Properties

Label 1674.2.q.a.557.7
Level $1674$
Weight $2$
Character 1674.557
Analytic conductor $13.367$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1674,2,Mod(557,1674)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1674.557"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1674, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1674 = 2 \cdot 3^{3} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1674.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3669572984\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 558)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 557.7
Character \(\chi\) \(=\) 1674.557
Dual form 1674.2.q.a.1115.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(1.01733 + 0.587355i) q^{5} +(-0.902070 - 1.56243i) q^{7} +1.00000i q^{8} -1.17471 q^{10} +(0.983467 + 1.70342i) q^{11} +(1.16275 + 0.671312i) q^{13} +(1.56243 + 0.902070i) q^{14} +(-0.500000 - 0.866025i) q^{16} -7.80596 q^{17} -5.46712 q^{19} +(1.01733 - 0.587355i) q^{20} +(-1.70342 - 0.983467i) q^{22} +(0.563435 - 0.975899i) q^{23} +(-1.81003 - 3.13506i) q^{25} -1.34262 q^{26} -1.80414 q^{28} +(-0.743867 - 1.28842i) q^{29} +(1.81256 + 5.26447i) q^{31} +(0.866025 + 0.500000i) q^{32} +(6.76016 - 3.90298i) q^{34} -2.11934i q^{35} +7.70366i q^{37} +(4.73466 - 2.73356i) q^{38} +(-0.587355 + 1.01733i) q^{40} +(-3.93719 - 2.27314i) q^{41} +(-3.17930 + 1.83557i) q^{43} +1.96693 q^{44} +1.12687i q^{46} +(3.00693 - 1.73605i) q^{47} +(1.87254 - 3.24333i) q^{49} +(3.13506 + 1.81003i) q^{50} +(1.16275 - 0.671312i) q^{52} +2.37364 q^{53} +2.31058i q^{55} +(1.56243 - 0.902070i) q^{56} +(1.28842 + 0.743867i) q^{58} +(-11.9439 - 6.89581i) q^{59} +(-7.41504 + 4.28107i) q^{61} +(-4.20196 - 3.65288i) q^{62} -1.00000 q^{64} +(0.788596 + 1.36589i) q^{65} +(-7.88815 + 13.6627i) q^{67} +(-3.90298 + 6.76016i) q^{68} +(1.05967 + 1.83540i) q^{70} +4.04211i q^{71} +5.76852i q^{73} +(-3.85183 - 6.67157i) q^{74} +(-2.73356 + 4.73466i) q^{76} +(1.77431 - 3.07320i) q^{77} +(4.74613 - 2.74018i) q^{79} -1.17471i q^{80} +4.54627 q^{82} +(2.95973 + 5.12641i) q^{83} +(-7.94123 - 4.58487i) q^{85} +(1.83557 - 3.17930i) q^{86} +(-1.70342 + 0.983467i) q^{88} -4.83620 q^{89} -2.42228i q^{91} +(-0.563435 - 0.975899i) q^{92} +(-1.73605 + 3.00693i) q^{94} +(-5.56185 - 3.21114i) q^{95} +(-7.34334 - 12.7190i) q^{97} +3.74508i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} - 12 q^{5} - 4 q^{7} - 32 q^{16} - 8 q^{19} - 12 q^{20} + 44 q^{25} - 8 q^{28} + 8 q^{31} - 36 q^{38} - 24 q^{41} + 48 q^{47} - 36 q^{49} + 12 q^{59} - 64 q^{64} + 16 q^{67} - 12 q^{70}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1674\mathbb{Z}\right)^\times\).

\(n\) \(1055\) \(1243\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.01733 + 0.587355i 0.454963 + 0.262673i 0.709924 0.704278i \(-0.248729\pi\)
−0.254961 + 0.966951i \(0.582063\pi\)
\(6\) 0 0
\(7\) −0.902070 1.56243i −0.340951 0.590544i 0.643659 0.765312i \(-0.277416\pi\)
−0.984610 + 0.174769i \(0.944082\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.17471 −0.371476
\(11\) 0.983467 + 1.70342i 0.296527 + 0.513599i 0.975339 0.220713i \(-0.0708383\pi\)
−0.678812 + 0.734312i \(0.737505\pi\)
\(12\) 0 0
\(13\) 1.16275 + 0.671312i 0.322488 + 0.186188i 0.652501 0.757788i \(-0.273720\pi\)
−0.330013 + 0.943976i \(0.607053\pi\)
\(14\) 1.56243 + 0.902070i 0.417577 + 0.241088i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −7.80596 −1.89322 −0.946612 0.322375i \(-0.895519\pi\)
−0.946612 + 0.322375i \(0.895519\pi\)
\(18\) 0 0
\(19\) −5.46712 −1.25424 −0.627121 0.778922i \(-0.715767\pi\)
−0.627121 + 0.778922i \(0.715767\pi\)
\(20\) 1.01733 0.587355i 0.227482 0.131337i
\(21\) 0 0
\(22\) −1.70342 0.983467i −0.363169 0.209676i
\(23\) 0.563435 0.975899i 0.117484 0.203489i −0.801286 0.598282i \(-0.795850\pi\)
0.918770 + 0.394793i \(0.129184\pi\)
\(24\) 0 0
\(25\) −1.81003 3.13506i −0.362006 0.627012i
\(26\) −1.34262 −0.263310
\(27\) 0 0
\(28\) −1.80414 −0.340951
\(29\) −0.743867 1.28842i −0.138133 0.239253i 0.788657 0.614833i \(-0.210777\pi\)
−0.926790 + 0.375580i \(0.877443\pi\)
\(30\) 0 0
\(31\) 1.81256 + 5.26447i 0.325546 + 0.945526i
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 6.76016 3.90298i 1.15936 0.669356i
\(35\) 2.11934i 0.358234i
\(36\) 0 0
\(37\) 7.70366i 1.26647i 0.773958 + 0.633237i \(0.218274\pi\)
−0.773958 + 0.633237i \(0.781726\pi\)
\(38\) 4.73466 2.73356i 0.768064 0.443442i
\(39\) 0 0
\(40\) −0.587355 + 1.01733i −0.0928689 + 0.160854i
\(41\) −3.93719 2.27314i −0.614886 0.355004i 0.159989 0.987119i \(-0.448854\pi\)
−0.774875 + 0.632114i \(0.782187\pi\)
\(42\) 0 0
\(43\) −3.17930 + 1.83557i −0.484838 + 0.279921i −0.722431 0.691443i \(-0.756975\pi\)
0.237592 + 0.971365i \(0.423642\pi\)
\(44\) 1.96693 0.296527
\(45\) 0 0
\(46\) 1.12687i 0.166148i
\(47\) 3.00693 1.73605i 0.438605 0.253229i −0.264401 0.964413i \(-0.585174\pi\)
0.703006 + 0.711184i \(0.251841\pi\)
\(48\) 0 0
\(49\) 1.87254 3.24333i 0.267505 0.463333i
\(50\) 3.13506 + 1.81003i 0.443365 + 0.255977i
\(51\) 0 0
\(52\) 1.16275 0.671312i 0.161244 0.0930942i
\(53\) 2.37364 0.326044 0.163022 0.986622i \(-0.447876\pi\)
0.163022 + 0.986622i \(0.447876\pi\)
\(54\) 0 0
\(55\) 2.31058i 0.311558i
\(56\) 1.56243 0.902070i 0.208789 0.120544i
\(57\) 0 0
\(58\) 1.28842 + 0.743867i 0.169177 + 0.0976745i
\(59\) −11.9439 6.89581i −1.55496 0.897758i −0.997726 0.0674045i \(-0.978528\pi\)
−0.557237 0.830354i \(-0.688138\pi\)
\(60\) 0 0
\(61\) −7.41504 + 4.28107i −0.949398 + 0.548135i −0.892894 0.450267i \(-0.851329\pi\)
−0.0565044 + 0.998402i \(0.517995\pi\)
\(62\) −4.20196 3.65288i −0.533649 0.463916i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0.788596 + 1.36589i 0.0978133 + 0.169418i
\(66\) 0 0
\(67\) −7.88815 + 13.6627i −0.963691 + 1.66916i −0.250598 + 0.968091i \(0.580627\pi\)
−0.713093 + 0.701070i \(0.752706\pi\)
