Properties

Label 1672.2.a.h.1.4
Level $1672$
Weight $2$
Character 1672.1
Self dual yes
Analytic conductor $13.351$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1672,2,Mod(1,1672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1672.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1672 = 2^{3} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1672.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.3509872180\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.57500224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 12x^{3} + 11x^{2} - 18x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.12938\) of defining polynomial
Character \(\chi\) \(=\) 1672.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.129383 q^{3} -1.42012 q^{5} +5.10098 q^{7} -2.98326 q^{9} +1.00000 q^{11} -7.03336 q^{13} -0.183739 q^{15} -3.23187 q^{17} -1.00000 q^{19} +0.659980 q^{21} -6.34958 q^{23} -2.98326 q^{25} -0.774133 q^{27} +2.43101 q^{29} +8.51543 q^{31} +0.129383 q^{33} -7.24400 q^{35} -9.07874 q^{37} -0.909998 q^{39} -1.74376 q^{41} +2.02847 q^{43} +4.23659 q^{45} -5.67729 q^{47} +19.0200 q^{49} -0.418149 q^{51} -6.28923 q^{53} -1.42012 q^{55} -0.129383 q^{57} -1.86170 q^{59} +4.98792 q^{61} -15.2175 q^{63} +9.98821 q^{65} +4.01821 q^{67} -0.821529 q^{69} +4.62358 q^{71} -13.9755 q^{73} -0.385983 q^{75} +5.10098 q^{77} -7.19839 q^{79} +8.84962 q^{81} -9.72806 q^{83} +4.58964 q^{85} +0.314532 q^{87} +15.1572 q^{89} -35.8770 q^{91} +1.10175 q^{93} +1.42012 q^{95} -6.23850 q^{97} -2.98326 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} - 4 q^{5} - 4 q^{7} + 2 q^{9} + 6 q^{11} + 2 q^{13} - 10 q^{17} - 6 q^{19} + 10 q^{21} - 14 q^{23} + 2 q^{25} - 16 q^{27} + 6 q^{29} + 4 q^{31} - 4 q^{33} + 2 q^{35} - 4 q^{37} - 2 q^{39}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.129383 0.0746994 0.0373497 0.999302i \(-0.488108\pi\)
0.0373497 + 0.999302i \(0.488108\pi\)
\(4\) 0 0
\(5\) −1.42012 −0.635097 −0.317548 0.948242i \(-0.602860\pi\)
−0.317548 + 0.948242i \(0.602860\pi\)
\(6\) 0 0
\(7\) 5.10098 1.92799 0.963994 0.265924i \(-0.0856772\pi\)
0.963994 + 0.265924i \(0.0856772\pi\)
\(8\) 0 0
\(9\) −2.98326 −0.994420
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −7.03336 −1.95070 −0.975352 0.220657i \(-0.929180\pi\)
−0.975352 + 0.220657i \(0.929180\pi\)
\(14\) 0 0
\(15\) −0.183739 −0.0474413
\(16\) 0 0
\(17\) −3.23187 −0.783843 −0.391922 0.919999i \(-0.628190\pi\)
−0.391922 + 0.919999i \(0.628190\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0.659980 0.144019
\(22\) 0 0
\(23\) −6.34958 −1.32398 −0.661990 0.749513i \(-0.730288\pi\)
−0.661990 + 0.749513i \(0.730288\pi\)
\(24\) 0 0
\(25\) −2.98326 −0.596652
\(26\) 0 0
\(27\) −0.774133 −0.148982
\(28\) 0 0
\(29\) 2.43101 0.451427 0.225714 0.974194i \(-0.427529\pi\)
0.225714 + 0.974194i \(0.427529\pi\)
\(30\) 0 0
\(31\) 8.51543 1.52942 0.764708 0.644377i \(-0.222883\pi\)
0.764708 + 0.644377i \(0.222883\pi\)
\(32\) 0 0
\(33\) 0.129383 0.0225227
\(34\) 0 0
\(35\) −7.24400 −1.22446
\(36\) 0 0
\(37\) −9.07874 −1.49254 −0.746268 0.665646i \(-0.768156\pi\)
−0.746268 + 0.665646i \(0.768156\pi\)
\(38\) 0 0
\(39\) −0.909998 −0.145716
\(40\) 0 0
\(41\) −1.74376 −0.272329 −0.136164 0.990686i \(-0.543478\pi\)
−0.136164 + 0.990686i \(0.543478\pi\)
\(42\) 0 0
\(43\) 2.02847 0.309339 0.154669 0.987966i \(-0.450569\pi\)
0.154669 + 0.987966i \(0.450569\pi\)
\(44\) 0 0
\(45\) 4.23659 0.631553
\(46\) 0 0
\(47\) −5.67729 −0.828118 −0.414059 0.910250i \(-0.635889\pi\)
−0.414059 + 0.910250i \(0.635889\pi\)
\(48\) 0 0
\(49\) 19.0200 2.71714
\(50\) 0 0
\(51\) −0.418149 −0.0585526
\(52\) 0 0
\(53\) −6.28923 −0.863892 −0.431946 0.901900i \(-0.642173\pi\)
−0.431946 + 0.901900i \(0.642173\pi\)
\(54\) 0 0
\(55\) −1.42012 −0.191489
\(56\) 0 0
\(57\) −0.129383 −0.0171372
\(58\) 0 0
\(59\) −1.86170 −0.242372 −0.121186 0.992630i \(-0.538670\pi\)
−0.121186 + 0.992630i \(0.538670\pi\)
\(60\) 0 0
\(61\) 4.98792 0.638638 0.319319 0.947647i \(-0.396546\pi\)
0.319319 + 0.947647i \(0.396546\pi\)
\(62\) 0 0
\(63\) −15.2175 −1.91723
\(64\) 0 0
\(65\) 9.98821 1.23889
\(66\) 0 0
\(67\) 4.01821 0.490903 0.245451 0.969409i \(-0.421064\pi\)
