Properties

Label 1666.2.a.b.1.1
Level $1666$
Weight $2$
Character 1666.1
Self dual yes
Analytic conductor $13.303$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1666,2,Mod(1,1666)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1666.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1666, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1666 = 2 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1666.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,-2,1,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.3030769767\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 238)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1666.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -2.00000 q^{3} +1.00000 q^{4} -4.00000 q^{5} +2.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +4.00000 q^{10} -4.00000 q^{11} -2.00000 q^{12} +4.00000 q^{13} +8.00000 q^{15} +1.00000 q^{16} +1.00000 q^{17} -1.00000 q^{18} +6.00000 q^{19} -4.00000 q^{20} +4.00000 q^{22} +2.00000 q^{24} +11.0000 q^{25} -4.00000 q^{26} +4.00000 q^{27} +6.00000 q^{29} -8.00000 q^{30} -4.00000 q^{31} -1.00000 q^{32} +8.00000 q^{33} -1.00000 q^{34} +1.00000 q^{36} -10.0000 q^{37} -6.00000 q^{38} -8.00000 q^{39} +4.00000 q^{40} -6.00000 q^{41} -4.00000 q^{44} -4.00000 q^{45} -4.00000 q^{47} -2.00000 q^{48} -11.0000 q^{50} -2.00000 q^{51} +4.00000 q^{52} +14.0000 q^{53} -4.00000 q^{54} +16.0000 q^{55} -12.0000 q^{57} -6.00000 q^{58} +6.00000 q^{59} +8.00000 q^{60} +12.0000 q^{61} +4.00000 q^{62} +1.00000 q^{64} -16.0000 q^{65} -8.00000 q^{66} +4.00000 q^{67} +1.00000 q^{68} -8.00000 q^{71} -1.00000 q^{72} -2.00000 q^{73} +10.0000 q^{74} -22.0000 q^{75} +6.00000 q^{76} +8.00000 q^{78} -4.00000 q^{80} -11.0000 q^{81} +6.00000 q^{82} -10.0000 q^{83} -4.00000 q^{85} -12.0000 q^{87} +4.00000 q^{88} -10.0000 q^{89} +4.00000 q^{90} +8.00000 q^{93} +4.00000 q^{94} -24.0000 q^{95} +2.00000 q^{96} -6.00000 q^{97} -4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 1.00000 0.500000
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 2.00000 0.816497
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 4.00000 1.26491
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) −2.00000 −0.577350
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 8.00000 2.06559
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) −1.00000 −0.235702
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) −4.00000 −0.894427
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 2.00000 0.408248
\(25\) 11.0000 2.20000
\(26\) −4.00000 −0.784465
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) −8.00000 −1.46059
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.00000 −0.176777
\(33\) 8.00000 1.39262
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −6.00000 −0.973329
\(39\) −8.00000 −1.28103
\(40\) 4.00000 0.632456
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) −4.00000 −0.603023
\(45\) −4.00000 −0.596285
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) −2.00000 −0.288675
\(49\) 0 0
\(50\) −11.0000 −1.55563
\(51\) −2.00000 −0.280056
\(52\) 4.00000 0.554700
\(53\) 14.0000 1.92305 0.961524 0.274721i \(-0.0885855\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) −4.00000 −0.544331
\(55\) 16.0000 2.15744
\(56\) 0 0
\(57\) −12.0000 −1.58944
\(58\) −6.00000 −0.787839
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 8.00000 1.03280
\(61\) 12.0000 1.53644 0.768221 0.640184i \(-0.221142\pi\)
0.768221 + 0.640184i \(0.221142\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −16.0000 −1.98456
\(66\) −8.00000 −0.984732
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 1.00000 0.121268
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) −1.00000 −0.117851
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 10.0000 1.16248
\(75\) −22.0000 −2.54034
\(76\) 6.00000 0.688247
\(77\) 0 0
\(78\) 8.00000 0.905822
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −4.00000 −0.447214