\(68\) −3.90298 + 6.76016i −0.473306 + 0.819790i
\(69\) 0 0
\(70\) 1.05967 + 1.83540i 0.126655 + 0.219373i
\(71\) 4.04211i 0.479710i 0.970809 + 0.239855i \(0.0770999\pi\)
−0.970809 + 0.239855i \(0.922900\pi\)
\(72\) 0 0
\(73\) 5.76852i 0.675154i 0.941298 + 0.337577i \(0.109607\pi\)
−0.941298 + 0.337577i \(0.890393\pi\)
\(74\) −3.85183 6.67157i −0.447766 0.775554i
\(75\) 0 0
\(76\) −2.73356 + 4.73466i −0.313561 + 0.543103i
\(77\) 1.77431 3.07320i 0.202202 0.350224i
\(78\) 0 0
\(79\) 4.74613 2.74018i 0.533982 0.308294i −0.208655 0.977989i \(-0.566908\pi\)
0.742636 + 0.669695i \(0.233575\pi\)
\(80\) 1.17471i 0.131337i
\(81\) 0 0
\(82\) 4.54627 0.502052
\(83\) 2.95973 + 5.12641i 0.324873 + 0.562697i 0.981487 0.191530i \(-0.0613451\pi\)
−0.656614 + 0.754227i \(0.728012\pi\)
\(84\) 0 0
\(85\) −7.94123 4.58487i −0.861347 0.497299i
\(86\) 1.83557 3.17930i 0.197934 0.342832i
\(87\) 0 0
\(88\) −1.70342 + 0.983467i −0.181585 + 0.104838i
\(89\) −4.83620 −0.512636 −0.256318 0.966593i \(-0.582509\pi\)
−0.256318 + 0.966593i \(0.582509\pi\)
\(90\) 0 0
\(91\) 2.42228i 0.253924i
\(92\) −0.563435 0.975899i −0.0587422 0.101744i
\(93\) 0 0
\(94\) −1.73605 + 3.00693i −0.179060 + 0.310141i
\(95\) −5.56185 3.21114i −0.570634 0.329456i
\(96\) 0 0
\(97\) −7.34334 12.7190i −0.745604 1.29142i −0.949912 0.312517i \(-0.898828\pi\)
0.204309 0.978907i \(-0.434505\pi\)
\(98\) 3.74508i 0.378310i
\(99\) 0 0
\(100\) −3.62006 −0.362006
\(101\) 2.31529 1.33673i 0.230380 0.133010i −0.380367 0.924836i \(-0.624202\pi\)
0.610747 + 0.791826i \(0.290869\pi\)
\(102\) 0 0
\(103\) 3.70947 6.42499i 0.365505 0.633073i −0.623352 0.781941i \(-0.714230\pi\)
0.988857 + 0.148868i \(0.0475630\pi\)
\(104\) −0.671312 + 1.16275i −0.0658275 + 0.114017i
\(105\) 0 0
\(106\) −2.05563 + 1.18682i −0.199660 + 0.115274i
\(107\) 6.24767i 0.603985i 0.953310 + 0.301992i \(0.0976517\pi\)
−0.953310 + 0.301992i \(0.902348\pi\)
\(108\) 0 0
\(109\) −3.56111 −0.341092 −0.170546 0.985350i \(-0.554553\pi\)
−0.170546 + 0.985350i \(0.554553\pi\)
\(110\) −1.15529 2.00102i −0.110152 0.190790i
\(111\) 0 0
\(112\) −0.902070 + 1.56243i −0.0852376 + 0.147636i
\(113\) −5.26672 3.04074i −0.495451 0.286049i 0.231382 0.972863i \(-0.425675\pi\)
−0.726833 + 0.686814i \(0.759009\pi\)
\(114\) 0 0
\(115\) 1.14640 0.661873i 0.106902 0.0617200i
\(116\) −1.48773 −0.138133
\(117\) 0 0
\(118\) 13.7916 1.26962
\(119\) 7.04153 + 12.1963i 0.645496 + 1.11803i
\(120\) 0 0
\(121\) 3.56558 6.17577i 0.324144 0.561434i
\(122\) 4.28107 7.41504i 0.387590 0.671326i
\(123\) 0 0
\(124\) 5.46544 + 1.06251i 0.490811 + 0.0954160i
\(125\) 10.1261i 0.905703i
\(126\) 0 0
\(127\) 18.7437i 1.66323i 0.555351 + 0.831616i \(0.312584\pi\)
−0.555351 + 0.831616i \(0.687416\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −1.36589 0.788596i −0.119796 0.0691645i
\(131\) 7.30906 + 4.21989i 0.638596 + 0.368693i 0.784073 0.620668i \(-0.213139\pi\)
−0.145478 + 0.989362i \(0.546472\pi\)
\(132\) 0 0
\(133\) 4.93172 + 8.54200i 0.427635 + 0.740685i
\(134\) 15.7763i 1.36286i
\(135\) 0 0
\(136\) 7.80596i 0.669356i
\(137\) 0.153160 + 0.265280i 0.0130853 + 0.0226644i 0.872494 0.488625i \(-0.162501\pi\)
−0.859409 + 0.511289i \(0.829168\pi\)
\(138\) 0 0
\(139\) −10.0275 5.78940i −0.850525 0.491051i 0.0103032 0.999947i \(-0.496720\pi\)
−0.860828 + 0.508896i \(0.830054\pi\)
\(140\) −1.83540 1.05967i −0.155120 0.0895585i
\(141\) 0 0
\(142\) −2.02105 3.50057i −0.169603 0.293761i
\(143\) 2.64085i 0.220839i
\(144\) 0 0
\(145\) 1.74766i 0.145135i
\(146\) −2.88426 4.99569i −0.238703 0.413446i
\(147\) 0 0
\(148\) 6.67157 + 3.85183i 0.548399 + 0.316618i
\(149\) −14.9210 8.61466i −1.22238 0.705741i −0.256954 0.966424i \(-0.582719\pi\)
−0.965425 + 0.260683i \(0.916052\pi\)
\(150\) 0 0
\(151\) −15.4514 + 8.92086i −1.25742 + 0.725969i −0.972571 0.232605i \(-0.925275\pi\)
−0.284844 + 0.958574i \(0.591942\pi\)
\(152\) 5.46712i 0.443442i
\(153\) 0 0
\(154\) 3.54863i 0.285957i
\(155\) −1.24814 + 6.42031i −0.100253 + 0.515692i
\(156\) 0 0
\(157\) 6.38199 11.0539i 0.509338 0.882200i −0.490603 0.871383i \(-0.663224\pi\)
0.999941 0.0108168i \(-0.00344316\pi\)
\(158\) −2.74018 + 4.74613i −0.217997 + 0.377582i
\(159\) 0 0
\(160\) 0.587355 + 1.01733i 0.0464345 + 0.0804269i
\(161\) −2.03303 −0.160226
\(162\) 0 0
\(163\) −9.52863 −0.746340 −0.373170 0.927763i \(-0.621729\pi\)
−0.373170 + 0.927763i \(0.621729\pi\)
\(164\) −3.93719 + 2.27314i −0.307443 + 0.177502i
\(165\) 0 0
\(166\) −5.12641 2.95973i −0.397887 0.229720i
\(167\) 5.21593 9.03426i 0.403621 0.699092i −0.590539 0.807009i \(-0.701085\pi\)
0.994160 + 0.107917i \(0.0344181\pi\)
\(168\) 0 0
\(169\) −5.59868 9.69720i −0.430668 0.745938i
\(170\) 9.16974 0.703287
\(171\) 0 0
\(172\) 3.67114i 0.279921i
\(173\) −6.50221 + 3.75405i −0.494354 + 0.285415i −0.726379 0.687295i \(-0.758798\pi\)
0.232025 + 0.972710i \(0.425465\pi\)
\(174\) 0 0
\(175\) −3.26555 + 5.65609i −0.246852 + 0.427560i
\(176\) 0.983467 1.70342i 0.0741316 0.128400i
\(177\) 0 0
\(178\) 4.18827 2.41810i 0.313924 0.181244i
\(179\) −21.9809 −1.64293 −0.821467 0.570257i \(-0.806844\pi\)
−0.821467 + 0.570257i \(0.806844\pi\)
\(180\) 0 0
\(181\) 12.5475i 0.932646i 0.884614 + 0.466323i \(0.154422\pi\)
−0.884614 + 0.466323i \(0.845578\pi\)
\(182\) 1.21114 + 2.09776i 0.0897757 + 0.155496i
\(183\) 0 0
\(184\) 0.975899 + 0.563435i 0.0719442 + 0.0415370i
\(185\) −4.52478 + 7.83715i −0.332669 + 0.576199i
\(186\) 0 0
\(187\) −7.67691 13.2968i −0.561391 0.972358i
\(188\) 3.47210i 0.253229i
\(189\) 0 0
\(190\) 6.42227 0.465921
\(191\) 16.0388 9.26002i 1.16053 0.670032i 0.209098 0.977895i \(-0.432947\pi\)
0.951431 + 0.307863i \(0.0996138\pi\)
\(192\) 0 0
\(193\) −5.55289 + 9.61788i −0.399705 + 0.692310i −0.993689 0.112167i \(-0.964221\pi\)
0.593984 + 0.804477i \(0.297554\pi\)
\(194\) 12.7190 + 7.34334i 0.913174 + 0.527221i
\(195\) 0 0
\(196\) −1.87254 3.24333i −0.133753 0.231667i