0.245451 + 0.969409i \(0.421064\pi\)
\(68\) 0 0
\(69\) −0.821529 −0.0989005
\(70\) 0 0
\(71\) 4.62358 0.548718 0.274359 0.961627i \(-0.411534\pi\)
0.274359 + 0.961627i \(0.411534\pi\)
\(72\) 0 0
\(73\) −13.9755 −1.63571 −0.817854 0.575425i \(-0.804837\pi\)
−0.817854 + 0.575425i \(0.804837\pi\)
\(74\) 0 0
\(75\) −0.385983 −0.0445695
\(76\) 0 0
\(77\) 5.10098 0.581310
\(78\) 0 0
\(79\) −7.19839 −0.809882 −0.404941 0.914343i \(-0.632708\pi\)
−0.404941 + 0.914343i \(0.632708\pi\)
\(80\) 0 0
\(81\) 8.84962 0.983291
\(82\) 0 0
\(83\) −9.72806 −1.06779 −0.533897 0.845550i \(-0.679273\pi\)
−0.533897 + 0.845550i \(0.679273\pi\)
\(84\) 0 0
\(85\) 4.58964 0.497816
\(86\) 0 0
\(87\) 0.314532 0.0337213
\(88\) 0 0
\(89\) 15.1572 1.60666 0.803328 0.595537i \(-0.203061\pi\)
0.803328 + 0.595537i \(0.203061\pi\)
\(90\) 0 0
\(91\) −35.8770 −3.76093
\(92\) 0 0
\(93\) 1.10175 0.114246
\(94\) 0 0
\(95\) 1.42012 0.145701
\(96\) 0 0
\(97\) −6.23850 −0.633424 −0.316712 0.948522i \(-0.602579\pi\)
−0.316712 + 0.948522i \(0.602579\pi\)
\(98\) 0 0
\(99\) −2.98326 −0.299829
\(100\) 0 0
\(101\) −11.1093 −1.10541 −0.552706 0.833376i \(-0.686405\pi\)
−0.552706 + 0.833376i \(0.686405\pi\)
\(102\) 0 0
\(103\) 0.0393809 0.00388031 0.00194016 0.999998i \(-0.499382\pi\)
0.00194016 + 0.999998i \(0.499382\pi\)
\(104\) 0 0
\(105\) −0.937251 −0.0914663
\(106\) 0 0
\(107\) −13.9697 −1.35050 −0.675251 0.737588i \(-0.735965\pi\)
−0.675251 + 0.737588i \(0.735965\pi\)
\(108\) 0 0
\(109\) −13.4042 −1.28389 −0.641944 0.766752i \(-0.721872\pi\)
−0.641944 + 0.766752i \(0.721872\pi\)
\(110\) 0 0
\(111\) −1.17464 −0.111491
\(112\) 0 0
\(113\) −3.60293 −0.338935 −0.169468 0.985536i \(-0.554205\pi\)
−0.169468 + 0.985536i \(0.554205\pi\)
\(114\) 0 0
\(115\) 9.01717 0.840855
\(116\) 0 0
\(117\) 20.9823 1.93982
\(118\) 0 0
\(119\) −16.4857 −1.51124
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −0.225612 −0.0203428
\(124\) 0 0
\(125\) 11.3372 1.01403
\(126\) 0 0
\(127\) 15.8979 1.41071 0.705355 0.708854i \(-0.250787\pi\)
0.705355 + 0.708854i \(0.250787\pi\)
\(128\) 0 0
\(129\) 0.262450 0.0231074
\(130\) 0 0
\(131\) −12.1817 −1.06432 −0.532159 0.846645i \(-0.678619\pi\)
−0.532159 + 0.846645i \(0.678619\pi\)
\(132\) 0 0
\(133\) −5.10098 −0.442311
\(134\) 0 0
\(135\) 1.09936 0.0946179
\(136\) 0 0
\(137\) −14.1220 −1.20652 −0.603261 0.797544i \(-0.706132\pi\)
−0.603261 + 0.797544i \(0.706132\pi\)
\(138\) 0 0
\(139\) 7.86909 0.667447 0.333724 0.942671i \(-0.391695\pi\)
0.333724 + 0.942671i \(0.391695\pi\)
\(140\) 0 0
\(141\) −0.734546 −0.0618599
\(142\) 0 0
\(143\) −7.03336 −0.588159
\(144\) 0 0
\(145\) −3.45233 −0.286700
\(146\) 0 0
\(147\) 2.46086 0.202968
\(148\) 0 0
\(149\) −18.6482 −1.52772 −0.763860 0.645382i \(-0.776698\pi\)
−0.763860 + 0.645382i \(0.776698\pi\)
\(150\) 0 0
\(151\) 22.2749 1.81270 0.906352 0.422524i \(-0.138856\pi\)
0.906352 + 0.422524i \(0.138856\pi\)
\(152\) 0 0
\(153\) 9.64150 0.779469
\(154\) 0 0
\(155\) −12.0929 −0.971328
\(156\) 0 0
\(157\) 1.14571 0.0914379 0.0457189 0.998954i \(-0.485442\pi\)
0.0457189 + 0.998954i \(0.485442\pi\)
\(158\) 0 0
\(159\) −0.813720 −0.0645322
\(160\) 0 0
\(161\) −32.3891 −2.55262
\(162\) 0 0
\(163\) −3.17176 −0.248432 −0.124216 0.992255i \(-0.539642\pi\)
−0.124216 + 0.992255i \(0.539642\pi\)
\(164\) 0 0
\(165\) −0.183739 −0.0143041
\(166\) 0 0
\(167\) 13.7261 1.06215 0.531077 0.847323i \(-0.321787\pi\)
0.531077 + 0.847323i \(0.321787\pi\)
\(168\) 0 0
\(169\) 36.4682 2.80524
\(170\) 0 0
\(171\) 2.98326 0.228136
\(172\) 0 0
\(173\) −10.4861 −0.797243 −0.398622 0.917116i \(-0.630511\pi\)
−0.398622 + 0.917116i \(0.630511\pi\)
\(174\) 0 0
\(175\) −15.2175 −1.15034
\(176\) 0 0
\(177\) −0.240872 −0.0181051
\(178\) 0 0
\(179\) −15.9699 −1.19365 −0.596824 0.802372i \(-0.703571\pi\)
−0.596824 + 0.802372i \(0.703571\pi\)
\(180\) 0 0
\(181\) 4.61072 0.342712 0.171356 0.985209i \(-0.445185\pi\)
0.171356 + 0.985209i \(0.445185\pi\)
\(182\) 0 0
\(183\) 0.645353 0.0477059
\(184\) 0 0
\(185\) 12.8929 0.947905
\(186\) 0 0
\(187\) −3.23187 −0.236338
\(188\) 0 0
\(189\) −3.94883 −0.287235
\(190\) 0 0
\(191\) −10.4763 −0.758039 −0.379019 0.925389i \(-0.623739\pi\)
−0.379019 + 0.925389i \(0.623739\pi\)