\(81\) −11.0000 −1.22222
\(82\) 6.00000 0.662589
\(83\) −10.0000 −1.09764 −0.548821 0.835940i \(-0.684923\pi\)
−0.548821 + 0.835940i \(0.684923\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 0 0
\(87\) −12.0000 −1.28654
\(88\) 4.00000 0.426401
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 4.00000 0.421637
\(91\) 0 0
\(92\) 0 0
\(93\) 8.00000 0.829561
\(94\) 4.00000 0.412568
\(95\) −24.0000 −2.46235
\(96\) 2.00000 0.204124
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 11.0000 1.10000
\(101\) −16.0000 −1.59206 −0.796030 0.605257i \(-0.793070\pi\)
−0.796030 + 0.605257i \(0.793070\pi\)
\(102\) 2.00000 0.198030
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) −14.0000 −1.35980
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 4.00000 0.384900
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) −16.0000 −1.52554
\(111\) 20.0000 1.89832
\(112\) 0 0
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 12.0000 1.12390
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 4.00000 0.369800
\(118\) −6.00000 −0.552345
\(119\) 0 0
\(120\) −8.00000 −0.730297
\(121\) 5.00000 0.454545
\(122\) −12.0000 −1.08643
\(123\) 12.0000 1.08200
\(124\) −4.00000 −0.359211
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 16.0000 1.40329
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 8.00000 0.696311
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) −16.0000 −1.37706
\(136\) −1.00000 −0.0857493
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) 0 0
\(139\) −10.0000 −0.848189 −0.424094 0.905618i \(-0.639408\pi\)
−0.424094 + 0.905618i \(0.639408\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 8.00000 0.671345
\(143\) −16.0000 −1.33799
\(144\) 1.00000 0.0833333
\(145\) −24.0000 −1.99309
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) −10.0000 −0.821995
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 22.0000 1.79629
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) −6.00000 −0.486664
\(153\) 1.00000 0.0808452
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) −8.00000 −0.640513
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) −28.0000 −2.22054
\(160\) 4.00000 0.316228
\(161\) 0 0
\(162\) 11.0000 0.864242
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) −6.00000 −0.468521
\(165\) −32.0000 −2.49120
\(166\) 10.0000 0.776151
\(167\) 20.0000 1.54765 0.773823 0.633402i \(-0.218342\pi\)
0.773823 + 0.633402i \(0.218342\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 4.00000 0.306786
\(171\) 6.00000 0.458831
\(172\) 0 0
\(173\) 8.00000 0.608229 0.304114 0.952636i \(-0.401639\pi\)
0.304114 + 0.952636i \(0.401639\pi\)
\(174\) 12.0000 0.909718
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) −12.0000 −0.901975
\(178\) 10.0000 0.749532
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) −4.00000 −0.298142
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) −24.0000 −1.77413
\(184\) 0 0
\(185\) 40.0000 2.94086
\(186\) −8.00000 −0.586588
\(187\) −4.00000 −0.292509
\(188\) −4.00000 −0.291730
\(189\) 0 0
\(190\) 24.0000 1.74114
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) −2.00000 −0.144338
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 6.00000 0.430775
\(195\) 32.0000 2.29157
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 4.00000 0.284268
\(199\) −28.0000 −1.98487 −0.992434 0.122782i \(-0.960818\pi\)
−0.992434 + 0.122782i \(0.960818\pi\)
\(200\) −11.0000 −0.777817
\(201\) −8.00000 −0.564276
\(202\) 16.0000 1.12576
\(203\) 0 0
\(204\) −2.00000 −0.140028
\(205\) 24.0000 1.67623
\(206\) −4.00000 −0.278693
\(207\) 0 0
\(208\) 4.00000 0.277350
\(209\) −24.0000 −1.66011
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 14.0000 0.961524
\(213\) 16.0000 1.09630
\(214\) 0 0
\(215\) 0 0
\(216\) −4.00000 −0.272166
\(217\) 0 0
\(218\) 2.00000 0.135457
\(219\) 4.00000 0.270295
\(220\) 16.0000 1.07872
\(221\) 4.00000 0.269069
\(222\) −20.0000 −1.34231