\(197\) −11.3186 −0.806414 −0.403207 0.915109i \(-0.632105\pi\)
−0.403207 + 0.915109i \(0.632105\pi\)
\(198\) 0 0
\(199\) 2.76824i 0.196236i −0.995175 0.0981178i \(-0.968718\pi\)
0.995175 0.0981178i \(-0.0312822\pi\)
\(200\) 3.13506 1.81003i 0.221682 0.127988i
\(201\) 0 0
\(202\) −1.33673 + 2.31529i −0.0940523 + 0.162903i
\(203\) −1.34204 + 2.32448i −0.0941928 + 0.163147i
\(204\) 0 0
\(205\) −2.67028 4.62505i −0.186500 0.323028i
\(206\) 7.41894i 0.516902i
\(207\) 0 0
\(208\) 1.34262i 0.0930942i
\(209\) −5.37673 9.31277i −0.371916 0.644178i
\(210\) 0 0
\(211\) 1.35629 2.34917i 0.0933710 0.161723i −0.815557 0.578677i \(-0.803569\pi\)
0.908928 + 0.416954i \(0.136902\pi\)
\(212\) 1.18682 2.05563i 0.0815110 0.141181i
\(213\) 0 0
\(214\) −3.12383 5.41064i −0.213541 0.369864i
\(215\) −4.31252 −0.294111
\(216\) 0 0
\(217\) 6.59031 7.58093i 0.447379 0.514627i
\(218\) 3.08401 1.78055i 0.208876 0.120594i
\(219\) 0 0
\(220\) 2.00102 + 1.15529i 0.134909 + 0.0778895i
\(221\) −9.07635 5.24024i −0.610542 0.352496i
\(222\) 0 0
\(223\) 5.59744 3.23168i 0.374832 0.216410i −0.300735 0.953708i \(-0.597232\pi\)
0.675567 + 0.737298i \(0.263899\pi\)
\(224\) 1.80414i 0.120544i
\(225\) 0 0
\(226\) 6.08149 0.404534
\(227\) −15.1524 + 8.74823i −1.00570 + 0.580640i −0.909929 0.414763i \(-0.863864\pi\)
−0.0957693 + 0.995404i \(0.530531\pi\)
\(228\) 0 0
\(229\) −23.3070 13.4563i −1.54017 0.889216i −0.998827 0.0484115i \(-0.984584\pi\)
−0.541339 0.840804i \(-0.682083\pi\)
\(230\) −0.661873 + 1.14640i −0.0436426 + 0.0755912i
\(231\) 0 0
\(232\) 1.28842 0.743867i 0.0845886 0.0488373i
\(233\) 7.95864i 0.521388i 0.965421 + 0.260694i \(0.0839514\pi\)
−0.965421 + 0.260694i \(0.916049\pi\)
\(234\) 0 0
\(235\) 4.07871 0.266065
\(236\) −11.9439 + 6.89581i −0.777481 + 0.448879i
\(237\) 0 0
\(238\) −12.1963 7.04153i −0.790568 0.456434i
\(239\) −8.56671 + 14.8380i −0.554135 + 0.959789i 0.443836 + 0.896108i \(0.353617\pi\)
−0.997970 + 0.0636810i \(0.979716\pi\)
\(240\) 0 0
\(241\) 16.8288 9.71610i 1.08404 0.625869i 0.152055 0.988372i \(-0.451411\pi\)
0.931983 + 0.362503i \(0.118078\pi\)
\(242\) 7.13117i 0.458409i
\(243\) 0 0
\(244\) 8.56215i 0.548135i
\(245\) 3.80997 2.19969i 0.243410 0.140533i
\(246\) 0 0
\(247\) −6.35687 3.67014i −0.404478 0.233525i
\(248\) −5.26447 + 1.81256i −0.334294 + 0.115098i
\(249\) 0 0
\(250\) 5.06303 + 8.76943i 0.320214 + 0.554627i
\(251\) 20.3397 1.28383 0.641914 0.766776i \(-0.278141\pi\)
0.641914 + 0.766776i \(0.278141\pi\)
\(252\) 0 0
\(253\) 2.21648 0.139349
\(254\) −9.37183 16.2325i −0.588041 1.01852i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 16.1234 + 9.30883i 1.00575 + 0.580669i 0.909944 0.414732i \(-0.136125\pi\)
0.0958037 + 0.995400i \(0.469458\pi\)
\(258\) 0 0
\(259\) 12.0364 6.94924i 0.747908 0.431805i
\(260\) 1.57719 0.0978133
\(261\) 0 0
\(262\) −8.43978 −0.521411
\(263\) 15.9965 + 27.7068i 0.986388 + 1.70847i 0.635599 + 0.772019i \(0.280753\pi\)
0.350789 + 0.936455i \(0.385914\pi\)
\(264\) 0 0
\(265\) 2.41477 + 1.39417i 0.148338 + 0.0856430i
\(266\) −8.54200 4.93172i −0.523743 0.302383i
\(267\) 0 0
\(268\) 7.88815 + 13.6627i 0.481845 + 0.834580i
\(269\) 12.1011 0.737817 0.368909 0.929466i \(-0.379732\pi\)
0.368909 + 0.929466i \(0.379732\pi\)
\(270\) 0 0
\(271\) 12.6409i 0.767878i −0.923358 0.383939i \(-0.874567\pi\)
0.923358 0.383939i \(-0.125433\pi\)
\(272\) 3.90298 + 6.76016i 0.236653 + 0.409895i
\(273\) 0 0
\(274\) −0.265280 0.153160i −0.0160262 0.00925271i
\(275\) 3.56021 6.16646i 0.214689 0.371852i
\(276\) 0 0
\(277\) 14.1651 8.17823i 0.851099 0.491382i −0.00992236 0.999951i \(-0.503158\pi\)
0.861022 + 0.508568i \(0.169825\pi\)
\(278\) 11.5788 0.694450
\(279\) 0 0
\(280\) 2.11934 0.126655
\(281\) 16.0630 9.27399i 0.958240 0.553240i 0.0626088 0.998038i \(-0.480058\pi\)
0.895631 + 0.444798i \(0.146725\pi\)
\(282\) 0 0
\(283\) −3.99581 + 6.92095i −0.237526 + 0.411408i −0.960004 0.279987i \(-0.909670\pi\)
0.722478 + 0.691394i \(0.243003\pi\)
\(284\) 3.50057 + 2.02105i 0.207720 + 0.119927i
\(285\) 0 0
\(286\) −1.32043 2.28705i −0.0780785 0.135236i
\(287\) 8.20212i 0.484156i
\(288\) 0 0
\(289\) 43.9331 2.58430
\(290\) 0.873828 + 1.51351i 0.0513129 + 0.0888766i
\(291\) 0 0
\(292\) 4.99569 + 2.88426i 0.292350 + 0.168789i
\(293\) 8.93235 + 5.15710i 0.521834 + 0.301281i 0.737684 0.675146i \(-0.235919\pi\)
−0.215851 + 0.976426i \(0.569253\pi\)
\(294\) 0 0
\(295\) −8.10057 14.0306i −0.471634 0.816893i
\(296\) −7.70366 −0.447766
\(297\) 0 0
\(298\) 17.2293 0.998068
\(299\) 1.31026 0.756482i 0.0757746 0.0437485i
\(300\) 0 0
\(301\) 5.73590 + 3.31162i 0.330612 + 0.190879i
\(302\) 8.92086 15.4514i 0.513338 0.889127i
\(303\) 0 0
\(304\) 2.73356 + 4.73466i 0.156780 + 0.271552i
\(305\) −10.0580 −0.575922
\(306\) 0 0
\(307\) −6.94163 −0.396180 −0.198090 0.980184i \(-0.563474\pi\)
−0.198090 + 0.980184i \(0.563474\pi\)
\(308\) −1.77431 3.07320i −0.101101 0.175112i
\(309\) 0 0
\(310\) −2.12924 6.18422i −0.120932 0.351240i
\(311\) 21.2573 + 12.2729i 1.20539 + 0.695933i 0.961749 0.273932i \(-0.0883242\pi\)
0.243643 + 0.969865i \(0.421658\pi\)
\(312\) 0 0
\(313\) 12.6751 7.31799i 0.716441 0.413637i −0.0970006 0.995284i \(-0.530925\pi\)
0.813441 + 0.581647i \(0.197592\pi\)
\(314\) 12.7640i 0.720313i
\(315\) 0 0
\(316\) 5.48036i 0.308294i
\(317\) −7.15880 + 4.13313i −0.402078 + 0.232140i −0.687380 0.726298i \(-0.741239\pi\)
0.285302 + 0.958438i \(0.407906\pi\)
\(318\) 0 0
\(319\) 1.46314 2.53423i 0.0819200 0.141890i
\(320\) −1.01733 0.587355i −0.0568704 0.0328341i
\(321\) 0 0
\(322\) 1.76066 1.01652i 0.0981177 0.0566483i
\(323\) 42.6761 2.37456
\(324\) 0 0
\(325\) 4.86038i 0.269605i
\(326\) 8.25203 4.76431i 0.457038 0.263871i
\(327\) 0 0
\(328\) 2.27314 3.93719i 0.125513 0.217395i
\(329\) −5.42492 3.13208i −0.299085 0.172677i
\(330\) 0 0
\(331\) 1.33427 0.770341i 0.0733381 0.0423418i −0.462883 0.886420i \(-0.653185\pi\)