\(192\) 0 0
\(193\) 20.5481 1.47908 0.739541 0.673112i \(-0.235043\pi\)
0.739541 + 0.673112i \(0.235043\pi\)
\(194\) 0 0
\(195\) 1.29231 0.0925439
\(196\) 0 0
\(197\) 17.1568 1.22237 0.611184 0.791488i \(-0.290693\pi\)
0.611184 + 0.791488i \(0.290693\pi\)
\(198\) 0 0
\(199\) 9.84693 0.698030 0.349015 0.937117i \(-0.386516\pi\)
0.349015 + 0.937117i \(0.386516\pi\)
\(200\) 0 0
\(201\) 0.519889 0.0366701
\(202\) 0 0
\(203\) 12.4005 0.870346
\(204\) 0 0
\(205\) 2.47634 0.172955
\(206\) 0 0
\(207\) 18.9425 1.31659
\(208\) 0 0
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) −3.34597 −0.230346 −0.115173 0.993345i \(-0.536742\pi\)
−0.115173 + 0.993345i \(0.536742\pi\)
\(212\) 0 0
\(213\) 0.598213 0.0409889
\(214\) 0 0
\(215\) −2.88067 −0.196460
\(216\) 0 0
\(217\) 43.4370 2.94870
\(218\) 0 0
\(219\) −1.80819 −0.122186
\(220\) 0 0
\(221\) 22.7309 1.52905
\(222\) 0 0
\(223\) 4.61466 0.309021 0.154510 0.987991i \(-0.450620\pi\)
0.154510 + 0.987991i \(0.450620\pi\)
\(224\) 0 0
\(225\) 8.89984 0.593323
\(226\) 0 0
\(227\) 25.5399 1.69514 0.847570 0.530684i \(-0.178065\pi\)
0.847570 + 0.530684i \(0.178065\pi\)
\(228\) 0 0
\(229\) −10.1376 −0.669913 −0.334956 0.942234i \(-0.608722\pi\)
−0.334956 + 0.942234i \(0.608722\pi\)
\(230\) 0 0
\(231\) 0.659980 0.0434235
\(232\) 0 0
\(233\) −16.5488 −1.08415 −0.542074 0.840331i \(-0.682361\pi\)
−0.542074 + 0.840331i \(0.682361\pi\)
\(234\) 0 0
\(235\) 8.06244 0.525935
\(236\) 0 0
\(237\) −0.931350 −0.0604977
\(238\) 0 0
\(239\) 17.2743 1.11738 0.558692 0.829375i \(-0.311303\pi\)
0.558692 + 0.829375i \(0.311303\pi\)
\(240\) 0 0
\(241\) −8.20538 −0.528555 −0.264277 0.964447i \(-0.585133\pi\)
−0.264277 + 0.964447i \(0.585133\pi\)
\(242\) 0 0
\(243\) 3.46739 0.222433
\(244\) 0 0
\(245\) −27.0106 −1.72564
\(246\) 0 0
\(247\) 7.03336 0.447522
\(248\) 0 0
\(249\) −1.25865 −0.0797635
\(250\) 0 0
\(251\) 14.1629 0.893956 0.446978 0.894545i \(-0.352500\pi\)
0.446978 + 0.894545i \(0.352500\pi\)
\(252\) 0 0
\(253\) −6.34958 −0.399195
\(254\) 0 0
\(255\) 0.593822 0.0371866
\(256\) 0 0
\(257\) 4.16251 0.259650 0.129825 0.991537i \(-0.458558\pi\)
0.129825 + 0.991537i \(0.458558\pi\)
\(258\) 0 0
\(259\) −46.3104 −2.87759
\(260\) 0 0
\(261\) −7.25234 −0.448908
\(262\) 0 0
\(263\) −21.0445 −1.29766 −0.648829 0.760934i \(-0.724741\pi\)
−0.648829 + 0.760934i \(0.724741\pi\)
\(264\) 0 0
\(265\) 8.93146 0.548655
\(266\) 0 0
\(267\) 1.96108 0.120016
\(268\) 0 0
\(269\) 16.1828 0.986684 0.493342 0.869835i \(-0.335775\pi\)
0.493342 + 0.869835i \(0.335775\pi\)
\(270\) 0 0
\(271\) 8.13639 0.494250 0.247125 0.968984i \(-0.420514\pi\)
0.247125 + 0.968984i \(0.420514\pi\)
\(272\) 0 0
\(273\) −4.64188 −0.280939
\(274\) 0 0
\(275\) −2.98326 −0.179897
\(276\) 0 0
\(277\) 20.8547 1.25304 0.626519 0.779406i \(-0.284479\pi\)
0.626519 + 0.779406i \(0.284479\pi\)
\(278\) 0 0
\(279\) −25.4037 −1.52088
\(280\) 0 0
\(281\) −13.5480 −0.808207 −0.404104 0.914713i \(-0.632417\pi\)
−0.404104 + 0.914713i \(0.632417\pi\)
\(282\) 0 0
\(283\) −11.4618 −0.681336 −0.340668 0.940184i \(-0.610653\pi\)
−0.340668 + 0.940184i \(0.610653\pi\)
\(284\) 0 0
\(285\) 0.183739 0.0108838
\(286\) 0 0
\(287\) −8.89485 −0.525047
\(288\) 0 0
\(289\) −6.55502 −0.385590
\(290\) 0 0
\(291\) −0.807157 −0.0473164
\(292\) 0 0
\(293\) −6.53367 −0.381701 −0.190850 0.981619i \(-0.561125\pi\)
−0.190850 + 0.981619i \(0.561125\pi\)
\(294\) 0 0
\(295\) 2.64383 0.153930
\(296\) 0 0
\(297\) −0.774133 −0.0449197
\(298\) 0 0
\(299\) 44.6589 2.58269
\(300\) 0 0
\(301\) 10.3472 0.596402
\(302\) 0 0
\(303\) −1.43735 −0.0825736
\(304\) 0 0
\(305\) −7.08345 −0.405597
\(306\) 0 0
\(307\) 14.6945 0.838659 0.419329 0.907834i \(-0.362265\pi\)
0.419329 + 0.907834i \(0.362265\pi\)
\(308\) 0 0
\(309\) 0.00509522 0.000289857 0
\(310\) 0 0
\(311\) 3.48959 0.197877 0.0989384 0.995094i \(-0.468455\pi\)
0.0989384 + 0.995094i \(0.468455\pi\)
\(312\) 0 0
\(313\) −33.6367 −1.90126 −0.950630 0.310327i \(-0.899561\pi\)
−0.950630 + 0.310327i \(0.899561\pi\)
\(314\) 0 0
\(315\) 21.6107 1.21763
\(316\) 0 0
\(317\) 19.5336 1.09712 0.548559 0.836112i \(-0.315177\pi\)
0.548559 + 0.836112i \(0.315177\pi\)
\(318\) 0 0
\(319\) 2.43101 0.136110
