Properties

Label 1656.4.a.n
Level $1656$
Weight $4$
Character orbit 1656.a
Self dual yes
Analytic conductor $97.707$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1656,4,Mod(1,1656)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1656.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1656, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1656 = 2^{3} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1656.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(97.7071629695\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.167313.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 16x^{2} + 4x + 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 184)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - \beta_{2} + 5) q^{5} + ( - \beta_{3} + 3 \beta_{2} - \beta_1 - 1) q^{7} + ( - \beta_{3} - 5 \beta_{2} - 5 \beta_1 + 9) q^{11} + (3 \beta_{3} - 2 \beta_{2} - 9 \beta_1 - 35) q^{13} + (5 \beta_{3} + 5 \beta_{2} - 8 \beta_1 + 21) q^{17}+ \cdots + (47 \beta_{3} + 127 \beta_{2} + \cdots + 75) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 20 q^{5} - 10 q^{7} + 30 q^{11} - 153 q^{13} + 68 q^{17} - 120 q^{19} + 92 q^{23} - 76 q^{25} + 315 q^{29} + 249 q^{31} - 224 q^{35} - 348 q^{37} + 929 q^{41} + 50 q^{43} - 205 q^{47} + 456 q^{49}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 16x^{2} + 4x + 24 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - \nu^{2} - 14\nu + 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 7\beta _1 + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.23759
−3.42018
−1.19877
1.38136
0 0 0 −5.36292 0 −18.2150 0 0 0
1.2 0 0 0 2.21395 0 −0.592081 0 0 0
1.3 0 0 0 3.75144 0 31.3950 0 0 0
1.4 0 0 0 19.3975 0 −22.5880 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1656.4.a.n 4
3.b odd 2 1 184.4.a.e 4
12.b even 2 1 368.4.a.n 4
24.f even 2 1 1472.4.a.bd 4
24.h odd 2 1 1472.4.a.ba 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
184.4.a.e 4 3.b odd 2 1
368.4.a.n 4 12.b even 2 1
1472.4.a.ba 4 24.h odd 2 1
1472.4.a.bd 4 24.f even 2 1
1656.4.a.n 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 20T_{5}^{3} - 12T_{5}^{2} + 504T_{5} - 864 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1656))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 20 T^{3} + \cdots - 864 \) Copy content Toggle raw display
$7$ \( T^{4} + 10 T^{3} + \cdots - 7648 \) Copy content Toggle raw display
$11$ \( T^{4} - 30 T^{3} + \cdots + 984528 \) Copy content Toggle raw display
$13$ \( T^{4} + 153 T^{3} + \cdots - 9732878 \) Copy content Toggle raw display
$17$ \( T^{4} - 68 T^{3} + \cdots - 1525008 \) Copy content Toggle raw display
$19$ \( T^{4} + 120 T^{3} + \cdots - 1018224 \) Copy content Toggle raw display
$23$ \( (T - 23)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} - 315 T^{3} + \cdots + 174665514 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 1710638448 \) Copy content Toggle raw display
$37$ \( T^{4} + 348 T^{3} + \cdots - 959571168 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 28721528046 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 1725576192 \) Copy content Toggle raw display
$47$ \( T^{4} + 205 T^{3} + \cdots + 884990496 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 2117560608 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 53186230528 \) Copy content Toggle raw display
$61$ \( T^{4} + 182 T^{3} + \cdots + 60956096 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 1683868176 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 48269410416 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 146762477034 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 25290376416 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 15216338064 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 272782530432 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 140583246192 \) Copy content Toggle raw display
show more
show less