0.536221 + 0.844078i \(0.319852\pi\)
\(332\) 5.91947 0.324873
\(333\) 0 0
\(334\) 10.4319i 0.570806i
\(335\) −16.0497 + 9.26628i −0.876887 + 0.506271i
\(336\) 0 0
\(337\) −3.46215 1.99887i −0.188595 0.108886i 0.402729 0.915319i \(-0.368062\pi\)
−0.591325 + 0.806433i \(0.701395\pi\)
\(338\) 9.69720 + 5.59868i 0.527458 + 0.304528i
\(339\) 0 0
\(340\) −7.94123 + 4.58487i −0.430673 + 0.248649i
\(341\) −7.18498 + 8.26498i −0.389088 + 0.447574i
\(342\) 0 0
\(343\) −19.3856 −1.04673
\(344\) −1.83557 3.17930i −0.0989672 0.171416i
\(345\) 0 0
\(346\) 3.75405 6.50221i 0.201819 0.349561i
\(347\) −11.6581 + 20.1924i −0.625839 + 1.08398i 0.362539 + 0.931969i \(0.381910\pi\)
−0.988378 + 0.152016i \(0.951423\pi\)
\(348\) 0 0
\(349\) −3.69037 6.39191i −0.197541 0.342151i 0.750190 0.661223i \(-0.229962\pi\)
−0.947731 + 0.319072i \(0.896629\pi\)
\(350\) 6.53109i 0.349102i
\(351\) 0 0
\(352\) 1.96693i 0.104838i
\(353\) −9.02014 15.6233i −0.480094 0.831547i 0.519646 0.854382i \(-0.326064\pi\)
−0.999739 + 0.0228353i \(0.992731\pi\)
\(354\) 0 0
\(355\) −2.37415 + 4.11215i −0.126007 + 0.218250i
\(356\) −2.41810 + 4.18827i −0.128159 + 0.221978i
\(357\) 0 0
\(358\) 19.0361 10.9905i 1.00609 0.580865i
\(359\) 18.0531i 0.952804i 0.879228 + 0.476402i \(0.158059\pi\)
−0.879228 + 0.476402i \(0.841941\pi\)
\(360\) 0 0
\(361\) 10.8894 0.573125
\(362\) −6.27374 10.8664i −0.329740 0.571127i
\(363\) 0 0
\(364\) −2.09776 1.21114i −0.109952 0.0634810i
\(365\) −3.38817 + 5.86848i −0.177345 + 0.307170i
\(366\) 0 0
\(367\) 4.58982 2.64994i 0.239587 0.138326i −0.375400 0.926863i \(-0.622495\pi\)
0.614987 + 0.788537i \(0.289161\pi\)
\(368\) −1.12687 −0.0587422
\(369\) 0 0
\(370\) 9.04956i 0.470464i
\(371\) −2.14119 3.70865i −0.111165 0.192543i
\(372\) 0 0
\(373\) −12.2848 + 21.2778i −0.636081 + 1.10172i 0.350204 + 0.936673i \(0.386112\pi\)
−0.986285 + 0.165051i \(0.947221\pi\)
\(374\) 13.2968 + 7.67691i 0.687561 + 0.396964i
\(375\) 0 0
\(376\) 1.73605 + 3.00693i 0.0895299 + 0.155070i
\(377\) 1.99747i 0.102875i
\(378\) 0 0
\(379\) 10.4838 0.538515 0.269257 0.963068i \(-0.413222\pi\)
0.269257 + 0.963068i \(0.413222\pi\)
\(380\) −5.56185 + 3.21114i −0.285317 + 0.164728i
\(381\) 0 0
\(382\) −9.26002 + 16.0388i −0.473784 + 0.820618i
\(383\) 15.5799 26.9851i 0.796094 1.37887i −0.126049 0.992024i \(-0.540230\pi\)
0.922142 0.386851i \(-0.126437\pi\)
\(384\) 0 0
\(385\) 3.61012 2.08430i 0.183989 0.106226i
\(386\) 11.1058i 0.565269i
\(387\) 0 0
\(388\) −14.6867 −0.745604
\(389\) −11.8464 20.5186i −0.600637 1.04033i −0.992725 0.120406i \(-0.961580\pi\)
0.392087 0.919928i \(-0.371753\pi\)
\(390\) 0 0
\(391\) −4.39816 + 7.61783i −0.222424 + 0.385250i
\(392\) 3.24333 + 1.87254i 0.163813 + 0.0945775i
\(393\) 0 0
\(394\) 9.80217 5.65928i 0.493826 0.285111i
\(395\) 6.43783 0.323923
\(396\) 0 0
\(397\) 17.6682 0.886740 0.443370 0.896339i \(-0.353783\pi\)
0.443370 + 0.896339i \(0.353783\pi\)
\(398\) 1.38412 + 2.39737i 0.0693798 + 0.120169i
\(399\) 0 0
\(400\) −1.81003 + 3.13506i −0.0905014 + 0.156753i
\(401\) 12.2178 21.1619i 0.610130 1.05678i −0.381089 0.924539i \(-0.624451\pi\)
0.991218 0.132237i \(-0.0422160\pi\)
\(402\) 0 0
\(403\) −1.42655 + 7.33803i −0.0710614 + 0.365534i
\(404\) 2.67347i 0.133010i
\(405\) 0 0
\(406\) 2.68408i 0.133209i
\(407\) −13.1225 + 7.57630i −0.650460 + 0.375543i
\(408\) 0 0
\(409\) 13.7946 + 7.96432i 0.682100 + 0.393810i 0.800646 0.599138i \(-0.204490\pi\)
−0.118546 + 0.992949i \(0.537823\pi\)
\(410\) 4.62505 + 2.67028i 0.228415 + 0.131876i
\(411\) 0 0
\(412\) −3.70947 6.42499i −0.182752 0.316536i
\(413\) 24.8820i 1.22436i
\(414\) 0 0
\(415\) 6.95366i 0.341342i
\(416\) 0.671312 + 1.16275i 0.0329138 + 0.0570083i
\(417\) 0 0
\(418\) 9.31277 + 5.37673i 0.455503 + 0.262985i
\(419\) 25.3252 + 14.6215i 1.23722 + 0.714309i 0.968525 0.248917i \(-0.0800746\pi\)
0.268694 + 0.963226i \(0.413408\pi\)
\(420\) 0 0
\(421\) 14.7078 + 25.4747i 0.716816 + 1.24156i 0.962255 + 0.272149i \(0.0877345\pi\)
−0.245439 + 0.969412i \(0.578932\pi\)
\(422\) 2.71258i 0.132046i
\(423\) 0 0
\(424\) 2.37364i 0.115274i
\(425\) 14.1290 + 24.4722i 0.685358 + 1.18708i
\(426\) 0 0
\(427\) 13.3778 + 7.72366i 0.647396 + 0.373774i
\(428\) 5.41064 + 3.12383i 0.261533 + 0.150996i
\(429\) 0 0
\(430\) 3.73475 2.15626i 0.180106 0.103984i
\(431\) 8.87309i 0.427402i 0.976899 + 0.213701i \(0.0685518\pi\)
−0.976899 + 0.213701i \(0.931448\pi\)
\(432\) 0 0
\(433\) 14.2778i 0.686146i −0.939309 0.343073i \(-0.888532\pi\)
0.939309 0.343073i \(-0.111468\pi\)
\(434\) −1.91691 + 9.86043i −0.0920148 + 0.473316i
\(435\) 0 0
\(436\) −1.78055 + 3.08401i −0.0852731 + 0.147697i
\(437\) −3.08037 + 5.33535i −0.147354 + 0.255225i
\(438\) 0 0
\(439\) −1.94281 3.36504i −0.0927250 0.160604i 0.815932 0.578148i \(-0.196224\pi\)
−0.908657 + 0.417544i \(0.862891\pi\)
\(440\) −2.31058 −0.110152
\(441\) 0 0
\(442\) 10.4805 0.498505
\(443\) −13.3810 + 7.72551i −0.635749 + 0.367050i −0.782975 0.622053i \(-0.786299\pi\)
0.147226 + 0.989103i \(0.452965\pi\)
\(444\) 0 0
\(445\) −4.92000 2.84056i −0.233230 0.134656i
\(446\) −3.23168 + 5.59744i −0.153025 + 0.265046i
\(447\) 0 0
\(448\) 0.902070 + 1.56243i 0.0426188 + 0.0738180i
\(449\) −18.1349 −0.855837 −0.427919 0.903817i \(-0.640753\pi\)
−0.427919 + 0.903817i \(0.640753\pi\)
\(450\) 0 0
\(451\) 8.94223i 0.421073i
\(452\) −5.26672 + 3.04074i −0.247726 + 0.143025i
\(453\) 0 0
\(454\) 8.74823 15.1524i 0.410575 0.711136i
\(455\) 1.42274 2.46426i 0.0666990 0.115526i
\(456\) 0 0
\(457\) 5.36316 3.09642i 0.250878 0.144844i −0.369288 0.929315i \(-0.620398\pi\)
0.620166 + 0.784470i \(0.287065\pi\)
\(458\) 26.9126 1.25754
\(459\) 0 0
\(460\) 1.32375i 0.0617200i
\(461\) 11.2038 + 19.4055i 0.521812 + 0.903805i 0.999678 + 0.0253724i \(0.00807714\pi\)
−0.477866 + 0.878433i \(0.658590\pi\)
\(462\) 0 0
\(463\) −25.1537 14.5225i −1.16899 0.674919i −0.215551 0.976493i \(-0.569155\pi\)