\(320\) 0 0
\(321\) −1.80744 −0.100882
\(322\) 0 0
\(323\) 3.23187 0.179826
\(324\) 0 0
\(325\) 20.9823 1.16389
\(326\) 0 0
\(327\) −1.73427 −0.0959056
\(328\) 0 0
\(329\) −28.9597 −1.59660
\(330\) 0 0
\(331\) −7.76119 −0.426594 −0.213297 0.976987i \(-0.568420\pi\)
−0.213297 + 0.976987i \(0.568420\pi\)
\(332\) 0 0
\(333\) 27.0842 1.48421
\(334\) 0 0
\(335\) −5.70634 −0.311771
\(336\) 0 0
\(337\) −3.11984 −0.169949 −0.0849743 0.996383i \(-0.527081\pi\)
−0.0849743 + 0.996383i \(0.527081\pi\)
\(338\) 0 0
\(339\) −0.466158 −0.0253182
\(340\) 0 0
\(341\) 8.51543 0.461136
\(342\) 0 0
\(343\) 61.3135 3.31062
\(344\) 0 0
\(345\) 1.16667 0.0628114
\(346\) 0 0
\(347\) −12.5881 −0.675764 −0.337882 0.941188i \(-0.609710\pi\)
−0.337882 + 0.941188i \(0.609710\pi\)
\(348\) 0 0
\(349\) −0.822765 −0.0440416 −0.0220208 0.999758i \(-0.507010\pi\)
−0.0220208 + 0.999758i \(0.507010\pi\)
\(350\) 0 0
\(351\) 5.44475 0.290619
\(352\) 0 0
\(353\) −23.7990 −1.26670 −0.633348 0.773867i \(-0.718320\pi\)
−0.633348 + 0.773867i \(0.718320\pi\)
\(354\) 0 0
\(355\) −6.56604 −0.348489
\(356\) 0 0
\(357\) −2.13297 −0.112889
\(358\) 0 0
\(359\) 9.93003 0.524087 0.262043 0.965056i \(-0.415604\pi\)
0.262043 + 0.965056i \(0.415604\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0.129383 0.00679085
\(364\) 0 0
\(365\) 19.8469 1.03883
\(366\) 0 0
\(367\) −14.2495 −0.743819 −0.371909 0.928269i \(-0.621297\pi\)
−0.371909 + 0.928269i \(0.621297\pi\)
\(368\) 0 0
\(369\) 5.20207 0.270809
\(370\) 0 0
\(371\) −32.0812 −1.66557
\(372\) 0 0
\(373\) −15.8427 −0.820303 −0.410152 0.912017i \(-0.634524\pi\)
−0.410152 + 0.912017i \(0.634524\pi\)
\(374\) 0 0
\(375\) 1.46684 0.0757473
\(376\) 0 0
\(377\) −17.0982 −0.880601
\(378\) 0 0
\(379\) −12.8261 −0.658832 −0.329416 0.944185i \(-0.606852\pi\)
−0.329416 + 0.944185i \(0.606852\pi\)
\(380\) 0 0
\(381\) 2.05692 0.105379
\(382\) 0 0
\(383\) 1.51579 0.0774530 0.0387265 0.999250i \(-0.487670\pi\)
0.0387265 + 0.999250i \(0.487670\pi\)
\(384\) 0 0
\(385\) −7.24400 −0.369188
\(386\) 0 0
\(387\) −6.05146 −0.307613
\(388\) 0 0
\(389\) 1.47555 0.0748132 0.0374066 0.999300i \(-0.488090\pi\)
0.0374066 + 0.999300i \(0.488090\pi\)
\(390\) 0 0
\(391\) 20.5210 1.03779
\(392\) 0 0
\(393\) −1.57610 −0.0795038
\(394\) 0 0
\(395\) 10.2226 0.514354
\(396\) 0 0
\(397\) 15.7378 0.789858 0.394929 0.918712i \(-0.370769\pi\)
0.394929 + 0.918712i \(0.370769\pi\)
\(398\) 0 0
\(399\) −0.659980 −0.0330403
\(400\) 0 0
\(401\) 39.1154 1.95333 0.976665 0.214766i \(-0.0688990\pi\)
0.976665 + 0.214766i \(0.0688990\pi\)
\(402\) 0 0
\(403\) −59.8921 −2.98344
\(404\) 0 0
\(405\) −12.5675 −0.624485
\(406\) 0 0
\(407\) −9.07874 −0.450017
\(408\) 0 0
\(409\) 32.9009 1.62684 0.813422 0.581674i \(-0.197602\pi\)
0.813422 + 0.581674i \(0.197602\pi\)
\(410\) 0 0
\(411\) −1.82715 −0.0901264
\(412\) 0 0
\(413\) −9.49647 −0.467291
\(414\) 0 0
\(415\) 13.8150 0.678152
\(416\) 0 0
\(417\) 1.01813 0.0498579
\(418\) 0 0
\(419\) −18.5406 −0.905768 −0.452884 0.891570i \(-0.649605\pi\)
−0.452884 + 0.891570i \(0.649605\pi\)
\(420\) 0 0
\(421\) 6.49071 0.316338 0.158169 0.987412i \(-0.449441\pi\)
0.158169 + 0.987412i \(0.449441\pi\)
\(422\) 0 0
\(423\) 16.9368 0.823497
\(424\) 0 0
\(425\) 9.64150 0.467682
\(426\) 0 0
\(427\) 25.4433 1.23129
\(428\) 0 0
\(429\) −0.909998 −0.0439351
\(430\) 0 0
\(431\) −31.5380 −1.51913 −0.759566 0.650431i \(-0.774588\pi\)
−0.759566 + 0.650431i \(0.774588\pi\)
\(432\) 0 0
\(433\) 0.533263 0.0256270 0.0128135 0.999918i \(-0.495921\pi\)
0.0128135 + 0.999918i \(0.495921\pi\)
\(434\) 0 0
\(435\) −0.446673 −0.0214163
\(436\) 0 0
\(437\) 6.34958 0.303742
\(438\) 0 0
\(439\) 22.2529 1.06207 0.531037 0.847349i \(-0.321802\pi\)
0.531037 + 0.847349i \(0.321802\pi\)
\(440\) 0 0
\(441\) −56.7415 −2.70198
\(442\) 0 0
\(443\) 21.1549 1.00510 0.502550 0.864548i \(-0.332395\pi\)
0.502550 + 0.864548i \(0.332395\pi\)
\(444\) 0 0
\(445\) −21.5250 −1.02038
\(446\) 0 0
\(447\) −2.41276 −0.114120
\(448\) 0 0
\(449\) −19.9887 −0.943326 −0.471663 0.881779i \(-0.656346\pi\)
−0.471663 + 0.881779i \(0.656346\pi\)
\(450\) 0 0
\(451\) −1.74376 −0.0821102
\(452\) 0 0
\(453\) 2.88199 0.135408
\(454\) 0 0
\(455\) 50.9496 2.38856
