1418 + 22.6779i −0.739036 + 0.977712i
$$539$$ −9.00148 32.7525i −0.387721 1.41075i
$$540$$ 29.0455 + 5.88117i 1.24992 + 0.253085i
$$541$$ 35.5120 20.5029i 1.52678 0.881488i 0.527287 0.849687i $$-0.323209\pi$$
0.999494 0.0318007i $$-0.0101242\pi$$
$$542$$ −1.00400 2.37506i −0.0431254 0.102018i
$$543$$ −10.2343 + 12.5968i −0.439194 + 0.540579i
$$544$$ −8.25130 18.0432i −0.353772 0.773598i
$$545$$ −25.8771 −1.10845
$$546$$ 7.11038 16.3578i 0.304296 0.700050i
$$547$$ 13.0813i 0.559315i 0.960100 + 0.279658i $$0.0902209\pi$$
−0.960100 + 0.279658i $$0.909779\pi$$
$$548$$ 28.2766 + 27.4691i 1.20792 + 1.17342i
$$549$$ 5.56053 4.97442i 0.237317 0.212303i
$$550$$ −19.7953 + 8.36795i −0.844073 + 0.356811i
$$551$$ 12.2787 + 21.2673i 0.523088 + 0.906016i
$$552$$ 15.4197 + 9.02762i 0.656308 + 0.384241i
$$553$$ −8.98443 + 11.7868i −0.382057 + 0.501225i
$$554$$ 11.2326 14.8603i 0.477229 0.631353i
$$555$$ −2.16791 5.67487i −0.0920227 0.240885i
$$556$$ 0.216859 + 0.0547529i 0.00919685 + 0.00232204i
$$557$$ −19.2814 + 33.3964i −0.816980 + 1.41505i 0.0909180 + 0.995858i $$0.471020\pi$$
−0.907898 + 0.419192i $$0.862313\pi$$
$$558$$ −3.80134 1.79440i −0.160924 0.0759630i
$$559$$ 14.0849i 0.595730i
$$560$$ −12.4399 27.4956i −0.525684 1.16190i
$$561$$ −29.1074 4.65817i −1.22891 0.196668i
$$562$$ −21.5874 2.68312i −0.910611 0.113181i
$$563$$ 9.75701 + 5.63321i 0.411209 + 0.237411i 0.691309 0.722559i $$-0.257034\pi$$
−0.280100 + 0.959971i $$0.590368\pi$$
$$564$$ 35.7246 + 15.3575i 1.50428 + 0.646669i
$$565$$ −23.9716 41.5200i −1.00849 1.74676i
$$566$$ −10.4894 7.92875i −0.440902 0.333270i
$$567$$ 17.2194 + 16.4466i 0.723148 + 0.690693i
$$568$$ 25.7086 + 10.0001i 1.07871 + 0.419595i
$$569$$ −26.7497 + 15.4440i −1.12141 + 0.647445i −0.941760 0.336286i $$-0.890829\pi$$
−0.179648 + 0.983731i $$0.557496\pi$$
$$570$$ 10.4969 + 42.6624i 0.439667 + 1.78693i
$$571$$ 6.49082 + 3.74748i 0.271633 + 0.156827i 0.629629 0.776896i $$-0.283207\pi$$
−0.357997 + 0.933723i $$0.616540\pi$$
$$572$$ 18.6111 19.1582i 0.778168 0.801046i
$$573$$ −2.43564 + 15.2195i −0.101750 + 0.635803i
$$574$$ 7.59184 2.11949i 0.316877 0.0884659i
$$575$$ 11.4225i 0.476350i
$$576$$ −12.2510 + 20.6376i −0.510459 + 0.859902i
$$577$$ 18.4495 + 10.6518i 0.768064 + 0.443442i 0.832184 0.554500i $$-0.187091\pi$$
−0.0641196 + 0.997942i $$0.520424\pi$$
$$578$$ −6.12052 + 2.58730i −0.254580 + 0.107617i
$$579$$ −9.21946 24.1335i −0.383148 1.00295i
$$580$$ −21.4226 + 6.07409i −0.889524 + 0.252213i
$$581$$ 0.337151 0.140921i 0.0139874 0.00584637i
$$582$$ −19.6084 + 18.8188i −0.812795 + 0.780064i
$$583$$ −4.87263 8.43964i −0.201804 0.349534i
$$584$$ 0.741304 0.594852i 0.0306754 0.0246152i