−0.953443 + 0.301574i \(0.902488\pi\)
\(464\) −0.743867 + 1.28842i −0.0345332 + 0.0598132i
\(465\) 0 0
\(466\) −3.97932 6.89239i −0.184339 0.319284i
\(467\) 7.70867i 0.356715i 0.983966 + 0.178357i \(0.0570783\pi\)
−0.983966 + 0.178357i \(0.942922\pi\)
\(468\) 0 0
\(469\) 28.4627 1.31428
\(470\) −3.53226 + 2.03935i −0.162931 + 0.0940684i
\(471\) 0 0
\(472\) 6.89581 11.9439i 0.317405 0.549762i
\(473\) −6.25347 3.61044i −0.287535 0.166008i
\(474\) 0 0
\(475\) 9.89564 + 17.1398i 0.454043 + 0.786426i
\(476\) 14.0831 0.645496
\(477\) 0 0
\(478\) 17.1334i 0.783665i
\(479\) 29.7081 17.1520i 1.35740 0.783693i 0.368124 0.929777i \(-0.380000\pi\)
0.989272 + 0.146083i \(0.0466668\pi\)
\(480\) 0 0
\(481\) −5.17156 + 8.95740i −0.235803 + 0.408422i
\(482\) −9.71610 + 16.8288i −0.442556 + 0.766530i
\(483\) 0 0
\(484\) −3.56558 6.17577i −0.162072 0.280717i
\(485\) 17.2526i 0.783400i
\(486\) 0 0
\(487\) 35.5009i 1.60870i 0.594155 + 0.804351i \(0.297487\pi\)
−0.594155 + 0.804351i \(0.702513\pi\)
\(488\) −4.28107 7.41504i −0.193795 0.335663i
\(489\) 0 0
\(490\) −2.19969 + 3.80997i −0.0993718 + 0.172117i
\(491\) 13.2552 22.9586i 0.598197 1.03611i −0.394890 0.918728i \(-0.629217\pi\)
0.993087 0.117379i \(-0.0374492\pi\)
\(492\) 0 0
\(493\) 5.80660 + 10.0573i 0.261516 + 0.452959i
\(494\) 7.34028 0.330255
\(495\) 0 0
\(496\) 3.65288 4.20196i 0.164019 0.188674i
\(497\) 6.31552 3.64626i 0.283290 0.163557i
\(498\) 0 0
\(499\) 10.9204 + 6.30488i 0.488863 + 0.282245i 0.724103 0.689692i \(-0.242254\pi\)
−0.235240 + 0.971937i \(0.575588\pi\)
\(500\) −8.76943 5.06303i −0.392181 0.226426i
\(501\) 0 0
\(502\) −17.6147 + 10.1698i −0.786181 + 0.453902i
\(503\) 0.806606i 0.0359648i 0.999838 + 0.0179824i \(0.00572428\pi\)
−0.999838 + 0.0179824i \(0.994276\pi\)
\(504\) 0 0
\(505\) 3.14055 0.139753
\(506\) −1.91953 + 1.10824i −0.0853335 + 0.0492673i
\(507\) 0 0
\(508\) 16.2325 + 9.37183i 0.720200 + 0.415808i
\(509\) 10.3509 17.9284i 0.458797 0.794661i −0.540100 0.841601i \(-0.681614\pi\)
0.998898 + 0.0469402i \(0.0149470\pi\)
\(510\) 0 0
\(511\) 9.01292 5.20361i 0.398708 0.230194i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −18.6177 −0.821189
\(515\) 7.54749 4.35755i 0.332582 0.192016i
\(516\) 0 0
\(517\) 5.91443 + 3.41470i 0.260116 + 0.150178i
\(518\) −6.94924 + 12.0364i −0.305332 + 0.528851i
\(519\) 0 0
\(520\) −1.36589 + 0.788596i −0.0598982 + 0.0345822i
\(521\) 2.62461i 0.114986i −0.998346 0.0574932i \(-0.981689\pi\)
0.998346 0.0574932i \(-0.0183108\pi\)
\(522\) 0 0
\(523\) 23.7535i 1.03867i 0.854571 + 0.519334i \(0.173820\pi\)
−0.854571 + 0.519334i \(0.826180\pi\)
\(524\) 7.30906 4.21989i 0.319298 0.184347i
\(525\) 0 0
\(526\) −27.7068 15.9965i −1.20807 0.697482i
\(527\) −14.1488 41.0942i −0.616331 1.79009i
\(528\) 0 0
\(529\) 10.8651 + 18.8189i 0.472395 + 0.818212i
\(530\) −2.78833 −0.121117
\(531\) 0 0
\(532\) 9.86345 0.427635
\(533\) −3.05197 5.28616i −0.132195 0.228969i
\(534\) 0 0
\(535\) −3.66960 + 6.35593i −0.158650 + 0.274791i
\(536\) −13.6627 7.88815i −0.590137 0.340716i
\(537\) 0 0
\(538\) −10.4799 + 6.05055i −0.451819 + 0.260858i
\(539\) 7.36632 0.317290
\(540\) 0 0
\(541\) −38.4480 −1.65301 −0.826504 0.562930i \(-0.809674\pi\)
−0.826504 + 0.562930i \(0.809674\pi\)
\(542\) 6.32044 + 10.9473i 0.271486 + 0.470228i
\(543\) 0 0
\(544\) −6.76016 3.90298i −0.289840 0.167339i
\(545\) −3.62282 2.09163i −0.155184 0.0895958i
\(546\) 0 0
\(547\) 4.64707 + 8.04896i 0.198694 + 0.344149i 0.948105 0.317956i \(-0.102997\pi\)
−0.749411 + 0.662105i \(0.769663\pi\)
\(548\) 0.306319 0.0130853
\(549\) 0 0
\(550\) 7.12042i 0.303616i
\(551\) 4.06681 + 7.04392i 0.173252 + 0.300081i
\(552\) 0 0
\(553\) −8.56269 4.94367i −0.364123 0.210226i
\(554\) −8.17823 + 14.1651i −0.347460 + 0.601818i
\(555\) 0 0
\(556\) −10.0275 + 5.78940i −0.425262 + 0.245525i
\(557\) 28.3323 1.20048 0.600239 0.799821i \(-0.295072\pi\)
0.600239 + 0.799821i \(0.295072\pi\)
\(558\) 0 0
\(559\) −4.92895 −0.208473
\(560\) −1.83540 + 1.05967i −0.0775599 + 0.0447793i
\(561\) 0 0
\(562\) −9.27399 + 16.0630i −0.391200 + 0.677578i
\(563\) −9.46217 5.46299i −0.398783 0.230238i 0.287176 0.957878i \(-0.407284\pi\)
−0.685959 + 0.727640i \(0.740617\pi\)
\(564\) 0 0
\(565\) −3.57199 6.18687i −0.150275 0.260283i
\(566\) 7.99162i 0.335913i
\(567\) 0 0
\(568\) −4.04211 −0.169603
\(569\) 6.03697 + 10.4563i 0.253083 + 0.438353i 0.964373 0.264546i \(-0.0852221\pi\)
−0.711290 + 0.702899i \(0.751889\pi\)
\(570\) 0 0
\(571\) −0.598343 0.345454i −0.0250399 0.0144568i 0.487428 0.873163i \(-0.337935\pi\)
−0.512468 + 0.858707i \(0.671269\pi\)
\(572\) 2.28705 + 1.32043i 0.0956262 + 0.0552098i
\(573\) 0 0
\(574\) −4.10106 7.10324i −0.171175 0.296484i
\(575\) −4.07934 −0.170120
\(576\) 0 0
\(577\) 17.4717 0.727356 0.363678 0.931525i \(-0.381521\pi\)
0.363678 + 0.931525i \(0.381521\pi\)
\(578\) −38.0471 + 21.9665i −1.58255 + 0.913687i
\(579\) 0 0
\(580\) −1.51351 0.873828i −0.0628453 0.0362837i
\(581\) 5.33978 9.24877i 0.221531 0.383704i
\(582\) 0 0
\(583\) 2.33439 + 4.04329i 0.0966807 + 0.167456i
\(584\) −5.76852 −0.238703
\(585\) 0 0
\(586\) −10.3142 −0.426075
\(587\) −13.6193 23.5893i −0.562129 0.973636i −0.997310 0.0732929i \(-0.976649\pi\)
0.435182 0.900343i \(-0.356684\pi\)
\(588\) 0 0
\(589\) −9.90950 28.7815i −0.408314 1.18592i
\(590\) 14.0306 + 8.10057i 0.577631 + 0.333495i
\(591\) 0 0
\(592\) 6.67157 3.85183i 0.274200 0.158309i
\(593\) 0.888587i 0.0364899i −0.999834 0.0182449i \(-0.994192\pi\)
0.999834 0.0182449i \(-0.00580787\pi\)
\(594\) 0 0
\(595\) 16.5435i 0.678217i
\(596\) −14.9210 + 8.61466i −0.611189 + 0.352870i
\(597\) 0 0
\(598\) −0.756482 + 1.31026i −0.0309348 + 0.0535807i
\(599\) −26.2900 15.1785i −1.07418 0.620178i −0.144859 0.989452i \(-0.546273\pi\)
−0.929320 + 0.369274i \(0.879606\pi\)
\(600\) 0 0
\(601\) −12.1949 + 7.04074i −0.497441 + 0.287198i −0.727656 0.685942i \(-0.759390\pi\)