\(456\) 0 0
\(457\) −19.0660 −0.891869 −0.445934 0.895066i \(-0.647129\pi\)
−0.445934 + 0.895066i \(0.647129\pi\)
\(458\) 0 0
\(459\) 2.50190 0.116778
\(460\) 0 0
\(461\) 7.00040 0.326041 0.163021 0.986623i \(-0.447876\pi\)
0.163021 + 0.986623i \(0.447876\pi\)
\(462\) 0 0
\(463\) 21.8340 1.01471 0.507356 0.861736i \(-0.330623\pi\)
0.507356 + 0.861736i \(0.330623\pi\)
\(464\) 0 0
\(465\) −1.56462 −0.0725575
\(466\) 0 0
\(467\) −33.9124 −1.56928 −0.784640 0.619952i \(-0.787152\pi\)
−0.784640 + 0.619952i \(0.787152\pi\)
\(468\) 0 0
\(469\) 20.4968 0.946455
\(470\) 0 0
\(471\) 0.148236 0.00683035
\(472\) 0 0
\(473\) 2.02847 0.0932692
\(474\) 0 0
\(475\) 2.98326 0.136881
\(476\) 0 0
\(477\) 18.7624 0.859071
\(478\) 0 0
\(479\) 22.4815 1.02720 0.513602 0.858029i \(-0.328311\pi\)
0.513602 + 0.858029i \(0.328311\pi\)
\(480\) 0 0
\(481\) 63.8541 2.91149
\(482\) 0 0
\(483\) −4.19060 −0.190679
\(484\) 0 0
\(485\) 8.85942 0.402286
\(486\) 0 0
\(487\) 2.01593 0.0913506 0.0456753 0.998956i \(-0.485456\pi\)
0.0456753 + 0.998956i \(0.485456\pi\)
\(488\) 0 0
\(489\) −0.410373 −0.0185577
\(490\) 0 0
\(491\) 13.6022 0.613860 0.306930 0.951732i \(-0.400698\pi\)
0.306930 + 0.951732i \(0.400698\pi\)
\(492\) 0 0
\(493\) −7.85671 −0.353848
\(494\) 0 0
\(495\) 4.23659 0.190420
\(496\) 0 0
\(497\) 23.5848 1.05792
\(498\) 0 0
\(499\) 0.572450 0.0256264 0.0128132 0.999918i \(-0.495921\pi\)
0.0128132 + 0.999918i \(0.495921\pi\)
\(500\) 0 0
\(501\) 1.77592 0.0793423
\(502\) 0 0
\(503\) 43.9411 1.95924 0.979619 0.200865i \(-0.0643753\pi\)
0.979619 + 0.200865i \(0.0643753\pi\)
\(504\) 0 0
\(505\) 15.7765 0.702044
\(506\) 0 0
\(507\) 4.71836 0.209550
\(508\) 0 0
\(509\) 13.5696 0.601463 0.300731 0.953709i \(-0.402769\pi\)
0.300731 + 0.953709i \(0.402769\pi\)
\(510\) 0 0
\(511\) −71.2887 −3.15363
\(512\) 0 0
\(513\) 0.774133 0.0341788
\(514\) 0 0
\(515\) −0.0559255 −0.00246437
\(516\) 0 0
\(517\) −5.67729 −0.249687
\(518\) 0 0
\(519\) −1.35672 −0.0595535
\(520\) 0 0
\(521\) 3.64074 0.159504 0.0797519 0.996815i \(-0.474587\pi\)
0.0797519 + 0.996815i \(0.474587\pi\)
\(522\) 0 0
\(523\) 13.5655 0.593177 0.296588 0.955005i \(-0.404151\pi\)
0.296588 + 0.955005i \(0.404151\pi\)
\(524\) 0 0
\(525\) −1.96889 −0.0859295
\(526\) 0 0
\(527\) −27.5208 −1.19882
\(528\) 0 0
\(529\) 17.3172 0.752923
\(530\) 0 0
\(531\) 5.55393 0.241020
\(532\) 0 0
\(533\) 12.2645 0.531233
\(534\) 0 0
\(535\) 19.8387 0.857700
\(536\) 0 0
\(537\) −2.06624 −0.0891647
\(538\) 0 0
\(539\) 19.0200 0.819248
\(540\) 0 0
\(541\) 9.76498 0.419829 0.209915 0.977720i \(-0.432681\pi\)
0.209915 + 0.977720i \(0.432681\pi\)
\(542\) 0 0
\(543\) 0.596549 0.0256004
\(544\) 0 0
\(545\) 19.0355 0.815393
\(546\) 0 0
\(547\) −16.0294 −0.685367 −0.342683 0.939451i \(-0.611336\pi\)
−0.342683 + 0.939451i \(0.611336\pi\)
\(548\) 0 0
\(549\) −14.8803 −0.635075
\(550\) 0 0
\(551\) −2.43101 −0.103565
\(552\) 0 0
\(553\) −36.7188 −1.56144
\(554\) 0 0
\(555\) 1.66812 0.0708079
\(556\) 0 0
\(557\) 40.9882 1.73673 0.868363 0.495929i \(-0.165173\pi\)
0.868363 + 0.495929i \(0.165173\pi\)
\(558\) 0 0
\(559\) −14.2670 −0.603428
\(560\) 0 0
\(561\) −0.418149 −0.0176543
\(562\) 0 0
\(563\) 24.8857 1.04881 0.524403 0.851470i \(-0.324289\pi\)
0.524403 + 0.851470i \(0.324289\pi\)
\(564\) 0 0
\(565\) 5.11659 0.215257
\(566\) 0 0
\(567\) 45.1417 1.89577
\(568\) 0 0
\(569\) −30.3845 −1.27378 −0.636892 0.770953i \(-0.719780\pi\)
−0.636892 + 0.770953i \(0.719780\pi\)
\(570\) 0 0
\(571\) −46.6318 −1.95148 −0.975741 0.218929i \(-0.929744\pi\)
−0.975741 + 0.218929i \(0.929744\pi\)
\(572\) 0 0
\(573\) −1.35546 −0.0566250
\(574\) 0 0
\(575\) 18.9425 0.789955
\(576\) 0 0
\(577\) −7.07057 −0.294352 −0.147176 0.989110i \(-0.547018\pi\)
−0.147176 + 0.989110i \(0.547018\pi\)
\(578\) 0 0
\(579\) 2.65857 0.110486
\(580\) 0 0
\(581\) −49.6226 −2.05869
\(582\) 0 0
\(583\) −6.28923 −0.260473
\(584\) 0 0
\(585\) −29.7974 −1.23197
\(586\) 0 0
\(587\) −26.7052 −1.10224 −0.551120 0.834426i \(-0.685799\pi\)
−0.551120 + 0.834426i \(0.685799\pi\)
\(588\) 0 0
\(589\) −8.51543 −0.350872
\(590\) 0 0
\(591\) 2.21979 0.0913102
\(592\) 0 0
\(593\) 23.1728 0.951593 0.475797 0.879555i \(-0.342160\pi\)
