Properties

Label 1656.4.a.h
Level $1656$
Weight $4$
Character orbit 1656.a
Self dual yes
Analytic conductor $97.707$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1656,4,Mod(1,1656)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1656.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1656, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1656 = 2^{3} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1656.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(97.7071629695\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 552)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 7) q^{5} + (\beta + 5) q^{7} + ( - 2 \beta + 10) q^{11} + (2 \beta - 20) q^{13} + ( - \beta - 7) q^{17} + ( - 9 \beta - 57) q^{19} + 23 q^{23} + (14 \beta - 31) q^{25} + ( - 34 \beta - 16) q^{29}+ \cdots + (222 \beta - 200) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{5} + 10 q^{7} + 20 q^{11} - 40 q^{13} - 14 q^{17} - 114 q^{19} + 46 q^{23} - 62 q^{25} - 32 q^{29} - 180 q^{31} + 160 q^{35} + 28 q^{37} - 132 q^{41} - 914 q^{43} - 128 q^{47} - 546 q^{49} + 402 q^{53}+ \cdots - 400 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
0 0 0 0.291796 0 −1.70820 0 0 0
1.2 0 0 0 13.7082 0 11.7082 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1656.4.a.h 2
3.b odd 2 1 552.4.a.e 2
12.b even 2 1 1104.4.a.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
552.4.a.e 2 3.b odd 2 1
1104.4.a.i 2 12.b even 2 1
1656.4.a.h 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 14T_{5} + 4 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1656))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 14T + 4 \) Copy content Toggle raw display
$7$ \( T^{2} - 10T - 20 \) Copy content Toggle raw display
$11$ \( T^{2} - 20T - 80 \) Copy content Toggle raw display
$13$ \( T^{2} + 40T + 220 \) Copy content Toggle raw display
$17$ \( T^{2} + 14T + 4 \) Copy content Toggle raw display
$19$ \( T^{2} + 114T - 396 \) Copy content Toggle raw display
$23$ \( (T - 23)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 32T - 51764 \) Copy content Toggle raw display
$31$ \( T^{2} + 180T + 6480 \) Copy content Toggle raw display
$37$ \( T^{2} - 28T - 184124 \) Copy content Toggle raw display
$41$ \( T^{2} + 132T + 1476 \) Copy content Toggle raw display
$43$ \( T^{2} + 914T + 206644 \) Copy content Toggle raw display
$47$ \( T^{2} + 128T - 83024 \) Copy content Toggle raw display
$53$ \( T^{2} - 402T + 20556 \) Copy content Toggle raw display
$59$ \( T^{2} - 392T - 123584 \) Copy content Toggle raw display
$61$ \( T^{2} + 860T + 126580 \) Copy content Toggle raw display
$67$ \( T^{2} + 374T - 275036 \) Copy content Toggle raw display
$71$ \( T^{2} - 136T + 3904 \) Copy content Toggle raw display
$73$ \( T^{2} + 516T - 95436 \) Copy content Toggle raw display
$79$ \( T^{2} - 798T + 142956 \) Copy content Toggle raw display
$83$ \( T^{2} - 636T + 49104 \) Copy content Toggle raw display
$89$ \( T^{2} - 430T - 848420 \) Copy content Toggle raw display
$97$ \( T^{2} + 400 T - 2177780 \) Copy content Toggle raw display
show more
show less