$$585$$ −15.6982 17.5478i −0.649040 0.725513i
$$586$$ 25.0456 + 3.11294i 1.03462 + 0.128594i
$$587$$ 15.2002i 0.627381i 0.949525 + 0.313691i $$0.101565\pi$$
−0.949525 + 0.313691i $$0.898435\pi$$
$$588$$ 3.33068 24.0189i 0.137355 0.990522i
$$589$$ 6.23194i 0.256783i
$$590$$ 0.511756 4.11741i 0.0210687 0.169511i
$$591$$ 2.99687 3.68868i 0.123275 0.151732i
$$592$$ 4.91769 0.142514i 0.202116 0.00585728i
$$593$$ 4.55071 + 7.88206i 0.186875 + 0.323678i 0.944207 0.329353i $$-0.106831\pi$$
−0.757332 + 0.653031i $$0.773497\pi$$
$$594$$ 15.4288 + 32.1470i 0.633052 + 1.31901i
$$595$$ 24.4148 10.2048i 1.00091 0.418355i
$$596$$ 5.99943 + 21.1593i 0.245746 + 0.866717i
$$597$$ −37.7075 + 14.4050i −1.54326 + 0.589557i
$$598$$ −5.52745 13.0758i −0.226034 0.534707i
$$599$$ 37.6136 + 21.7162i 1.53685 + 0.887302i 0.999021 + 0.0442488i $$0.0140894\pi$$
0.537831 + 0.843053i $$0.319244\pi$$
$$600$$ −15.3422 0.0929744i −0.626342 0.00379566i
$$601$$ 15.5284i 0.633415i −0.948523 0.316708i $$-0.897423\pi$$
0.948523 0.316708i $$-0.102577\pi$$
$$602$$ −5.14902 18.4434i −0.209858 0.751695i
$$603$$ 5.43533 16.5469i 0.221344 0.673841i
$$604$$ −11.6148 + 11.9563i −0.472601 + 0.486496i
$$605$$ −30.9831 17.8881i −1.25964 0.727256i
$$606$$ −4.16446 16.9256i −0.169170 0.687554i
$$607$$ 1.01612 0.586656i 0.0412430 0.0238116i −0.479237 0.877686i $$-0.659086\pi$$
0.520480 + 0.853874i $$0.325753\pi$$
$$608$$ −35.4214 3.36394i −1.43653 0.136426i
$$609$$ −17.1629 5.05409i −0.695478 0.204802i
$$610$$ −6.04771 + 8.00086i −0.244865 + 0.323945i
$$611$$ −15.4473 26.7555i −0.624930 1.08241i
$$612$$ −17.7770 11.2618i −0.718592 0.455230i
$$613$$ 35.7276 + 20.6273i 1.44302 + 0.833131i 0.998050 0.0624126i $$-0.0198795\pi$$
0.444974 + 0.895543i $$0.353213\pi$$
$$614$$ −3.08141 + 24.7919i −0.124356 + 1.00052i
$$615$$ 1.64420 10.2741i 0.0663006 0.414291i
$$616$$ 17.3664 31.8901i 0.699711 1.28489i
$$617$$ 15.3232i 0.616887i −0.951243 0.308444i $$-0.900192\pi$$
0.951243 0.308444i $$-0.0998081\pi$$
$$618$$ 4.08874 + 1.18613i 0.164473 + 0.0477130i
$$619$$ 7.95796 13.7836i 0.319857 0.554009i −0.660601 0.750738i $$-0.729698\pi$$
0.980458 + 0.196728i $$0.0630316\pi$$
$$620$$ 5.47881 + 1.38330i 0.220034 + 0.0555547i
$$621$$ 18.9305 0.900509i 0.759655 0.0361362i
$$622$$ 9.36592 + 7.07954i 0.375539 + 0.283864i
$$623$$ −1.86370 + 2.44502i −0.0746677 + 0.0979575i
$$624$$ 17.6078 7.31780i 0.704875 0.292946i
$$625$$ 15.4254 + 26.7176i 0.617017 + 1.06871i
$$626$$ −14.6848 34.7384i −0.586922 1.38842i
$$627$$ −33.3344 + 41.0294i −1.33125 + 1.63856i
$$628$$ 15.1119 15.5562i 0.603031 0.620760i
$$629$$ 4.31380i 0.172002i
$$630$$ −26.9707 17.2390i −1.07454 0.686818i
$$631$$ −27.9268 −1.11175 −0.555875 0.831266i $$-0.687617\pi$$