0.475797 + 0.879555i \(0.342160\pi\)
\(594\) 0 0
\(595\) 23.4116 0.959784
\(596\) 0 0
\(597\) 1.27403 0.0521424
\(598\) 0 0
\(599\) −9.95574 −0.406781 −0.203390 0.979098i \(-0.565196\pi\)
−0.203390 + 0.979098i \(0.565196\pi\)
\(600\) 0 0
\(601\) 10.3446 0.421967 0.210983 0.977490i \(-0.432333\pi\)
0.210983 + 0.977490i \(0.432333\pi\)
\(602\) 0 0
\(603\) −11.9874 −0.488164
\(604\) 0 0
\(605\) −1.42012 −0.0577361
\(606\) 0 0
\(607\) 22.8505 0.927473 0.463736 0.885973i \(-0.346508\pi\)
0.463736 + 0.885973i \(0.346508\pi\)
\(608\) 0 0
\(609\) 1.60442 0.0650143
\(610\) 0 0
\(611\) 39.9304 1.61541
\(612\) 0 0
\(613\) 28.4830 1.15042 0.575208 0.818007i \(-0.304921\pi\)
0.575208 + 0.818007i \(0.304921\pi\)
\(614\) 0 0
\(615\) 0.320397 0.0129196
\(616\) 0 0
\(617\) −45.0965 −1.81552 −0.907759 0.419493i \(-0.862208\pi\)
−0.907759 + 0.419493i \(0.862208\pi\)
\(618\) 0 0
\(619\) 11.5698 0.465030 0.232515 0.972593i \(-0.425304\pi\)
0.232515 + 0.972593i \(0.425304\pi\)
\(620\) 0 0
\(621\) 4.91542 0.197249
\(622\) 0 0
\(623\) 77.3163 3.09761
\(624\) 0 0
\(625\) −1.18386 −0.0473544
\(626\) 0 0
\(627\) −0.129383 −0.00516706
\(628\) 0 0
\(629\) 29.3413 1.16991
\(630\) 0 0
\(631\) −31.8995 −1.26990 −0.634950 0.772554i \(-0.718979\pi\)
−0.634950 + 0.772554i \(0.718979\pi\)
\(632\) 0 0
\(633\) −0.432912 −0.0172067
\(634\) 0 0
\(635\) −22.5769 −0.895938
\(636\) 0 0
\(637\) −133.774 −5.30033
\(638\) 0 0
\(639\) −13.7933 −0.545656
\(640\) 0 0
\(641\) −34.7177 −1.37127 −0.685633 0.727947i \(-0.740474\pi\)
−0.685633 + 0.727947i \(0.740474\pi\)
\(642\) 0 0
\(643\) 47.7147 1.88168 0.940842 0.338845i \(-0.110036\pi\)
0.940842 + 0.338845i \(0.110036\pi\)
\(644\) 0 0
\(645\) −0.372710 −0.0146754
\(646\) 0 0
\(647\) 3.02131 0.118780 0.0593900 0.998235i \(-0.481084\pi\)
0.0593900 + 0.998235i \(0.481084\pi\)
\(648\) 0 0
\(649\) −1.86170 −0.0730780
\(650\) 0 0
\(651\) 5.62001 0.220266
\(652\) 0 0
\(653\) −5.70288 −0.223171 −0.111585 0.993755i \(-0.535593\pi\)
−0.111585 + 0.993755i \(0.535593\pi\)
\(654\) 0 0
\(655\) 17.2994 0.675945
\(656\) 0 0
\(657\) 41.6926 1.62658
\(658\) 0 0
\(659\) −15.3068 −0.596269 −0.298135 0.954524i \(-0.596364\pi\)
−0.298135 + 0.954524i \(0.596364\pi\)
\(660\) 0 0
\(661\) −27.4937 −1.06938 −0.534691 0.845048i \(-0.679572\pi\)
−0.534691 + 0.845048i \(0.679572\pi\)
\(662\) 0 0
\(663\) 2.94099 0.114219
\(664\) 0 0
\(665\) 7.24400 0.280910
\(666\) 0 0
\(667\) −15.4359 −0.597681
\(668\) 0 0
\(669\) 0.597059 0.0230836
\(670\) 0 0
\(671\) 4.98792 0.192557
\(672\) 0 0
\(673\) −19.3829 −0.747156 −0.373578 0.927599i \(-0.621869\pi\)
−0.373578 + 0.927599i \(0.621869\pi\)
\(674\) 0 0
\(675\) 2.30944 0.0888903
\(676\) 0 0
\(677\) −35.9454 −1.38150 −0.690748 0.723096i \(-0.742719\pi\)
−0.690748 + 0.723096i \(0.742719\pi\)
\(678\) 0 0
\(679\) −31.8225 −1.22123
\(680\) 0 0
\(681\) 3.30443 0.126626
\(682\) 0 0
\(683\) −18.4639 −0.706500 −0.353250 0.935529i \(-0.614924\pi\)
−0.353250 + 0.935529i \(0.614924\pi\)
\(684\) 0 0
\(685\) 20.0549 0.766259
\(686\) 0 0
\(687\) −1.31164 −0.0500421
\(688\) 0 0
\(689\) 44.2344 1.68520
\(690\) 0 0
\(691\) −12.1021 −0.460387 −0.230194 0.973145i \(-0.573936\pi\)
−0.230194 + 0.973145i \(0.573936\pi\)
\(692\) 0 0
\(693\) −15.2175 −0.578066
\(694\) 0 0
\(695\) −11.1750 −0.423894
\(696\) 0 0
\(697\) 5.63559 0.213463
\(698\) 0 0
\(699\) −2.14114 −0.0809852
\(700\) 0 0
\(701\) 16.5740 0.625992 0.312996 0.949754i \(-0.398667\pi\)
0.312996 + 0.949754i \(0.398667\pi\)
\(702\) 0 0
\(703\) 9.07874 0.342411
\(704\) 0 0
\(705\) 1.04314 0.0392870
\(706\) 0 0
\(707\) −56.6681 −2.13122
\(708\) 0 0
\(709\) −16.7084 −0.627497 −0.313749 0.949506i \(-0.601585\pi\)
−0.313749 + 0.949506i \(0.601585\pi\)
\(710\) 0 0
\(711\) 21.4747 0.805363
\(712\) 0 0
\(713\) −54.0694 −2.02492
\(714\) 0 0
\(715\) 9.98821 0.373538
\(716\) 0 0
\(717\) 2.23501 0.0834679
\(718\) 0 0
\(719\) 4.86279 0.181351 0.0906756 0.995880i \(-0.471097\pi\)
0.0906756 + 0.995880i \(0.471097\pi\)
\(720\) 0 0
\(721\) 0.200881 0.00748119
\(722\) 0 0
\(723\) −1.06164 −0.0394827
\(724\) 0 0
\(725\) −7.25234 −0.269345
\(726\) 0 0
\(727\) −27.7576 −1.02947 −0.514736 0.857349i \(-0.672110\pi\)
−0.514736 + 0.857349i \(0.672110\pi\)