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) 0 0
\(225\) 11.0000 0.733333
\(226\) −14.0000 −0.931266
\(227\) 2.00000 0.132745 0.0663723 0.997795i \(-0.478857\pi\)
0.0663723 + 0.997795i \(0.478857\pi\)
\(228\) −12.0000 −0.794719
\(229\) 28.0000 1.85029 0.925146 0.379611i \(-0.123942\pi\)
0.925146 + 0.379611i \(0.123942\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) 26.0000 1.70332 0.851658 0.524097i \(-0.175597\pi\)
0.851658 + 0.524097i \(0.175597\pi\)
\(234\) −4.00000 −0.261488
\(235\) 16.0000 1.04372
\(236\) 6.00000 0.390567
\(237\) 0 0
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 8.00000 0.516398
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) −5.00000 −0.321412
\(243\) 10.0000 0.641500
\(244\) 12.0000 0.768221
\(245\) 0 0
\(246\) −12.0000 −0.765092
\(247\) 24.0000 1.52708
\(248\) 4.00000 0.254000
\(249\) 20.0000 1.26745
\(250\) 24.0000 1.51789
\(251\) −14.0000 −0.883672 −0.441836 0.897096i \(-0.645673\pi\)
−0.441836 + 0.897096i \(0.645673\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.00000 0.501965
\(255\) 8.00000 0.500979
\(256\) 1.00000 0.0625000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −16.0000 −0.992278
\(261\) 6.00000 0.371391
\(262\) −18.0000 −1.11204
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) −8.00000 −0.492366
\(265\) −56.0000 −3.44005
\(266\) 0 0
\(267\) 20.0000 1.22398
\(268\) 4.00000 0.244339
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 16.0000 0.973729
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) −2.00000 −0.120824
\(275\) −44.0000 −2.65330
\(276\) 0 0
\(277\) 18.0000 1.08152 0.540758 0.841178i \(-0.318138\pi\)
0.540758 + 0.841178i \(0.318138\pi\)
\(278\) 10.0000 0.599760
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) −8.00000 −0.476393
\(283\) −14.0000 −0.832214 −0.416107 0.909316i \(-0.636606\pi\)
−0.416107 + 0.909316i \(0.636606\pi\)
\(284\) −8.00000 −0.474713
\(285\) 48.0000 2.84327
\(286\) 16.0000 0.946100
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) 1.00000 0.0588235
\(290\) 24.0000 1.40933
\(291\) 12.0000 0.703452
\(292\) −2.00000 −0.117041
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) 10.0000 0.581238
\(297\) −16.0000 −0.928414
\(298\) 2.00000 0.115857
\(299\) 0 0
\(300\) −22.0000 −1.27017
\(301\) 0 0
\(302\) 16.0000 0.920697
\(303\) 32.0000 1.83835
\(304\) 6.00000 0.344124
\(305\) −48.0000 −2.74847
\(306\) −1.00000 −0.0571662
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) −16.0000 −0.908739
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 8.00000 0.452911
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) 0 0
\(317\) −22.0000 −1.23564 −0.617822 0.786318i \(-0.711985\pi\)
−0.617822 + 0.786318i \(0.711985\pi\)
\(318\) 28.0000 1.57016
\(319\) −24.0000 −1.34374
\(320\) −4.00000 −0.223607
\(321\) 0 0
\(322\) 0 0
\(323\) 6.00000 0.333849
\(324\) −11.0000 −0.611111
\(325\) 44.0000 2.44068
\(326\) −4.00000 −0.221540
\(327\) 4.00000 0.221201
\(328\) 6.00000 0.331295
\(329\) 0 0
\(330\) 32.0000 1.76154
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) −10.0000 −0.548821
\(333\) −10.0000 −0.547997
\(334\) −20.0000 −1.09435
\(335\) −16.0000 −0.874173
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) −3.00000 −0.163178
\(339\) −28.0000 −1.52075
\(340\) −4.00000 −0.216930
\(341\) 16.0000 0.866449
\(342\) −6.00000 −0.324443
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −8.00000 −0.430083
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) −12.0000 −0.643268
\(349\) −20.0000 −1.07058 −0.535288 0.844670i \(-0.679797\pi\)
−0.535288 + 0.844670i \(0.679797\pi\)
\(350\) 0 0
\(351\) 16.0000 0.854017
\(352\) 4.00000 0.213201
\(353\) −26.0000 −1.38384 −0.691920 0.721974i \(-0.743235\pi\)
−0.691920 + 0.721974i \(0.743235\pi\)
\(354\) 12.0000 0.637793
\(355\) 32.0000 1.69838
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 4.00000 0.210819
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) −10.0000 −0.524864
\(364\) 0 0