−0.555875 + 0.831266i $$0.687617\pi$$
$$632$$ −15.6596 + 2.40884i −0.622907 + 0.0958186i
$$633$$ 27.4128 + 22.2715i 1.08956 + 0.885215i
$$634$$ 37.5405 15.8693i 1.49092 0.630251i
$$635$$ 38.6170 22.2955i 1.53247 0.884770i
$$636$$ −0.816245 6.90902i −0.0323662 0.273960i
$$637$$ −13.5351 + 13.7098i −0.536281 + 0.543203i
$$638$$ −21.3735 16.1559i −0.846184 0.639616i
$$639$$ 28.6384 5.99103i 1.13292 0.237001i
$$640$$ 10.8199 30.3940i 0.427693 1.20143i
$$641$$ −7.03036 4.05898i −0.277683 0.160320i 0.354691 0.934984i $$-0.384586\pi$$
−0.632374 + 0.774663i $$0.717919\pi$$
$$642$$ −0.726164 + 2.50319i −0.0286594 + 0.0987932i
$$643$$ −21.5611 −0.850285 −0.425143 0.905126i $$-0.639776\pi$$
−0.425143 + 0.905126i $$0.639776\pi$$
$$644$$ −12.0179 15.1012i −0.473573 0.595071i
$$645$$ −24.9595 3.99436i −0.982778 0.157278i
$$646$$ 3.84806 30.9601i 0.151400 1.21811i
$$647$$ −19.5173 + 33.8049i −0.767304 + 1.32901i 0.171716 + 0.985147i $$0.445069\pi$$
−0.939020 + 0.343863i $$0.888264\pi$$
$$648$$ 1.05544 + 25.4340i 0.0414615 + 0.999140i
$$649$$ 4.32348 2.49616i 0.169712 0.0979830i
$$650$$ 9.72408 + 7.35027i 0.381410 + 0.288301i
$$651$$ 3.13065 + 3.28848i 0.122700 + 0.128886i
$$652$$ −22.3561 + 6.33877i −0.875531 + 0.248245i
$$653$$ −8.53952 14.7909i −0.334177 0.578812i 0.649149 0.760661i $$-0.275125\pi$$
−0.983326 + 0.181849i $$0.941792\pi$$
$$654$$ −5.31069 21.5841i −0.207664 0.844007i
$$655$$ −14.3772 + 24.9021i −0.561765 + 0.973006i
$$656$$ 7.41644 + 4.00003i 0.289563 + 0.156175i
$$657$$ 0.314609 0.957770i 0.0122741 0.0373662i
$$658$$ −30.0082 29.3876i −1.16984 1.14565i
$$659$$ −6.99022 −0.272300 −0.136150 0.990688i $$-0.543473\pi$$
−0.136150 + 0.990688i $$0.543473\pi$$
$$660$$ −28.6717 38.4132i −1.11605 1.49523i
$$661$$ −23.0740 + 39.9653i −0.897474 + 1.55447i −0.0667617 + 0.997769i $$0.521267\pi$$
−0.830712 + 0.556702i $$0.812067\pi$$
$$662$$ 1.42753 + 3.37696i 0.0554823 + 0.131249i
$$663$$ 5.96655 + 15.6184i 0.231722 + 0.606570i
$$664$$ 0.364074 + 0.141617i 0.0141288 + 0.00549582i
$$665$$ 6.04325 47.0686i 0.234347 1.82524i
$$666$$ 4.28852 2.97290i 0.166177 0.115198i
$$667$$ −12.3322 + 7.12002i −0.477506 + 0.275688i
$$668$$ −15.0296 3.79470i −0.581512 0.146821i
$$669$$ −15.4145 12.5236i −0.595961 0.484189i
$$670$$ −2.88777 + 23.2340i −0.111564 + 0.897607i
$$671$$ −12.0677 −0.465869
$$672$$ 20.3811 16.0191i 0.786219 0.617948i
$$673$$ 8.04494 0.310110 0.155055 0.987906i $$-0.450445\pi$$
0.155055 + 0.987906i $$0.450445\pi$$
$$674$$ −1.94863 + 15.6780i −0.0750586 + 0.603894i
$$675$$ −13.6904 + 8.79702i −0.526945 + 0.338597i
$$676$$ 10.5205 + 2.65624i 0.404635 + 0.102163i
$$677$$ −8.53140 + 4.92561i −0.327888 + 0.189306i −0.654903 0.755713i $$-0.727291\pi$$