0.230215 + 0.973140i \(0.426057\pi\)
\(602\) −6.62325 −0.269943
\(603\) 0 0
\(604\) 17.8417i 0.725969i
\(605\) 7.25474 4.18852i 0.294947 0.170288i
\(606\) 0 0
\(607\) 19.4234 33.6423i 0.788371 1.36550i −0.138593 0.990349i \(-0.544258\pi\)
0.926964 0.375149i \(-0.122409\pi\)
\(608\) −4.73466 2.73356i −0.192016 0.110860i
\(609\) 0 0
\(610\) 8.71052 5.02902i 0.352678 0.203619i
\(611\) 4.66172 0.188593
\(612\) 0 0
\(613\) 10.2447i 0.413778i −0.978364 0.206889i \(-0.933666\pi\)
0.978364 0.206889i \(-0.0663338\pi\)
\(614\) 6.01163 3.47082i 0.242610 0.140071i
\(615\) 0 0
\(616\) 3.07320 + 1.77431i 0.123823 + 0.0714891i
\(617\) 29.4907 + 17.0265i 1.18725 + 0.685460i 0.957681 0.287832i \(-0.0929346\pi\)
0.229570 + 0.973292i \(0.426268\pi\)
\(618\) 0 0
\(619\) −19.9729 + 11.5314i −0.802780 + 0.463485i −0.844442 0.535646i \(-0.820068\pi\)
0.0416622 + 0.999132i \(0.486735\pi\)
\(620\) 4.93608 + 4.29107i 0.198238 + 0.172334i
\(621\) 0 0
\(622\) −24.5458 −0.984198
\(623\) 4.36259 + 7.55623i 0.174784 + 0.302734i
\(624\) 0 0
\(625\) −3.10255 + 5.37378i −0.124102 + 0.214951i
\(626\) −7.31799 + 12.6751i −0.292486 + 0.506600i
\(627\) 0 0
\(628\) −6.38199 11.0539i −0.254669 0.441100i
\(629\) 60.1345i 2.39772i
\(630\) 0 0
\(631\) 19.3017i 0.768387i −0.923253 0.384194i \(-0.874480\pi\)
0.923253 0.384194i \(-0.125520\pi\)
\(632\) 2.74018 + 4.74613i 0.108999 + 0.188791i
\(633\) 0 0
\(634\) 4.13313 7.15880i 0.164148 0.284312i
\(635\) −11.0092 + 19.0685i −0.436886 + 0.756709i
\(636\) 0 0
\(637\) 4.35457 2.51411i 0.172534 0.0996128i
\(638\) 2.92628i 0.115852i
\(639\) 0 0
\(640\) 1.17471 0.0464345
\(641\) −23.1194 40.0440i −0.913161 1.58164i −0.809571 0.587022i \(-0.800300\pi\)
−0.103590 0.994620i \(-0.533033\pi\)
\(642\) 0 0
\(643\) 22.3679 + 12.9141i 0.882105 + 0.509284i 0.871352 0.490658i \(-0.163244\pi\)
0.0107534 + 0.999942i \(0.496577\pi\)
\(644\) −1.01652 + 1.76066i −0.0400564 + 0.0693797i
\(645\) 0 0
\(646\) −36.9586 + 21.3381i −1.45412 + 0.839535i
\(647\) −33.5018 −1.31709 −0.658547 0.752540i \(-0.728829\pi\)
−0.658547 + 0.752540i \(0.728829\pi\)
\(648\) 0 0
\(649\) 27.1272i 1.06484i
\(650\) 2.43019 + 4.20921i 0.0953198 + 0.165099i
\(651\) 0 0
\(652\) −4.76431 + 8.25203i −0.186585 + 0.323175i
\(653\) 9.36830 + 5.40879i 0.366610 + 0.211662i 0.671976 0.740573i \(-0.265446\pi\)
−0.305366 + 0.952235i \(0.598779\pi\)
\(654\) 0 0
\(655\) 4.95714 + 8.58602i 0.193692 + 0.335484i
\(656\) 4.54627i 0.177502i
\(657\) 0 0
\(658\) 6.26415 0.244202
\(659\) 25.1726 14.5334i 0.980584 0.566140i 0.0781375 0.996943i \(-0.475103\pi\)
0.902446 + 0.430802i \(0.141769\pi\)
\(660\) 0 0
\(661\) −0.0255919 + 0.0443264i −0.000995409 + 0.00172410i −0.866523 0.499138i \(-0.833650\pi\)
0.865527 + 0.500862i \(0.166984\pi\)
\(662\) −0.770341 + 1.33427i −0.0299401 + 0.0518579i
\(663\) 0 0
\(664\) −5.12641 + 2.95973i −0.198943 + 0.114860i
\(665\) 11.5867i 0.449312i
\(666\) 0 0
\(667\) −1.67648 −0.0649137
\(668\) −5.21593 9.03426i −0.201811 0.349546i
\(669\) 0 0
\(670\) 9.26628 16.0497i 0.357988 0.620053i
\(671\) −14.5849 8.42059i −0.563044 0.325073i
\(672\) 0 0
\(673\) −6.48140 + 3.74204i −0.249840 + 0.144245i −0.619691 0.784846i \(-0.712742\pi\)
0.369851 + 0.929091i \(0.379409\pi\)
\(674\) 3.99775 0.153987
\(675\) 0 0
\(676\) −11.1974 −0.430668
\(677\) −1.57692 2.73130i −0.0606059 0.104972i 0.834131 0.551567i \(-0.185970\pi\)
−0.894736 + 0.446595i \(0.852637\pi\)
\(678\) 0 0
\(679\) −13.2484 + 22.9469i −0.508428 + 0.880623i
\(680\) 4.58487 7.94123i 0.175822 0.304532i
\(681\) 0 0
\(682\) 2.08988 10.7502i 0.0800258 0.411645i
\(683\) 26.3397i 1.00786i 0.863744 + 0.503931i \(0.168113\pi\)
−0.863744 + 0.503931i \(0.831887\pi\)
\(684\) 0 0
\(685\) 0.359836i 0.0137486i
\(686\) 16.7884 9.69281i 0.640986 0.370073i
\(687\) 0 0
\(688\) 3.17930 + 1.83557i 0.121210 + 0.0699804i
\(689\) 2.75994 + 1.59345i 0.105145 + 0.0607056i
\(690\) 0 0
\(691\) 0.667745 + 1.15657i 0.0254022 + 0.0439979i 0.878447 0.477840i \(-0.158580\pi\)
−0.853045 + 0.521838i \(0.825247\pi\)
\(692\) 7.50810i 0.285415i
\(693\) 0 0
\(694\) 23.3162i 0.885070i
\(695\) −6.80086 11.7794i −0.257971 0.446820i
\(696\) 0 0
\(697\) 30.7336 + 17.7440i 1.16412 + 0.672103i
\(698\) 6.39191 + 3.69037i 0.241937 + 0.139683i
\(699\) 0 0
\(700\) 3.26555 + 5.65609i 0.123426 + 0.213780i
\(701\) 42.5935i 1.60873i −0.594132 0.804367i \(-0.702504\pi\)
0.594132 0.804367i \(-0.297496\pi\)
\(702\) 0 0
\(703\) 42.1168i 1.58847i
\(704\) −0.983467 1.70342i −0.0370658 0.0641999i
\(705\) 0 0
\(706\) 15.6233 + 9.02014i 0.587992 + 0.339477i
\(707\) −4.17711 2.41166i −0.157096 0.0906997i
\(708\) 0 0
\(709\) −37.0728 + 21.4040i −1.39230 + 0.803845i −0.993570 0.113223i \(-0.963882\pi\)
−0.398730 + 0.917068i \(0.630549\pi\)
\(710\) 4.74830i 0.178201i
\(711\) 0 0
\(712\) 4.83620i 0.181244i
\(713\) 6.15885 + 1.19731i 0.230651 + 0.0448396i
\(714\) 0 0
\(715\) −1.55112 + 2.68661i −0.0580085 + 0.100474i
\(716\) −10.9905 + 19.0361i −0.410733 + 0.711411i
\(717\) 0 0
\(718\) −9.02653 15.6344i −0.336867 0.583471i
\(719\) 1.31866 0.0491778 0.0245889 0.999698i \(-0.492172\pi\)
0.0245889 + 0.999698i \(0.492172\pi\)
\(720\) 0 0
\(721\) −13.3848 −0.498476
\(722\) −9.43047 + 5.44469i −0.350966 + 0.202630i
\(723\) 0 0
\(724\) 10.8664 + 6.27374i 0.403848 + 0.233162i
\(725\) −2.69284 + 4.66414i −0.100010 + 0.173222i
\(726\) 0 0
\(727\) −1.99610 3.45735i −0.0740314 0.128226i 0.826633 0.562741i \(-0.190253\pi\)
−0.900665 + 0.434515i \(0.856920\pi\)
\(728\) 2.42228 0.0897757
\(729\) 0 0
\(730\) 6.77633i 0.250803i
\(731\) 24.8175 14.3284i 0.917907 0.529954i
\(732\) 0 0
\(733\) 18.6015 32.2188i 0.687063 1.19003i −0.285721 0.958313i \(-0.592233\pi\)
0.972784 0.231715i \(-0.0744336\pi\)
\(734\) −2.64994 + 4.58982i −0.0978109 + 0.169414i
\(735\) 0 0
\(736\) 0.975899 0.563435i 0.0359721 0.0207685i
\(737\) −31.0309 −1.14304
\(738\) 0 0