\(365\) 8.00000 0.418739
\(366\) 24.0000 1.25450
\(367\) 24.0000 1.25279 0.626395 0.779506i \(-0.284530\pi\)
0.626395 + 0.779506i \(0.284530\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) −40.0000 −2.07950
\(371\) 0 0
\(372\) 8.00000 0.414781
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 4.00000 0.206835
\(375\) 48.0000 2.47871
\(376\) 4.00000 0.206284
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) −24.0000 −1.23117
\(381\) 16.0000 0.819705
\(382\) 24.0000 1.22795
\(383\) −4.00000 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(384\) 2.00000 0.102062
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) 0 0
\(388\) −6.00000 −0.304604
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) −32.0000 −1.62038
\(391\) 0 0
\(392\) 0 0
\(393\) −36.0000 −1.81596
\(394\) −2.00000 −0.100759
\(395\) 0 0
\(396\) −4.00000 −0.201008
\(397\) 16.0000 0.803017 0.401508 0.915855i \(-0.368486\pi\)
0.401508 + 0.915855i \(0.368486\pi\)
\(398\) 28.0000 1.40351
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 8.00000 0.399004
\(403\) −16.0000 −0.797017
\(404\) −16.0000 −0.796030
\(405\) 44.0000 2.18638
\(406\) 0 0
\(407\) 40.0000 1.98273
\(408\) 2.00000 0.0990148
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) −24.0000 −1.18528
\(411\) −4.00000 −0.197305
\(412\) 4.00000 0.197066
\(413\) 0 0
\(414\) 0 0
\(415\) 40.0000 1.96352
\(416\) −4.00000 −0.196116
\(417\) 20.0000 0.979404
\(418\) 24.0000 1.17388
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) −18.0000 −0.877266 −0.438633 0.898666i \(-0.644537\pi\)
−0.438633 + 0.898666i \(0.644537\pi\)
\(422\) 8.00000 0.389434
\(423\) −4.00000 −0.194487
\(424\) −14.0000 −0.679900
\(425\) 11.0000 0.533578
\(426\) −16.0000 −0.775203
\(427\) 0 0
\(428\) 0 0
\(429\) 32.0000 1.54497
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 4.00000 0.192450
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) 48.0000 2.30142
\(436\) −2.00000 −0.0957826
\(437\) 0 0
\(438\) −4.00000 −0.191127
\(439\) −40.0000 −1.90910 −0.954548 0.298057i \(-0.903661\pi\)
−0.954548 + 0.298057i \(0.903661\pi\)
\(440\) −16.0000 −0.762770
\(441\) 0 0
\(442\) −4.00000 −0.190261
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 20.0000 0.949158
\(445\) 40.0000 1.89618
\(446\) 24.0000 1.13643
\(447\) 4.00000 0.189194
\(448\) 0 0
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) −11.0000 −0.518545
\(451\) 24.0000 1.13012
\(452\) 14.0000 0.658505
\(453\) 32.0000 1.50349
\(454\) −2.00000 −0.0938647
\(455\) 0 0
\(456\) 12.0000 0.561951
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) −28.0000 −1.30835
\(459\) 4.00000 0.186704
\(460\) 0 0
\(461\) 20.0000 0.931493 0.465746 0.884918i \(-0.345786\pi\)
0.465746 + 0.884918i \(0.345786\pi\)
\(462\) 0 0
\(463\) −40.0000 −1.85896 −0.929479 0.368875i \(-0.879743\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(464\) 6.00000 0.278543
\(465\) −32.0000 −1.48396
\(466\) −26.0000 −1.20443
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 4.00000 0.184900
\(469\) 0 0
\(470\) −16.0000 −0.738025
\(471\) 8.00000 0.368621
\(472\) −6.00000 −0.276172
\(473\) 0 0
\(474\) 0 0
\(475\) 66.0000 3.02829
\(476\) 0 0
\(477\) 14.0000 0.641016
\(478\) 8.00000 0.365911
\(479\) −4.00000 −0.182765 −0.0913823 0.995816i \(-0.529129\pi\)
−0.0913823 + 0.995816i \(0.529129\pi\)
\(480\) −8.00000 −0.365148
\(481\) −40.0000 −1.82384
\(482\) −2.00000 −0.0910975
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 24.0000 1.08978
\(486\) −10.0000 −0.453609
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) −12.0000 −0.543214
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 12.0000 0.541002
\(493\) 6.00000 0.270226
\(494\) −24.0000 −1.07981
\(495\) 16.0000 0.719147
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) −20.0000 −0.896221
\(499\) −24.0000 −1.07439 −0.537194 0.843459i \(-0.680516\pi\)
−0.537194 + 0.843459i \(0.680516\pi\)
\(500\) −24.0000 −1.07331
\(501\) −40.0000 −1.78707
