Properties

Label 168.2.a
Level 168
Weight 2
Character orbit a
Rep. character \(\chi_{168}(1,\cdot)\)
Character field \(\Q\)
Dimension 2
Newform subspaces 2
Sturm bound 64
Trace bound 3

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 168.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(64\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(168))\).

Total New Old
Modular forms 40 2 38
Cusp forms 25 2 23
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeDim.
\(+\)\(+\)\(-\)\(-\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(2\)

Trace form

\( 2q + 4q^{5} + 2q^{9} + O(q^{10}) \) \( 2q + 4q^{5} + 2q^{9} + 4q^{13} + 4q^{17} - 2q^{21} - 8q^{23} - 2q^{25} - 4q^{29} - 16q^{31} - 4q^{37} - 8q^{39} - 12q^{41} + 8q^{43} + 4q^{45} + 2q^{49} + 8q^{51} - 4q^{53} - 8q^{57} + 16q^{59} - 12q^{61} + 8q^{65} + 24q^{67} - 8q^{71} - 12q^{73} + 2q^{81} + 16q^{83} + 8q^{85} + 16q^{87} + 4q^{89} + 8q^{91} + 20q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(168))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3 7
168.2.a.a \(1\) \(1.341\) \(\Q\) None \(0\) \(-1\) \(2\) \(1\) \(+\) \(+\) \(-\) \(q-q^{3}+2q^{5}+q^{7}+q^{9}+6q^{13}-2q^{15}+\cdots\)
168.2.a.b \(1\) \(1.341\) \(\Q\) None \(0\) \(1\) \(2\) \(-1\) \(+\) \(-\) \(+\) \(q+q^{3}+2q^{5}-q^{7}+q^{9}-2q^{13}+2q^{15}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(168))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(168)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 2}\)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ (\( 1 + T \))(\( 1 - T \))
$5$ (\( 1 - 2 T + 5 T^{2} \))(\( 1 - 2 T + 5 T^{2} \))
$7$ (\( 1 - T \))(\( 1 + T \))
$11$ (\( 1 + 11 T^{2} \))(\( 1 + 11 T^{2} \))
$13$ (\( 1 - 6 T + 13 T^{2} \))(\( 1 + 2 T + 13 T^{2} \))
$17$ (\( 1 + 2 T + 17 T^{2} \))(\( 1 - 6 T + 17 T^{2} \))
$19$ (\( 1 - 4 T + 19 T^{2} \))(\( 1 + 4 T + 19 T^{2} \))
$23$ (\( 1 + 4 T + 23 T^{2} \))(\( 1 + 4 T + 23 T^{2} \))
$29$ (\( 1 + 10 T + 29 T^{2} \))(\( 1 - 6 T + 29 T^{2} \))
$31$ (\( 1 + 8 T + 31 T^{2} \))(\( 1 + 8 T + 31 T^{2} \))
$37$ (\( 1 - 6 T + 37 T^{2} \))(\( 1 + 10 T + 37 T^{2} \))
$41$ (\( 1 + 2 T + 41 T^{2} \))(\( 1 + 10 T + 41 T^{2} \))
$43$ (\( 1 + 4 T + 43 T^{2} \))(\( 1 - 12 T + 43 T^{2} \))
$47$ (\( 1 - 8 T + 47 T^{2} \))(\( 1 + 8 T + 47 T^{2} \))
$53$ (\( 1 + 10 T + 53 T^{2} \))(\( 1 - 6 T + 53 T^{2} \))
$59$ (\( 1 - 12 T + 59 T^{2} \))(\( 1 - 4 T + 59 T^{2} \))
$61$ (\( 1 + 2 T + 61 T^{2} \))(\( 1 + 10 T + 61 T^{2} \))
$67$ (\( 1 - 12 T + 67 T^{2} \))(\( 1 - 12 T + 67 T^{2} \))
$71$ (\( 1 + 12 T + 71 T^{2} \))(\( 1 - 4 T + 71 T^{2} \))
$73$ (\( 1 + 14 T + 73 T^{2} \))(\( 1 - 2 T + 73 T^{2} \))
$79$ (\( 1 + 8 T + 79 T^{2} \))(\( 1 - 8 T + 79 T^{2} \))
$83$ (\( 1 - 12 T + 83 T^{2} \))(\( 1 - 4 T + 83 T^{2} \))
$89$ (\( 1 + 2 T + 89 T^{2} \))(\( 1 - 6 T + 89 T^{2} \))
$97$ (\( 1 - 10 T + 97 T^{2} \))(\( 1 - 10 T + 97 T^{2} \))
show more
show less