# Properties

 Label 1650.2.c.e Level $1650$ Weight $2$ Character orbit 1650.c Analytic conductor $13.175$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1650.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$13.1753163335$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 66) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -i q^{2} -i q^{3} - q^{4} - q^{6} + 4 i q^{7} + i q^{8} - q^{9} +O(q^{10})$$ $$q -i q^{2} -i q^{3} - q^{4} - q^{6} + 4 i q^{7} + i q^{8} - q^{9} - q^{11} + i q^{12} -6 i q^{13} + 4 q^{14} + q^{16} -2 i q^{17} + i q^{18} -4 q^{19} + 4 q^{21} + i q^{22} + 4 i q^{23} + q^{24} -6 q^{26} + i q^{27} -4 i q^{28} -6 q^{29} -i q^{32} + i q^{33} -2 q^{34} + q^{36} -6 i q^{37} + 4 i q^{38} -6 q^{39} -6 q^{41} -4 i q^{42} + 4 i q^{43} + q^{44} + 4 q^{46} + 12 i q^{47} -i q^{48} -9 q^{49} -2 q^{51} + 6 i q^{52} + 2 i q^{53} + q^{54} -4 q^{56} + 4 i q^{57} + 6 i q^{58} -12 q^{59} -14 q^{61} -4 i q^{63} - q^{64} + q^{66} -4 i q^{67} + 2 i q^{68} + 4 q^{69} -12 q^{71} -i q^{72} -6 i q^{73} -6 q^{74} + 4 q^{76} -4 i q^{77} + 6 i q^{78} + 4 q^{79} + q^{81} + 6 i q^{82} + 4 i q^{83} -4 q^{84} + 4 q^{86} + 6 i q^{87} -i q^{88} -10 q^{89} + 24 q^{91} -4 i q^{92} + 12 q^{94} - q^{96} + 14 i q^{97} + 9 i q^{98} + q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} - 2q^{6} - 2q^{9} + O(q^{10})$$ $$2q - 2q^{4} - 2q^{6} - 2q^{9} - 2q^{11} + 8q^{14} + 2q^{16} - 8q^{19} + 8q^{21} + 2q^{24} - 12q^{26} - 12q^{29} - 4q^{34} + 2q^{36} - 12q^{39} - 12q^{41} + 2q^{44} + 8q^{46} - 18q^{49} - 4q^{51} + 2q^{54} - 8q^{56} - 24q^{59} - 28q^{61} - 2q^{64} + 2q^{66} + 8q^{69} - 24q^{71} - 12q^{74} + 8q^{76} + 8q^{79} + 2q^{81} - 8q^{84} + 8q^{86} - 20q^{89} + 48q^{91} + 24q^{94} - 2q^{96} + 2q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1650\mathbb{Z}\right)^\times$$.

 $$n$$ $$551$$ $$727$$ $$1201$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
199.1
 1.00000i − 1.00000i
1.00000i 1.00000i −1.00000 0 −1.00000 4.00000i 1.00000i −1.00000 0
199.2 1.00000i 1.00000i −1.00000 0 −1.00000 4.00000i 1.00000i −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1650.2.c.e 2
3.b odd 2 1 4950.2.c.p 2
5.b even 2 1 inner 1650.2.c.e 2
5.c odd 4 1 66.2.a.b 1
5.c odd 4 1 1650.2.a.k 1
15.d odd 2 1 4950.2.c.p 2
15.e even 4 1 198.2.a.a 1
15.e even 4 1 4950.2.a.bu 1
20.e even 4 1 528.2.a.j 1
35.f even 4 1 3234.2.a.t 1
40.i odd 4 1 2112.2.a.r 1
40.k even 4 1 2112.2.a.e 1
45.k odd 12 2 1782.2.e.e 2
45.l even 12 2 1782.2.e.v 2
55.e even 4 1 726.2.a.c 1
55.k odd 20 4 726.2.e.g 4
55.l even 20 4 726.2.e.o 4
60.l odd 4 1 1584.2.a.f 1
105.k odd 4 1 9702.2.a.x 1
120.q odd 4 1 6336.2.a.cj 1
120.w even 4 1 6336.2.a.bw 1
165.l odd 4 1 2178.2.a.g 1
220.i odd 4 1 5808.2.a.bc 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.a.b 1 5.c odd 4 1
198.2.a.a 1 15.e even 4 1
528.2.a.j 1 20.e even 4 1
726.2.a.c 1 55.e even 4 1
726.2.e.g 4 55.k odd 20 4
726.2.e.o 4 55.l even 20 4
1584.2.a.f 1 60.l odd 4 1
1650.2.a.k 1 5.c odd 4 1
1650.2.c.e 2 1.a even 1 1 trivial
1650.2.c.e 2 5.b even 2 1 inner
1782.2.e.e 2 45.k odd 12 2
1782.2.e.v 2 45.l even 12 2
2112.2.a.e 1 40.k even 4 1
2112.2.a.r 1 40.i odd 4 1
2178.2.a.g 1 165.l odd 4 1
3234.2.a.t 1 35.f even 4 1
4950.2.a.bu 1 15.e even 4 1
4950.2.c.p 2 3.b odd 2 1
4950.2.c.p 2 15.d odd 2 1
5808.2.a.bc 1 220.i odd 4 1
6336.2.a.bw 1 120.w even 4 1
6336.2.a.cj 1 120.q odd 4 1
9702.2.a.x 1 105.k odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1650, [\chi])$$:

 $$T_{7}^{2} + 16$$ $$T_{13}^{2} + 36$$ $$T_{17}^{2} + 4$$ $$T_{19} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T^{2}$$
$3$ $$1 + T^{2}$$
$5$ $$T^{2}$$
$7$ $$16 + T^{2}$$
$11$ $$( 1 + T )^{2}$$
$13$ $$36 + T^{2}$$
$17$ $$4 + T^{2}$$
$19$ $$( 4 + T )^{2}$$
$23$ $$16 + T^{2}$$
$29$ $$( 6 + T )^{2}$$
$31$ $$T^{2}$$
$37$ $$36 + T^{2}$$
$41$ $$( 6 + T )^{2}$$
$43$ $$16 + T^{2}$$
$47$ $$144 + T^{2}$$
$53$ $$4 + T^{2}$$
$59$ $$( 12 + T )^{2}$$
$61$ $$( 14 + T )^{2}$$
$67$ $$16 + T^{2}$$
$71$ $$( 12 + T )^{2}$$
$73$ $$36 + T^{2}$$
$79$ $$( -4 + T )^{2}$$
$83$ $$16 + T^{2}$$
$89$ $$( 10 + T )^{2}$$
$97$ $$196 + T^{2}$$