\(728\) 0 0
\(729\) −26.1002 −0.966676
\(730\) 0 0
\(731\) −6.55575 −0.242473
\(732\) 0 0
\(733\) −14.0117 −0.517532 −0.258766 0.965940i \(-0.583316\pi\)
−0.258766 + 0.965940i \(0.583316\pi\)
\(734\) 0 0
\(735\) −3.49472 −0.128905
\(736\) 0 0
\(737\) 4.01821 0.148013
\(738\) 0 0
\(739\) −4.27744 −0.157348 −0.0786740 0.996900i \(-0.525069\pi\)
−0.0786740 + 0.996900i \(0.525069\pi\)
\(740\) 0 0
\(741\) 0.909998 0.0334296
\(742\) 0 0
\(743\) −10.2413 −0.375717 −0.187858 0.982196i \(-0.560155\pi\)
−0.187858 + 0.982196i \(0.560155\pi\)
\(744\) 0 0
\(745\) 26.4827 0.970250
\(746\) 0 0
\(747\) 29.0213 1.06183
\(748\) 0 0
\(749\) −71.2591 −2.60375
\(750\) 0 0
\(751\) −38.2639 −1.39627 −0.698134 0.715967i \(-0.745986\pi\)
−0.698134 + 0.715967i \(0.745986\pi\)
\(752\) 0 0
\(753\) 1.83244 0.0667779
\(754\) 0 0
\(755\) −31.6330 −1.15124
\(756\) 0 0
\(757\) −34.3797 −1.24955 −0.624776 0.780804i \(-0.714810\pi\)
−0.624776 + 0.780804i \(0.714810\pi\)
\(758\) 0 0
\(759\) −0.821529 −0.0298196
\(760\) 0 0
\(761\) −27.3794 −0.992501 −0.496250 0.868179i \(-0.665290\pi\)
−0.496250 + 0.868179i \(0.665290\pi\)
\(762\) 0 0
\(763\) −68.3744 −2.47532
\(764\) 0 0
\(765\) −13.6921 −0.495039
\(766\) 0 0
\(767\) 13.0940 0.472796
\(768\) 0 0
\(769\) 16.1105 0.580959 0.290479 0.956881i \(-0.406185\pi\)
0.290479 + 0.956881i \(0.406185\pi\)
\(770\) 0 0
\(771\) 0.538558 0.0193957
\(772\) 0 0
\(773\) 1.40536 0.0505473 0.0252737 0.999681i \(-0.491954\pi\)
0.0252737 + 0.999681i \(0.491954\pi\)
\(774\) 0 0
\(775\) −25.4037 −0.912529
\(776\) 0 0
\(777\) −5.99179 −0.214954
\(778\) 0 0
\(779\) 1.74376 0.0624765
\(780\) 0 0
\(781\) 4.62358 0.165445
\(782\) 0 0
\(783\) −1.88192 −0.0672545
\(784\) 0 0
\(785\) −1.62705 −0.0580719
\(786\) 0 0
\(787\) −7.58377 −0.270332 −0.135166 0.990823i \(-0.543157\pi\)
−0.135166 + 0.990823i \(0.543157\pi\)
\(788\) 0 0
\(789\) −2.72280 −0.0969343
\(790\) 0 0
\(791\) −18.3785 −0.653463
\(792\) 0 0
\(793\) −35.0819 −1.24579
\(794\) 0 0
\(795\) 1.15558 0.0409842
\(796\) 0 0
\(797\) −23.4257 −0.829782 −0.414891 0.909871i \(-0.636180\pi\)
−0.414891 + 0.909871i \(0.636180\pi\)
\(798\) 0 0
\(799\) 18.3483 0.649115
\(800\) 0 0
\(801\) −45.2178 −1.59769
\(802\) 0 0
\(803\) −13.9755 −0.493185
\(804\) 0 0
\(805\) 45.9964 1.62116
\(806\) 0 0
\(807\) 2.09378 0.0737047
\(808\) 0 0
\(809\) −11.5024 −0.404404 −0.202202 0.979344i \(-0.564810\pi\)
−0.202202 + 0.979344i \(0.564810\pi\)
\(810\) 0 0
\(811\) 46.7550 1.64179 0.820895 0.571079i \(-0.193475\pi\)
0.820895 + 0.571079i \(0.193475\pi\)
\(812\) 0 0
\(813\) 1.05271 0.0369202
\(814\) 0 0
\(815\) 4.50428 0.157778
\(816\) 0 0
\(817\) −2.02847 −0.0709672
\(818\) 0 0
\(819\) 107.030 3.73995
\(820\) 0 0
\(821\) 12.4924 0.435986 0.217993 0.975950i \(-0.430049\pi\)
0.217993 + 0.975950i \(0.430049\pi\)
\(822\) 0 0
\(823\) −0.669106 −0.0233236 −0.0116618 0.999932i \(-0.503712\pi\)
−0.0116618 + 0.999932i \(0.503712\pi\)
\(824\) 0 0
\(825\) −0.385983 −0.0134382
\(826\) 0 0
\(827\) −13.4167 −0.466543 −0.233272 0.972412i \(-0.574943\pi\)
−0.233272 + 0.972412i \(0.574943\pi\)
\(828\) 0 0
\(829\) 19.8478 0.689343 0.344671 0.938723i \(-0.387990\pi\)
0.344671 + 0.938723i \(0.387990\pi\)
\(830\) 0 0
\(831\) 2.69825 0.0936012
\(832\) 0 0
\(833\) −61.4700 −2.12981
\(834\) 0 0
\(835\) −19.4927 −0.674571
\(836\) 0 0
\(837\) −6.59207 −0.227855
\(838\) 0 0
\(839\) 11.5515 0.398802 0.199401 0.979918i \(-0.436100\pi\)
0.199401 + 0.979918i \(0.436100\pi\)
\(840\) 0 0
\(841\) −23.0902 −0.796213
\(842\) 0 0
\(843\) −1.75289 −0.0603726
\(844\) 0 0
\(845\) −51.7891 −1.78160
\(846\) 0 0
\(847\) 5.10098 0.175272
\(848\) 0 0
\(849\) −1.48297 −0.0508953
\(850\) 0 0
\(851\) 57.6462 1.97609
\(852\) 0 0
\(853\) −18.0519 −0.618085 −0.309043 0.951048i \(-0.600009\pi\)
−0.309043 + 0.951048i \(0.600009\pi\)
\(854\) 0 0
\(855\) −4.23659 −0.144888
\(856\) 0 0
\(857\) 4.15199 0.141829 0.0709146 0.997482i \(-0.477408\pi\)
0.0709146 + 0.997482i \(0.477408\pi\)
\(858\) 0 0
\(859\) −5.08887 −0.173630 −0.0868149 0.996224i \(-0.527669\pi\)
−0.0868149 + 0.996224i \(0.527669\pi\)
\(860\) 0 0
\(861\) −1.15084 −0.0392206
\(862\) 0 0
\(863\) 11.9500 0.406782 0.203391 0.979098i \(-0.434804\pi\)