\(502\) 14.0000 0.624851
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) 64.0000 2.84796
\(506\) 0 0
\(507\) −6.00000 −0.266469
\(508\) −8.00000 −0.354943
\(509\) −12.0000 −0.531891 −0.265945 0.963988i \(-0.585684\pi\)
−0.265945 + 0.963988i \(0.585684\pi\)
\(510\) −8.00000 −0.354246
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 24.0000 1.05963
\(514\) −6.00000 −0.264649
\(515\) −16.0000 −0.705044
\(516\) 0 0
\(517\) 16.0000 0.703679
\(518\) 0 0
\(519\) −16.0000 −0.702322
\(520\) 16.0000 0.701646
\(521\) −14.0000 −0.613351 −0.306676 0.951814i \(-0.599217\pi\)
−0.306676 + 0.951814i \(0.599217\pi\)
\(522\) −6.00000 −0.262613
\(523\) −34.0000 −1.48672 −0.743358 0.668894i \(-0.766768\pi\)
−0.743358 + 0.668894i \(0.766768\pi\)
\(524\) 18.0000 0.786334
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) −4.00000 −0.174243
\(528\) 8.00000 0.348155
\(529\) −23.0000 −1.00000
\(530\) 56.0000 2.43248
\(531\) 6.00000 0.260378
\(532\) 0 0
\(533\) −24.0000 −1.03956
\(534\) −20.0000 −0.865485
\(535\) 0 0
\(536\) −4.00000 −0.172774
\(537\) 24.0000 1.03568
\(538\) −24.0000 −1.03471
\(539\) 0 0
\(540\) −16.0000 −0.688530
\(541\) 26.0000 1.11783 0.558914 0.829226i \(-0.311218\pi\)
0.558914 + 0.829226i \(0.311218\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) 8.00000 0.342682
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 2.00000 0.0854358
\(549\) 12.0000 0.512148
\(550\) 44.0000 1.87617
\(551\) 36.0000 1.53365
\(552\) 0 0
\(553\) 0 0
\(554\) −18.0000 −0.764747
\(555\) −80.0000 −3.39581
\(556\) −10.0000 −0.424094
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 4.00000 0.169334
\(559\) 0 0
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 6.00000 0.253095
\(563\) −14.0000 −0.590030 −0.295015 0.955493i \(-0.595325\pi\)
−0.295015 + 0.955493i \(0.595325\pi\)
\(564\) 8.00000 0.336861
\(565\) −56.0000 −2.35594
\(566\) 14.0000 0.588464
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) −48.0000 −2.01050
\(571\) 36.0000 1.50655 0.753277 0.657704i \(-0.228472\pi\)
0.753277 + 0.657704i \(0.228472\pi\)
\(572\) −16.0000 −0.668994
\(573\) 48.0000 2.00523
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 4.00000 0.166234
\(580\) −24.0000 −0.996546
\(581\) 0 0
\(582\) −12.0000 −0.497416
\(583\) −56.0000 −2.31928
\(584\) 2.00000 0.0827606
\(585\) −16.0000 −0.661519
\(586\) 0 0
\(587\) 18.0000 0.742940 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(588\) 0 0
\(589\) −24.0000 −0.988903
\(590\) 24.0000 0.988064
\(591\) −4.00000 −0.164538
\(592\) −10.0000 −0.410997
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 16.0000 0.656488
\(595\) 0 0
\(596\) −2.00000 −0.0819232
\(597\) 56.0000 2.29193
\(598\) 0 0
\(599\) 32.0000 1.30748 0.653742 0.756717i \(-0.273198\pi\)
0.653742 + 0.756717i \(0.273198\pi\)
\(600\) 22.0000 0.898146
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) −16.0000 −0.651031
\(605\) −20.0000 −0.813116
\(606\) −32.0000 −1.29991
\(607\) −16.0000 −0.649420 −0.324710 0.945814i \(-0.605267\pi\)
−0.324710 + 0.945814i \(0.605267\pi\)
\(608\) −6.00000 −0.243332
\(609\) 0 0
\(610\) 48.0000 1.94346
\(611\) −16.0000 −0.647291
\(612\) 1.00000 0.0404226
\(613\) −14.0000 −0.565455 −0.282727 0.959200i \(-0.591239\pi\)
−0.282727 + 0.959200i \(0.591239\pi\)
\(614\) 10.0000 0.403567
\(615\) −48.0000 −1.93555
\(616\) 0 0
\(617\) 14.0000 0.563619 0.281809 0.959470i \(-0.409065\pi\)
0.281809 + 0.959470i \(0.409065\pi\)
\(618\) 8.00000 0.321807
\(619\) 26.0000 1.04503 0.522514 0.852631i \(-0.324994\pi\)
0.522514 + 0.852631i \(0.324994\pi\)
\(620\) 16.0000 0.642575
\(621\) 0 0
\(622\) 8.00000 0.320771
\(623\) 0 0
\(624\) −8.00000 −0.320256
\(625\) 41.0000 1.64000
\(626\) 6.00000 0.239808
\(627\) 48.0000 1.91694
\(628\) −4.00000 −0.159617
\(629\) −10.0000 −0.398726
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 16.0000 0.635943
\(634\) 22.0000 0.873732
\(635\) 32.0000 1.26988
\(636\) −28.0000 −1.11027
\(637\) 0 0
\(638\) 24.0000 0.950169