0.327015 + 0.945019i $$0.393957\pi$$
$$678$$ 29.7123 28.5158i 1.14110 1.09514i
$$679$$ 27.0847 11.3207i 1.03942 0.434450i
$$680$$ 26.3644 + 10.2552i 1.01103 + 0.393270i
$$681$$ 34.3208 13.1112i 1.31518 0.502422i
$$682$$ 2.64736 + 6.26260i 0.101372 + 0.239807i
$$683$$ −20.1018 + 34.8173i −0.769173 + 1.33225i 0.168839 + 0.985644i $$0.445998\pi$$
−0.938012 + 0.346603i $$0.887335\pi$$
$$684$$ −33.4306 + 17.5110i −1.27825 + 0.669550i
$$685$$ −56.2088 −2.14763
$$686$$ −12.7115 + 22.9002i −0.485327 + 0.874332i
$$687$$ 3.88117 + 0.621119i 0.148076 + 0.0236972i
$$688$$ 9.71753 18.0172i 0.370477 0.686900i
$$689$$ −2.76368 + 4.78683i −0.105288 + 0.182364i
$$690$$ −24.7386 + 6.08684i −0.941784 + 0.231722i
$$691$$ −17.2791 29.9282i −0.657326 1.13852i −0.981305 0.192458i $$-0.938354\pi$$
0.323979 0.946064i $$-0.394979\pi$$
$$692$$ 1.95628 0.554678i 0.0743667 0.0210857i
$$693$$ −3.02139 38.3961i −0.114773 1.45855i
$$694$$ 16.3280 + 12.3420i 0.619801 + 0.468497i
$$695$$ −0.276178 + 0.159451i −0.0104760 + 0.00604834i
$$696$$ −9.46292 16.6221i −0.358691 0.630058i
$$697$$ −3.69426 + 6.39864i −0.139930 + 0.242366i
$$698$$ −3.97735 + 32.0003i −0.150545 + 1.21123i
$$699$$ 7.13078 44.5579i 0.269711 1.68533i
$$700$$ 15.4201 + 6.06989i 0.582825 + 0.229420i
$$701$$ 29.6534 1.11999 0.559997 0.828495i $$-0.310802\pi$$
0.559997 + 0.828495i $$0.310802\pi$$
$$702$$ 11.4150 16.6952i 0.430831 0.630120i
$$703$$ 6.69969 + 3.86807i 0.252684 + 0.145887i
$$704$$ 37.0247 11.6667i 1.39542 0.439705i
$$705$$ −51.7932 + 19.7860i −1.95064 + 0.745184i
$$706$$ −4.64945 3.51444i −0.174984 0.132268i
$$707$$ −2.39755 + 18.6736i −0.0901692 + 0.702295i
$$708$$ 3.53937 0.418148i 0.133018 0.0157150i
$$709$$ 9.81381 5.66601i 0.368565 0.212791i −0.304266 0.952587i $$-0.598411\pi$$
0.672832 + 0.739796i $$0.265078\pi$$
$$710$$ −36.2272 + 15.3141i −1.35958 + 0.574729i
$$711$$ −12.5246 + 11.2044i −0.469709 + 0.420199i
$$712$$ −3.24839 + 0.499683i −0.121738 + 0.0187264i
$$713$$ 3.61371 0.135335
$$714$$ 13.5224 + 18.2702i 0.506065 + 0.683745i
$$715$$ 38.0831i 1.42423i
$$716$$ −30.1301 + 31.0159i −1.12601 + 1.15912i
$$717$$ 11.1963 + 9.09648i 0.418135 + 0.339714i
$$718$$ 6.25524 + 14.7974i 0.233443 + 0.552235i
$$719$$ 8.51080 + 14.7411i 0.317399 + 0.549752i 0.979945 0.199270i $$-0.0638572\pi$$
−0.662545 + 0.749022i $$0.730524\pi$$
$$720$$ −7.97421 33.2774i −0.297181 1.24018i
$$721$$ −3.65713 2.78763i −0.136199 0.103817i
$$722$$ −23.1979 17.5349i −0.863335 0.652580i
$$723$$ 11.6604 4.45448i 0.433653 0.165664i
$$724$$ 18.1708 + 4.58779i 0.675311 + 0.170504i
$$725$$ 6.11364 10.5891i 0.227055 0.393271i
$$726$$ 8.56195 29.5143i 0.317764 1.09538i