0.203391 + 0.979098i \(0.434804\pi\)
\(864\) 0 0
\(865\) 14.8915 0.506327
\(866\) 0 0
\(867\) −0.848109 −0.0288033
\(868\) 0 0
\(869\) −7.19839 −0.244189
\(870\) 0 0
\(871\) −28.2615 −0.957606
\(872\) 0 0
\(873\) 18.6111 0.629889
\(874\) 0 0
\(875\) 57.8307 1.95503
\(876\) 0 0
\(877\) 33.5552 1.13308 0.566538 0.824035i \(-0.308282\pi\)
0.566538 + 0.824035i \(0.308282\pi\)
\(878\) 0 0
\(879\) −0.845346 −0.0285128
\(880\) 0 0
\(881\) −31.5508 −1.06297 −0.531486 0.847067i \(-0.678366\pi\)
−0.531486 + 0.847067i \(0.678366\pi\)
\(882\) 0 0
\(883\) −58.9397 −1.98348 −0.991740 0.128263i \(-0.959060\pi\)
−0.991740 + 0.128263i \(0.959060\pi\)
\(884\) 0 0
\(885\) 0.342067 0.0114985
\(886\) 0 0
\(887\) 18.3167 0.615014 0.307507 0.951546i \(-0.400505\pi\)
0.307507 + 0.951546i \(0.400505\pi\)
\(888\) 0 0
\(889\) 81.0948 2.71983
\(890\) 0 0
\(891\) 8.84962 0.296473
\(892\) 0 0
\(893\) 5.67729 0.189983
\(894\) 0 0
\(895\) 22.6792 0.758082
\(896\) 0 0
\(897\) 5.77811 0.192925
\(898\) 0 0
\(899\) 20.7011 0.690420
\(900\) 0 0
\(901\) 20.3260 0.677156
\(902\) 0 0
\(903\) 1.33875 0.0445508
\(904\) 0 0
\(905\) −6.54777 −0.217655
\(906\) 0 0
\(907\) 11.7843 0.391292 0.195646 0.980675i \(-0.437320\pi\)
0.195646 + 0.980675i \(0.437320\pi\)
\(908\) 0 0
\(909\) 33.1418 1.09924
\(910\) 0 0
\(911\) 6.83787 0.226549 0.113274 0.993564i \(-0.463866\pi\)
0.113274 + 0.993564i \(0.463866\pi\)
\(912\) 0 0
\(913\) −9.72806 −0.321952
\(914\) 0 0
\(915\) −0.916478 −0.0302978
\(916\) 0 0
\(917\) −62.1384 −2.05199
\(918\) 0 0
\(919\) −44.7520 −1.47623 −0.738116 0.674673i \(-0.764285\pi\)
−0.738116 + 0.674673i \(0.764285\pi\)
\(920\) 0 0
\(921\) 1.90122 0.0626473
\(922\) 0 0
\(923\) −32.5193 −1.07039
\(924\) 0 0
\(925\) 27.0842 0.890525
\(926\) 0 0
\(927\) −0.117483 −0.00385866
\(928\) 0 0
\(929\) −6.54839 −0.214846 −0.107423 0.994213i \(-0.534260\pi\)
−0.107423 + 0.994213i \(0.534260\pi\)
\(930\) 0 0
\(931\) −19.0200 −0.623354
\(932\) 0 0
\(933\) 0.451495 0.0147813
\(934\) 0 0
\(935\) 4.58964 0.150097
\(936\) 0 0
\(937\) 16.9825 0.554793 0.277396 0.960756i \(-0.410529\pi\)
0.277396 + 0.960756i \(0.410529\pi\)
\(938\) 0 0
\(939\) −4.35202 −0.142023
\(940\) 0 0
\(941\) −44.4202 −1.44806 −0.724029 0.689770i \(-0.757712\pi\)
−0.724029 + 0.689770i \(0.757712\pi\)
\(942\) 0 0
\(943\) 11.0721 0.360558
\(944\) 0 0
\(945\) 5.60781 0.182422
\(946\) 0 0
\(947\) 36.6101 1.18967 0.594834 0.803849i \(-0.297218\pi\)
0.594834 + 0.803849i \(0.297218\pi\)
\(948\) 0 0
\(949\) 98.2947 3.19078
\(950\) 0 0
\(951\) 2.52732 0.0819540
\(952\) 0 0
\(953\) 18.9783 0.614768 0.307384 0.951586i \(-0.400546\pi\)
0.307384 + 0.951586i \(0.400546\pi\)
\(954\) 0 0
\(955\) 14.8776 0.481428
\(956\) 0 0
\(957\) 0.314532 0.0101674
\(958\) 0 0
\(959\) −72.0359 −2.32616
\(960\) 0 0
\(961\) 41.5126 1.33911
\(962\) 0 0
\(963\) 41.6753 1.34297
\(964\) 0 0
\(965\) −29.1807 −0.939360
\(966\) 0 0
\(967\) 4.43383 0.142582 0.0712912 0.997456i \(-0.477288\pi\)
0.0712912 + 0.997456i \(0.477288\pi\)
\(968\) 0 0
\(969\) 0.418149 0.0134329
\(970\) 0 0
\(971\) −59.2517 −1.90148 −0.950738 0.309995i \(-0.899673\pi\)
−0.950738 + 0.309995i \(0.899673\pi\)
\(972\) 0 0
\(973\) 40.1400 1.28683
\(974\) 0 0
\(975\) 2.71476 0.0869419
\(976\) 0 0
\(977\) 18.2522 0.583939 0.291970 0.956428i \(-0.405689\pi\)
0.291970 + 0.956428i \(0.405689\pi\)
\(978\) 0 0
\(979\) 15.1572 0.484425
\(980\) 0 0
\(981\) 39.9881 1.27672
\(982\) 0 0
\(983\) −18.0170 −0.574654 −0.287327 0.957833i \(-0.592767\pi\)
−0.287327 + 0.957833i \(0.592767\pi\)
\(984\) 0 0
\(985\) −24.3647 −0.776323
\(986\) 0 0
\(987\) −3.74690 −0.119265
\(988\) 0 0
\(989\) −12.8799 −0.409558
\(990\) 0 0
\(991\) 34.6175 1.09966 0.549831 0.835276i \(-0.314692\pi\)
0.549831 + 0.835276i \(0.314692\pi\)
\(992\) 0 0
\(993\) −1.00417 −0.0318663
\(994\) 0 0
\(995\) −13.9838 −0.443317
\(996\) 0 0
\(997\) 6.73230 0.213214 0.106607 0.994301i \(-0.466001\pi\)
0.106607 + 0.994301i \(0.466001\pi\)
\(998\) 0 0
\(999\) 7.02815 0.222361
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1672.2.a.h.1.4 6
4.3 odd 2 3344.2.a.y.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1672.2.a.h.1.4 6 1.1 even 1 trivial
3344.2.a.y.1.3 6 4.3 odd 2