Properties

Label 1664.2.k
Level $1664$
Weight $2$
Character orbit 1664.k
Rep. character $\chi_{1664}(255,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $112$
Sturm bound $448$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1664 = 2^{7} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1664.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q(i)\)
Sturm bound: \(448\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1664, [\chi])\).

Total New Old
Modular forms 480 112 368
Cusp forms 416 112 304
Eisenstein series 64 0 64

Trace form

\( 112 q - 112 q^{9} + 16 q^{41} - 64 q^{57} + 16 q^{65} + 112 q^{73} + 112 q^{81} - 48 q^{89} - 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1664, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1664, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1664, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(832, [\chi])\)\(^{\oplus 2}\)