$$727$$ 42.1153i 1.56197i 0.624550 + 0.780985i $$0.285282\pi$$
−0.624550 + 0.780985i $$0.714718\pi$$
$$728$$ −20.5893 + 0.513497i −0.763089 + 0.0190315i
$$729$$ 15.6586 + 21.9956i 0.579949 + 0.814653i
$$730$$ −0.167151 + 1.34483i −0.00618653 + 0.0497746i
$$731$$ 15.5446 + 8.97469i 0.574939 + 0.331941i
$$732$$ −7.91470 3.40242i −0.292536 0.125757i
$$733$$ 20.3500 + 35.2472i 0.751644 + 1.30189i 0.947026 + 0.321158i $$0.104072\pi$$
−0.195382 + 0.980727i $$0.562595\pi$$
$$734$$ −23.8815 + 31.5941i −0.881481 + 1.16616i
$$735$$ 20.4563 + 27.8731i 0.754541 + 1.02812i
$$736$$ 1.95064 20.5398i 0.0719017 0.757107i
$$737$$ −24.3968 + 14.0855i −0.898669 + 0.518847i
$$738$$ 8.90707 0.737089i 0.327874 0.0271326i
$$739$$ −7.63741 4.40946i −0.280947 0.162205i 0.352905 0.935659i $$-0.385194\pi$$
−0.633852 + 0.773454i $$0.718527\pi$$
$$740$$ −4.88774 + 5.03144i −0.179677 + 0.184959i
$$741$$ 29.6068 + 4.73810i 1.08763 + 0.174058i
$$742$$ −1.86895 + 7.27837i −0.0686112 + 0.267197i
$$743$$ 16.3412i 0.599502i −0.954017 0.299751i $$-0.903096\pi$$
0.954017 0.299751i $$-0.0969036\pi$$
$$744$$ −0.0294142 + 4.85378i −0.00107838 + 0.177948i
$$745$$ −27.1572 15.6792i −0.994962 0.574441i
$$746$$ −17.2483 40.8028i −0.631507 1.49390i
$$747$$ 0.405564 0.0848424i 0.0148388 0.00310422i
$$748$$ 9.28501 + 32.7471i 0.339494 + 1.19735i
$$749$$ 1.70663 2.23895i 0.0623590 0.0818096i
$$750$$ −9.41512 + 9.03598i −0.343792 + 0.329947i
$$751$$ 6.17492 + 10.6953i 0.225326 + 0.390276i 0.956417 0.292004i $$-0.0943219\pi$$
−0.731091 + 0.682280i $$0.760989\pi$$
$$752$$ −1.30069 44.8826i −0.0474313 1.63670i
$$753$$ 11.3092 + 9.18817i 0.412130 + 0.334836i
$$754$$ −1.87434 + 15.0802i −0.0682593 + 0.549190i
$$755$$ 23.7670i 0.864969i
$$756$$ 8.84397 26.0343i 0.321652 0.946858i
$$757$$ 29.0246i 1.05492i −0.849581 0.527459i $$-0.823145\pi$$
0.849581 0.527459i $$-0.176855\pi$$
$$758$$ 40.4363 + 5.02586i 1.46871 + 0.182548i
$$759$$ −23.7917 19.3296i −0.863583 0.701620i
$$760$$ 39.5675 31.7506i 1.43527 1.15171i
$$761$$ −15.5050 26.8554i −0.562055 0.973507i −0.997317 0.0732037i $$-0.976678\pi$$
0.435262 0.900304i $$-0.356656\pi$$
$$762$$ 26.5220 + 27.6349i 0.960792 + 1.00111i
$$763$$ −3.05745 + 23.8134i −0.110687 + 0.862102i
$$764$$ 17.1226 4.85489i 0.619474 0.175644i
$$765$$ 29.3690 6.14387i 1.06184 0.222132i
$$766$$ 33.0084 13.9535i 1.19264 0.504160i
$$767$$ −2.45221 1.41578i −0.0885442 0.0511210i
$$768$$ 27.5723 + 2.78721i 0.994930 + 0.100575i
$$769$$ 42.3916i 1.52868i 0.644813 + 0.764340i $$0.276935\pi$$
−0.644813 + 0.764340i $$0.723065\pi$$
$$770$$ 13.9220 + 49.8674i 0.501714 + 1.79710i
$$771$$ 51.7479 + 8.28143i 1.86366 + 0.298248i
$$772$$ −20.7861 + 21.3972i −0.748107 + 0.770101i
$$773$$ 2.88336