\(639\) −8.00000 −0.316475
\(640\) 4.00000 0.158114
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) −34.0000 −1.34083 −0.670415 0.741987i \(-0.733884\pi\)
−0.670415 + 0.741987i \(0.733884\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.00000 −0.236067
\(647\) −36.0000 −1.41531 −0.707653 0.706560i \(-0.750246\pi\)
−0.707653 + 0.706560i \(0.750246\pi\)
\(648\) 11.0000 0.432121
\(649\) −24.0000 −0.942082
\(650\) −44.0000 −1.72582
\(651\) 0 0
\(652\) 4.00000 0.156652
\(653\) 14.0000 0.547862 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) −4.00000 −0.156412
\(655\) −72.0000 −2.81327
\(656\) −6.00000 −0.234261
\(657\) −2.00000 −0.0780274
\(658\) 0 0
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) −32.0000 −1.24560
\(661\) −24.0000 −0.933492 −0.466746 0.884391i \(-0.654574\pi\)
−0.466746 + 0.884391i \(0.654574\pi\)
\(662\) 0 0
\(663\) −8.00000 −0.310694
\(664\) 10.0000 0.388075
\(665\) 0 0
\(666\) 10.0000 0.387492
\(667\) 0 0
\(668\) 20.0000 0.773823
\(669\) 48.0000 1.85579
\(670\) 16.0000 0.618134
\(671\) −48.0000 −1.85302
\(672\) 0 0
\(673\) −30.0000 −1.15642 −0.578208 0.815890i \(-0.696248\pi\)
−0.578208 + 0.815890i \(0.696248\pi\)
\(674\) −22.0000 −0.847408
\(675\) 44.0000 1.69356
\(676\) 3.00000 0.115385
\(677\) −16.0000 −0.614930 −0.307465 0.951559i \(-0.599481\pi\)
−0.307465 + 0.951559i \(0.599481\pi\)
\(678\) 28.0000 1.07533
\(679\) 0 0
\(680\) 4.00000 0.153393
\(681\) −4.00000 −0.153280
\(682\) −16.0000 −0.612672
\(683\) −16.0000 −0.612223 −0.306111 0.951996i \(-0.599028\pi\)
−0.306111 + 0.951996i \(0.599028\pi\)
\(684\) 6.00000 0.229416
\(685\) −8.00000 −0.305664
\(686\) 0 0
\(687\) −56.0000 −2.13653
\(688\) 0 0
\(689\) 56.0000 2.13343
\(690\) 0 0
\(691\) −6.00000 −0.228251 −0.114125 0.993466i \(-0.536407\pi\)
−0.114125 + 0.993466i \(0.536407\pi\)
\(692\) 8.00000 0.304114
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 40.0000 1.51729
\(696\) 12.0000 0.454859
\(697\) −6.00000 −0.227266
\(698\) 20.0000 0.757011
\(699\) −52.0000 −1.96682
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) −16.0000 −0.603881
\(703\) −60.0000 −2.26294
\(704\) −4.00000 −0.150756
\(705\) −32.0000 −1.20519
\(706\) 26.0000 0.978523
\(707\) 0 0
\(708\) −12.0000 −0.450988
\(709\) −2.00000 −0.0751116 −0.0375558 0.999295i \(-0.511957\pi\)
−0.0375558 + 0.999295i \(0.511957\pi\)
\(710\) −32.0000 −1.20094
\(711\) 0 0
\(712\) 10.0000 0.374766
\(713\) 0 0
\(714\) 0 0
\(715\) 64.0000 2.39346
\(716\) −12.0000 −0.448461
\(717\) 16.0000 0.597531
\(718\) −24.0000 −0.895672
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) −4.00000 −0.149071
\(721\) 0 0
\(722\) −17.0000 −0.632674
\(723\) −4.00000 −0.148762
\(724\) 0 0
\(725\) 66.0000 2.45118
\(726\) 10.0000 0.371135
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) −8.00000 −0.296093
\(731\) 0 0
\(732\) −24.0000 −0.887066
\(733\) 24.0000 0.886460 0.443230 0.896408i \(-0.353832\pi\)
0.443230 + 0.896408i \(0.353832\pi\)
\(734\) −24.0000 −0.885856
\(735\) 0 0
\(736\) 0 0
\(737\) −16.0000 −0.589368
\(738\) 6.00000 0.220863
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 40.0000 1.47043
\(741\) −48.0000 −1.76332
\(742\) 0 0
\(743\) −48.0000 −1.76095 −0.880475 0.474093i \(-0.842776\pi\)
−0.880475 + 0.474093i \(0.842776\pi\)
\(744\) −8.00000 −0.293294
\(745\) 8.00000 0.293097
\(746\) 10.0000 0.366126
\(747\) −10.0000 −0.365881
\(748\) −4.00000 −0.146254
\(749\) 0 0
\(750\) −48.0000 −1.75271
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) −4.00000 −0.145865
\(753\) 28.0000 1.02038
\(754\) −24.0000 −0.874028
\(755\) 64.0000 2.32920
\(756\) 0 0
\(757\) −30.0000 −1.09037 −0.545184 0.838316i \(-0.683540\pi\)
−0.545184 + 0.838316i \(0.683540\pi\)
\(758\) 4.00000 0.145287
\(759\) 0 0
\(760\) 24.0000 0.870572
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) −16.0000 −0.579619
\(763\) 0 0
\(764\) −24.0000 −0.868290
\(765\) −4.00000 −0.144620
\(766\) 4.00000 0.144526
\(767\) 24.0000 0.866590