\(739\) 25.2235i 0.927861i 0.885871 + 0.463931i \(0.153561\pi\)
−0.885871 + 0.463931i \(0.846439\pi\)
\(740\) 4.52478 + 7.83715i 0.166334 + 0.288099i
\(741\) 0 0
\(742\) 3.70865 + 2.14119i 0.136149 + 0.0786055i
\(743\) −3.33907 + 5.78344i −0.122499 + 0.212174i −0.920752 0.390147i \(-0.872424\pi\)
0.798254 + 0.602321i \(0.205757\pi\)
\(744\) 0 0
\(745\) −10.1197 17.5279i −0.370758 0.642172i
\(746\) 24.5695i 0.899554i
\(747\) 0 0
\(748\) −15.3538 −0.561391
\(749\) 9.76155 5.63583i 0.356679 0.205929i
\(750\) 0 0
\(751\) 13.6753 23.6864i 0.499020 0.864328i −0.500980 0.865459i \(-0.667027\pi\)
0.999999 + 0.00113141i \(0.000360139\pi\)
\(752\) −3.00693 1.73605i −0.109651 0.0633072i
\(753\) 0 0
\(754\) 0.998734 + 1.72986i 0.0363717 + 0.0629977i
\(755\) −20.9588 −0.762770
\(756\) 0 0
\(757\) 0.676092i 0.0245730i −0.999925 0.0122865i \(-0.996089\pi\)
0.999925 0.0122865i \(-0.00391101\pi\)
\(758\) −9.07921 + 5.24188i −0.329772 + 0.190394i
\(759\) 0 0
\(760\) 3.21114 5.56185i 0.116480 0.201750i
\(761\) 11.3364 19.6352i 0.410943 0.711774i −0.584050 0.811718i \(-0.698533\pi\)
0.994993 + 0.0999434i \(0.0318662\pi\)
\(762\) 0 0
\(763\) 3.21237 + 5.56399i 0.116296 + 0.201430i
\(764\) 18.5200i 0.670032i
\(765\) 0 0
\(766\) 31.1597i 1.12585i
\(767\) −9.25848 16.0362i −0.334304 0.579032i
\(768\) 0 0
\(769\) −0.835355 + 1.44688i −0.0301237 + 0.0521757i −0.880694 0.473685i \(-0.842923\pi\)
0.850571 + 0.525861i \(0.176257\pi\)
\(770\) −2.08430 + 3.61012i −0.0751131 + 0.130100i
\(771\) 0 0
\(772\) 5.55289 + 9.61788i 0.199853 + 0.346155i
\(773\) −5.56061 −0.200001 −0.100001 0.994987i \(-0.531884\pi\)
−0.100001 + 0.994987i \(0.531884\pi\)
\(774\) 0 0
\(775\) 13.2236 15.2113i 0.475007 0.546407i
\(776\) 12.7190 7.34334i 0.456587 0.263611i
\(777\) 0 0
\(778\) 20.5186 + 11.8464i 0.735628 + 0.424715i
\(779\) 21.5251 + 12.4275i 0.771216 + 0.445262i
\(780\) 0 0
\(781\) −6.88539 + 3.97528i −0.246379 + 0.142247i
\(782\) 8.79631i 0.314556i
\(783\) 0 0
\(784\) −3.74508 −0.133753
\(785\) 12.9852 7.49699i 0.463460 0.267579i
\(786\) 0 0
\(787\) −21.2594 12.2741i −0.757815 0.437525i 0.0706959 0.997498i \(-0.477478\pi\)
−0.828511 + 0.559973i \(0.810811\pi\)
\(788\) −5.65928 + 9.80217i −0.201604 + 0.349188i
\(789\) 0 0
\(790\) −5.57533 + 3.21892i −0.198361 + 0.114524i
\(791\) 10.9719i 0.390114i
\(792\) 0 0
\(793\) −11.4957 −0.408226
\(794\) −15.3011 + 8.83409i −0.543015 + 0.313510i
\(795\) 0 0
\(796\) −2.39737 1.38412i −0.0849725 0.0490589i
\(797\) −22.4889 + 38.9520i −0.796599 + 1.37975i 0.125220 + 0.992129i \(0.460036\pi\)
−0.921819 + 0.387621i \(0.873297\pi\)
\(798\) 0 0
\(799\) −23.4719 + 13.5515i −0.830378 + 0.479419i
\(800\) 3.62006i 0.127988i
\(801\) 0 0
\(802\) 24.4357i 0.862853i
\(803\) −9.82619 + 5.67315i −0.346759 + 0.200201i
\(804\) 0 0
\(805\) −2.06826 1.19411i −0.0728967 0.0420869i
\(806\) −2.43359 7.06820i −0.0857196 0.248967i
\(807\) 0 0
\(808\) 1.33673 + 2.31529i 0.0470261 + 0.0814517i
\(809\) 10.3792 0.364914 0.182457 0.983214i \(-0.441595\pi\)
0.182457 + 0.983214i \(0.441595\pi\)
\(810\) 0 0
\(811\) −52.3342 −1.83770 −0.918851 0.394604i \(-0.870882\pi\)
−0.918851 + 0.394604i \(0.870882\pi\)
\(812\) 1.34204 + 2.32448i 0.0470964 + 0.0815734i
\(813\) 0 0
\(814\) 7.57630 13.1225i 0.265549 0.459945i
\(815\) −9.69374 5.59668i −0.339557 0.196043i
\(816\) 0 0
\(817\) 17.3816 10.0353i 0.608105 0.351089i
\(818\) −15.9286 −0.556932
\(819\) 0 0
\(820\) −5.34055 −0.186500
\(821\) 3.44252 + 5.96262i 0.120145 + 0.208097i 0.919825 0.392330i \(-0.128331\pi\)
−0.799680 + 0.600427i \(0.794997\pi\)
\(822\) 0 0
\(823\) 33.0096 + 19.0581i 1.15064 + 0.664324i 0.949044 0.315144i \(-0.102053\pi\)
0.201599 + 0.979468i \(0.435386\pi\)
\(824\) 6.42499 + 3.70947i 0.223825 + 0.129225i
\(825\) 0 0
\(826\) −12.4410 21.5485i −0.432878 0.749767i
\(827\) −55.2657 −1.92178 −0.960889 0.276934i \(-0.910682\pi\)
−0.960889 + 0.276934i \(0.910682\pi\)
\(828\) 0 0
\(829\) 54.3149i 1.88644i −0.332175 0.943218i \(-0.607783\pi\)
0.332175 0.943218i \(-0.392217\pi\)
\(830\) −3.47683 6.02204i −0.120682 0.209028i
\(831\) 0 0
\(832\) −1.16275 0.671312i −0.0403110 0.0232736i
\(833\) −14.6170 + 25.3173i −0.506448 + 0.877193i
\(834\) 0 0
\(835\) 10.6126 6.12721i 0.367265 0.212041i
\(836\) −10.7535 −0.371916
\(837\) 0 0
\(838\) −29.2431 −1.01019
\(839\) −18.7510 + 10.8259i −0.647356 + 0.373751i −0.787443 0.616388i \(-0.788595\pi\)
0.140086 + 0.990139i \(0.455262\pi\)
\(840\) 0 0
\(841\) 13.3933 23.1979i 0.461839 0.799928i
\(842\) −25.4747 14.7078i −0.877916 0.506865i
\(843\) 0 0
\(844\) −1.35629 2.34917i −0.0466855 0.0808616i
\(845\) 13.1536i 0.452499i
\(846\) 0 0
\(847\) −12.8656 −0.442068
\(848\) −1.18682 2.05563i −0.0407555 0.0705906i
\(849\) 0 0
\(850\) −24.4722 14.1290i −0.839389 0.484621i
\(851\) 7.51799 + 4.34052i 0.257713 + 0.148791i
\(852\) 0 0
\(853\) 15.0534 + 26.0732i 0.515418 + 0.892730i 0.999840 + 0.0178957i \(0.00569667\pi\)
−0.484422 + 0.874835i \(0.660970\pi\)
\(854\) −15.4473 −0.528596
\(855\) 0 0
\(856\) −6.24767 −0.213541
\(857\) −12.4523 + 7.18935i −0.425363 + 0.245584i −0.697369 0.716712i \(-0.745646\pi\)
0.272006 + 0.962296i \(0.412313\pi\)
\(858\) 0 0
\(859\) 47.2286 + 27.2674i 1.61142 + 0.930353i 0.989042 + 0.147634i \(0.0471659\pi\)
0.622376 + 0.782718i \(0.286167\pi\)
\(860\) −2.15626 + 3.73475i −0.0735278 + 0.127354i
\(861\) 0 0
\(862\) −4.43654 7.68432i −0.151109 0.261729i
\(863\) −7.05428 −0.240131 −0.120065 0.992766i \(-0.538310\pi\)
−0.120065 + 0.992766i \(0.538310\pi\)
\(864\) 0 0
\(865\) −8.81984 −0.299883
\(866\) 7.13889 + 12.3649i 0.242589 + 0.420177i
\(867\) 0 0
\(868\) −3.27012 9.49784i −0.110995 0.322378i
\(869\) 9.33533 + 5.38976i 0.316680 + 0.182835i
\(870\) 0 0
\(871\) −18.3438 + 10.5908i −0.621557 + 0.358856i
\(872\) 3.56111i 0.120594i
\(873\) 0 0
\(874\) 6.16074i 0.208390i
\(875\) −15.8213 + 9.13442i −0.534857 + 0.308800i
\(876\) 0 0