\(768\) −2.00000 −0.0721688
\(769\) 26.0000 0.937584 0.468792 0.883309i \(-0.344689\pi\)
0.468792 + 0.883309i \(0.344689\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) −2.00000 −0.0719816
\(773\) −32.0000 −1.15096 −0.575480 0.817816i \(-0.695185\pi\)
−0.575480 + 0.817816i \(0.695185\pi\)
\(774\) 0 0
\(775\) −44.0000 −1.58053
\(776\) 6.00000 0.215387
\(777\) 0 0
\(778\) 30.0000 1.07555
\(779\) −36.0000 −1.28983
\(780\) 32.0000 1.14578
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 24.0000 0.857690
\(784\) 0 0
\(785\) 16.0000 0.571064
\(786\) 36.0000 1.28408
\(787\) 10.0000 0.356462 0.178231 0.983989i \(-0.442963\pi\)
0.178231 + 0.983989i \(0.442963\pi\)
\(788\) 2.00000 0.0712470
\(789\) −48.0000 −1.70885
\(790\) 0 0
\(791\) 0 0
\(792\) 4.00000 0.142134
\(793\) 48.0000 1.70453
\(794\) −16.0000 −0.567819
\(795\) 112.000 3.97223
\(796\) −28.0000 −0.992434
\(797\) 28.0000 0.991811 0.495905 0.868377i \(-0.334836\pi\)
0.495905 + 0.868377i \(0.334836\pi\)
\(798\) 0 0
\(799\) −4.00000 −0.141510
\(800\) −11.0000 −0.388909
\(801\) −10.0000 −0.353333
\(802\) 18.0000 0.635602
\(803\) 8.00000 0.282314
\(804\) −8.00000 −0.282138
\(805\) 0 0
\(806\) 16.0000 0.563576
\(807\) −48.0000 −1.68968
\(808\) 16.0000 0.562878
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) −44.0000 −1.54600
\(811\) 26.0000 0.912983 0.456492 0.889728i \(-0.349106\pi\)
0.456492 + 0.889728i \(0.349106\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −40.0000 −1.40200
\(815\) −16.0000 −0.560456
\(816\) −2.00000 −0.0700140
\(817\) 0 0
\(818\) −26.0000 −0.909069
\(819\) 0 0
\(820\) 24.0000 0.838116
\(821\) −54.0000 −1.88461 −0.942306 0.334751i \(-0.891348\pi\)
−0.942306 + 0.334751i \(0.891348\pi\)
\(822\) 4.00000 0.139516
\(823\) 32.0000 1.11545 0.557725 0.830026i \(-0.311674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) −4.00000 −0.139347
\(825\) 88.0000 3.06377
\(826\) 0 0
\(827\) −8.00000 −0.278187 −0.139094 0.990279i \(-0.544419\pi\)
−0.139094 + 0.990279i \(0.544419\pi\)
\(828\) 0 0
\(829\) −16.0000 −0.555703 −0.277851 0.960624i \(-0.589622\pi\)
−0.277851 + 0.960624i \(0.589622\pi\)
\(830\) −40.0000 −1.38842
\(831\) −36.0000 −1.24883
\(832\) 4.00000 0.138675
\(833\) 0 0
\(834\) −20.0000 −0.692543
\(835\) −80.0000 −2.76851
\(836\) −24.0000 −0.830057
\(837\) −16.0000 −0.553041
\(838\) 18.0000 0.621800
\(839\) −52.0000 −1.79524 −0.897620 0.440771i \(-0.854705\pi\)
−0.897620 + 0.440771i \(0.854705\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 18.0000 0.620321
\(843\) 12.0000 0.413302
\(844\) −8.00000 −0.275371
\(845\) −12.0000 −0.412813
\(846\) 4.00000 0.137523
\(847\) 0 0
\(848\) 14.0000 0.480762
\(849\) 28.0000 0.960958
\(850\) −11.0000 −0.377297
\(851\) 0 0
\(852\) 16.0000 0.548151
\(853\) −16.0000 −0.547830 −0.273915 0.961754i \(-0.588319\pi\)
−0.273915 + 0.961754i \(0.588319\pi\)
\(854\) 0 0
\(855\) −24.0000 −0.820783
\(856\) 0 0
\(857\) −30.0000 −1.02478 −0.512390 0.858753i \(-0.671240\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(858\) −32.0000 −1.09246
\(859\) −30.0000 −1.02359 −0.511793 0.859109i \(-0.671019\pi\)
−0.511793 + 0.859109i \(0.671019\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 8.00000 0.272481
\(863\) 16.0000 0.544646 0.272323 0.962206i \(-0.412208\pi\)
0.272323 + 0.962206i \(0.412208\pi\)
\(864\) −4.00000 −0.136083
\(865\) −32.0000 −1.08803
\(866\) −34.0000 −1.15537
\(867\) −2.00000 −0.0679236
\(868\) 0 0
\(869\) 0 0
\(870\) −48.0000 −1.62735
\(871\) 16.0000 0.542139
\(872\) 2.00000 0.0677285
\(873\) −6.00000 −0.203069
\(874\) 0 0
\(875\) 0 0
\(876\) 4.00000 0.135147
\(877\) −26.0000 −0.877958 −0.438979 0.898497i \(-0.644660\pi\)
−0.438979 + 0.898497i \(0.644660\pi\)
\(878\) 40.0000 1.34993
\(879\) 0 0
\(880\) 16.0000 0.539360
\(881\) −50.0000 −1.68454 −0.842271 0.539054i \(-0.818782\pi\)
−0.842271 + 0.539054i \(0.818782\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 4.00000 0.134535
\(885\) 48.0000 1.61350
\(886\) −12.0000 −0.403148
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) −20.0000 −0.671156
\(889\) 0 0
\(890\) −40.0000 −1.34080
\(891\) 44.0000 1.47406
\(892\) −24.0000 −0.803579
\(893\) −24.0000 −0.803129
\(894\) −4.00000 −0.133780
\(895\) 48.0000 1.60446
\(896\) 0 0
\(897\) 0 0
\(898\) −10.0000 −0.333704
\(899\) −24.0000 −0.800445
\(900\) 11.0000 0.366667
\(901\) 14.0000 0.466408
\(902\) −24.0000 −0.799113
\(903\) 0 0
\(904\) −14.0000 −0.465633
\(905\) 0 0
\(906\) −32.0000 −1.06313
\(907\) −8.00000 −0.265636 −0.132818 0.991140i \(-0.542403\pi\)
−0.132818 + 0.991140i \(0.542403\pi\)
\(908\) 2.00000 0.0663723
\(909\) −16.0000 −0.530687
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) −12.0000 −0.397360
\(913\) 40.0000 1.32381
\(914\) −22.0000 −0.727695
\(915\) 96.0000 3.17366
\(916\) 28.0000 0.925146
\(917\) 0 0
\(918\) −4.00000 −0.132020
\(919\) −8.00000 −0.263896 −0.131948 0.991257i \(-0.542123\pi\)
−0.131948 + 0.991257i \(0.542123\pi\)
\(920\) 0 0
\(921\) 20.0000 0.659022
\(922\) −20.0000 −0.658665
\(923\) −32.0000 −1.05329
\(924\) 0 0
\(925\) −110.000 −3.61678
\(926\) 40.0000 1.31448
\(927\) 4.00000 0.131377
\(928\) −6.00000 −0.196960
\(929\) 50.0000 1.64045 0.820223 0.572043i \(-0.193849\pi\)
0.820223 + 0.572043i \(0.193849\pi\)
\(930\) 32.0000 1.04932
\(931\) 0 0
\(932\) 26.0000 0.851658
\(933\) 16.0000 0.523816
\(934\) 18.0000 0.588978
\(935\) 16.0000 0.523256
\(936\) −4.00000 −0.130744
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 0 0
\(939\) 12.0000 0.391605
\(940\) 16.0000 0.521862
\(941\) 12.0000 0.391189 0.195594 0.980685i \(-0.437336\pi\)
0.195594 + 0.980685i \(0.437336\pi\)
\(942\) −8.00000 −0.260654
\(943\) 0 0
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) 0 0
\(947\) −4.00000 −0.129983 −0.0649913 0.997886i \(-0.520702\pi\)
−0.0649913 + 0.997886i \(0.520702\pi\)
\(948\) 0 0
\(949\) −8.00000 −0.259691
\(950\) −66.0000 −2.14132
\(951\) 44.0000 1.42680
\(952\) 0 0
\(953\) 26.0000 0.842223 0.421111 0.907009i \(-0.361640\pi\)
0.421111 + 0.907009i \(0.361640\pi\)
\(954\) −14.0000 −0.453267
\(955\) 96.0000 3.10649
\(956\) −8.00000 −0.258738
\(957\) 48.0000 1.55162
\(958\) 4.00000 0.129234
\(959\) 0 0
\(960\) 8.00000 0.258199
\(961\) −15.0000 −0.483871
\(962\) 40.0000 1.28965
\(963\) 0 0
\(964\) 2.00000 0.0644157
\(965\) 8.00000 0.257529
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) −5.00000 −0.160706
\(969\) −12.0000 −0.385496
\(970\) −24.0000 −0.770594
\(971\) −10.0000 −0.320915 −0.160458 0.987043i \(-0.551297\pi\)
−0.160458 + 0.987043i \(0.551297\pi\)
\(972\) 10.0000 0.320750
\(973\) 0 0
\(974\) 32.0000 1.02535
\(975\) −88.0000 −2.81826
\(976\) 12.0000 0.384111
\(977\) −54.0000 −1.72761 −0.863807 0.503824i \(-0.831926\pi\)
−0.863807 + 0.503824i \(0.831926\pi\)
\(978\) 8.00000 0.255812
\(979\) 40.0000 1.27841
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) 28.0000 0.893516
\(983\) 28.0000 0.893061 0.446531 0.894768i \(-0.352659\pi\)
0.446531 + 0.894768i \(0.352659\pi\)
\(984\) −12.0000 −0.382546
\(985\) −8.00000 −0.254901
\(986\) −6.00000 −0.191079
\(987\) 0 0
\(988\) 24.0000 0.763542
\(989\) 0 0
\(990\) −16.0000 −0.508513
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) 0 0
\(995\) 112.000 3.55064
\(996\) 20.0000 0.633724
\(997\) 28.0000 0.886769 0.443384 0.896332i \(-0.353778\pi\)
0.443384 + 0.896332i \(0.353778\pi\)
\(998\) 24.0000 0.759707
\(999\) −40.0000 −1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1666.2.a.b.1.1 1
7.6 odd 2 238.2.a.b.1.1 1
21.20 even 2 2142.2.a.l.1.1 1
28.27 even 2 1904.2.a.b.1.1 1
35.34 odd 2 5950.2.a.k.1.1 1
56.13 odd 2 7616.2.a.a.1.1 1
56.27 even 2 7616.2.a.i.1.1 1
119.118 odd 2 4046.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
238.2.a.b.1.1 1 7.6 odd 2
1666.2.a.b.1.1 1 1.1 even 1 trivial
1904.2.a.b.1.1 1 28.27 even 2
2142.2.a.l.1.1 1 21.20 even 2
4046.2.a.b.1.1 1 119.118 odd 2
5950.2.a.k.1.1 1 35.34 odd 2
7616.2.a.a.1.1 1 56.13 odd 2
7616.2.a.i.1.1 1 56.27 even 2