\(877\) 9.05222 15.6789i 0.305672 0.529439i −0.671739 0.740788i \(-0.734452\pi\)
0.977411 + 0.211349i \(0.0677857\pi\)
\(878\) 3.36504 + 1.94281i 0.113565 + 0.0655665i
\(879\) 0 0
\(880\) 2.00102 1.15529i 0.0674543 0.0389448i
\(881\) 2.33807 0.0787717 0.0393859 0.999224i \(-0.487460\pi\)
0.0393859 + 0.999224i \(0.487460\pi\)
\(882\) 0 0
\(883\) 4.54048i 0.152799i 0.997077 + 0.0763996i \(0.0243425\pi\)
−0.997077 + 0.0763996i \(0.975658\pi\)
\(884\) −9.07635 + 5.24024i −0.305271 + 0.176248i
\(885\) 0 0
\(886\) 7.72551 13.3810i 0.259543 0.449542i
\(887\) −0.549808 0.317432i −0.0184607 0.0106583i 0.490741 0.871305i \(-0.336726\pi\)
−0.509202 + 0.860647i \(0.670059\pi\)
\(888\) 0 0
\(889\) 29.2857 16.9081i 0.982211 0.567080i
\(890\) 5.68113 0.190432
\(891\) 0 0
\(892\) 6.46337i 0.216410i
\(893\) −16.4392 + 9.49118i −0.550117 + 0.317610i
\(894\) 0 0
\(895\) −22.3618 12.9106i −0.747474 0.431554i
\(896\) −1.56243 0.902070i −0.0521972 0.0301361i
\(897\) 0 0
\(898\) 15.7053 9.06743i 0.524091 0.302584i
\(899\) 5.43452 6.25140i 0.181251 0.208496i
\(900\) 0 0
\(901\) −18.5285 −0.617275
\(902\) 4.47111 + 7.74419i 0.148872 + 0.257853i
\(903\) 0 0
\(904\) 3.04074 5.26672i 0.101134 0.175169i
\(905\) −7.36982 + 12.7649i −0.244981 + 0.424320i
\(906\) 0 0
\(907\) −12.3213 21.3412i −0.409123 0.708622i 0.585669 0.810550i \(-0.300832\pi\)
−0.994792 + 0.101929i \(0.967499\pi\)
\(908\) 17.4965i 0.580640i
\(909\) 0 0
\(910\) 2.84548i 0.0943267i
\(911\) −3.09235 5.35611i −0.102454 0.177456i 0.810241 0.586097i \(-0.199336\pi\)
−0.912695 + 0.408641i \(0.866003\pi\)
\(912\) 0 0
\(913\) −5.82161 + 10.0833i −0.192667 + 0.333709i
\(914\) −3.09642 + 5.36316i −0.102421 + 0.177398i
\(915\) 0 0
\(916\) −23.3070 + 13.4563i −0.770083 + 0.444608i
\(917\) 15.2265i 0.502825i
\(918\) 0 0
\(919\) 19.9961 0.659609 0.329805 0.944049i \(-0.393017\pi\)
0.329805 + 0.944049i \(0.393017\pi\)
\(920\) 0.661873 + 1.14640i 0.0218213 + 0.0377956i
\(921\) 0 0
\(922\) −19.4055 11.2038i −0.639087 0.368977i
\(923\) −2.71351 + 4.69994i −0.0893164 + 0.154701i
\(924\) 0 0
\(925\) 24.1515 13.9438i 0.794095 0.458471i
\(926\) 29.0450 0.954479
\(927\) 0 0
\(928\) 1.48773i 0.0488373i
\(929\) −15.0929 26.1416i −0.495181 0.857679i 0.504803 0.863234i \(-0.331565\pi\)
−0.999985 + 0.00555525i \(0.998232\pi\)
\(930\) 0 0
\(931\) −10.2374 + 17.7317i −0.335517 + 0.581132i
\(932\) 6.89239 + 3.97932i 0.225768 + 0.130347i
\(933\) 0 0
\(934\) −3.85434 6.67590i −0.126118 0.218442i
\(935\) 18.0363i 0.589849i
\(936\) 0 0
\(937\) −22.0554 −0.720520 −0.360260 0.932852i \(-0.617312\pi\)
−0.360260 + 0.932852i \(0.617312\pi\)
\(938\) −24.6494 + 14.2313i −0.804831 + 0.464669i
\(939\) 0 0
\(940\) 2.03935 3.53226i 0.0665164 0.115210i
\(941\) −26.5389 + 45.9668i −0.865145 + 1.49848i 0.00175808 + 0.999998i \(0.499440\pi\)
−0.866903 + 0.498477i \(0.833893\pi\)
\(942\) 0 0
\(943\) −4.43670 + 2.56153i −0.144479 + 0.0834150i
\(944\) 13.7916i 0.448879i
\(945\) 0 0
\(946\) 7.22089 0.234771
\(947\) 10.7448 + 18.6106i 0.349160 + 0.604762i 0.986100 0.166150i \(-0.0531337\pi\)
−0.636941 + 0.770913i \(0.719800\pi\)
\(948\) 0 0
\(949\) −3.87248 + 6.70732i −0.125706 + 0.217729i
\(950\) −17.1398 9.89564i −0.556087 0.321057i
\(951\) 0 0
\(952\) −12.1963 + 7.04153i −0.395284 + 0.228217i
\(953\) 16.9059 0.547635 0.273818 0.961782i \(-0.411714\pi\)
0.273818 + 0.961782i \(0.411714\pi\)
\(954\) 0 0
\(955\) 21.7557 0.703997
\(956\) 8.56671 + 14.8380i 0.277067 + 0.479895i
\(957\) 0 0
\(958\) −17.1520 + 29.7081i −0.554155 + 0.959824i
\(959\) 0.276321 0.478603i 0.00892288 0.0154549i
\(960\) 0 0
\(961\) −24.4292 + 19.0844i −0.788040 + 0.615624i
\(962\) 10.3431i 0.333475i
\(963\) 0 0
\(964\) 19.4322i 0.625869i
\(965\) −11.2982 + 6.52303i −0.363702 + 0.209984i
\(966\) 0 0
\(967\) −9.00191 5.19725i −0.289482 0.167132i 0.348226 0.937410i \(-0.386784\pi\)
−0.637708 + 0.770278i \(0.720117\pi\)
\(968\) 6.17577 + 3.56558i 0.198497 + 0.114602i
\(969\) 0 0
\(970\) 8.62629 + 14.9412i 0.276974 + 0.479732i
\(971\) 8.52436i 0.273560i −0.990601 0.136780i \(-0.956325\pi\)
0.990601 0.136780i \(-0.0436753\pi\)
\(972\) 0 0
\(973\) 20.8898i 0.669696i
\(974\) −17.7505 30.7447i −0.568762 0.985124i
\(975\) 0 0
\(976\) 7.41504 + 4.28107i 0.237350 + 0.137034i
\(977\) −48.7020 28.1181i −1.55811 0.899578i −0.997438 0.0715430i \(-0.977208\pi\)
−0.560677 0.828035i \(-0.689459\pi\)
\(978\) 0 0
\(979\) −4.75624 8.23805i −0.152010 0.263289i
\(980\) 4.39938i 0.140533i
\(981\) 0 0
\(982\) 26.5103i 0.845978i
\(983\) 29.9167 + 51.8172i 0.954195 + 1.65271i 0.736201 + 0.676763i \(0.236618\pi\)
0.217994 + 0.975950i \(0.430049\pi\)
\(984\) 0 0
\(985\) −11.5147 6.64801i −0.366889 0.211823i
\(986\) −10.0573 5.80660i −0.320290 0.184920i
\(987\) 0 0
\(988\) −6.35687 + 3.67014i −0.202239 + 0.116763i
\(989\) 4.13690i 0.131546i
\(990\) 0 0
\(991\) 38.4776i 1.22228i 0.791522 + 0.611140i \(0.209289\pi\)
−0.791522 + 0.611140i \(0.790711\pi\)
\(992\) −1.06251 + 5.46544i −0.0337347 + 0.173528i
\(993\) 0 0
\(994\) −3.64626 + 6.31552i −0.115652 + 0.200316i
\(995\) 1.62594 2.81621i 0.0515458 0.0892800i
\(996\) 0 0
\(997\) −16.1241 27.9278i −0.510656 0.884482i −0.999924 0.0123487i \(-0.996069\pi\)
0.489268 0.872134i \(-0.337264\pi\)
\(998\) −12.6098 −0.399155
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1674.2.q.a.557.7 64
3.2 odd 2 558.2.q.a.185.32 yes 64
9.2 odd 6 inner 1674.2.q.a.1115.5 64
9.7 even 3 558.2.q.a.371.17 yes 64
31.30 odd 2 inner 1674.2.q.a.557.5 64
93.92 even 2 558.2.q.a.185.17 64
279.61 odd 6 558.2.q.a.371.32 yes 64
279.92 even 6 inner 1674.2.q.a.1115.7 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.q.a.185.17 64 93.92 even 2
558.2.q.a.185.32 yes 64 3.2 odd 2
558.2.q.a.371.17 yes 64 9.7 even 3
558.2.q.a.371.32 yes 64 279.61 odd 6
1674.2.q.a.557.5 64 31.30 odd 2 inner
1674.2.q.a.557.7 64 1.1 even 1 trivial
1674.2.q.a.1115.5 64 9.2 odd 6 inner
1674.2.q.a.1115.7 64 279.92 even 6 inner