Defining parameters
Level: | \( N \) | \(=\) | \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1650.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 26 \) | ||
Sturm bound: | \(720\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(7\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1650))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 384 | 32 | 352 |
Cusp forms | 337 | 32 | 305 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(11\) | Fricke | Dim. |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(3\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(1\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(2\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(3\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(4\) |
Plus space | \(+\) | \(10\) | |||
Minus space | \(-\) | \(22\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1650))\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 2 | 3 | 5 | 11 | |||||||
1650.2.a.a | \(1\) | \(13.175\) | \(\Q\) | None | \(-1\) | \(-1\) | \(0\) | \(-3\) | \(+\) | \(+\) | \(-\) | \(-\) | \(q-q^{2}-q^{3}+q^{4}+q^{6}-3q^{7}-q^{8}+\cdots\) | |
1650.2.a.b | \(1\) | \(13.175\) | \(\Q\) | None | \(-1\) | \(-1\) | \(0\) | \(0\) | \(+\) | \(+\) | \(+\) | \(+\) | \(q-q^{2}-q^{3}+q^{4}+q^{6}-q^{8}+q^{9}+\cdots\) | |
1650.2.a.c | \(1\) | \(13.175\) | \(\Q\) | None | \(-1\) | \(-1\) | \(0\) | \(2\) | \(+\) | \(+\) | \(+\) | \(-\) | \(q-q^{2}-q^{3}+q^{4}+q^{6}+2q^{7}-q^{8}+\cdots\) | |
1650.2.a.d | \(1\) | \(13.175\) | \(\Q\) | None | \(-1\) | \(-1\) | \(0\) | \(2\) | \(+\) | \(+\) | \(-\) | \(-\) | \(q-q^{2}-q^{3}+q^{4}+q^{6}+2q^{7}-q^{8}+\cdots\) | |
1650.2.a.e | \(1\) | \(13.175\) | \(\Q\) | None | \(-1\) | \(1\) | \(0\) | \(-4\) | \(+\) | \(-\) | \(+\) | \(+\) | \(q-q^{2}+q^{3}+q^{4}-q^{6}-4q^{7}-q^{8}+\cdots\) | |
1650.2.a.f | \(1\) | \(13.175\) | \(\Q\) | None | \(-1\) | \(1\) | \(0\) | \(-3\) | \(+\) | \(-\) | \(+\) | \(-\) | \(q-q^{2}+q^{3}+q^{4}-q^{6}-3q^{7}-q^{8}+\cdots\) | |
1650.2.a.g | \(1\) | \(13.175\) | \(\Q\) | None | \(-1\) | \(1\) | \(0\) | \(-1\) | \(+\) | \(-\) | \(-\) | \(+\) | \(q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}-q^{8}+\cdots\) | |
1650.2.a.h | \(1\) | \(13.175\) | \(\Q\) | None | \(-1\) | \(1\) | \(0\) | \(0\) | \(+\) | \(-\) | \(+\) | \(-\) | \(q-q^{2}+q^{3}+q^{4}-q^{6}-q^{8}+q^{9}+\cdots\) | |
1650.2.a.i | \(1\) | \(13.175\) | \(\Q\) | None | \(-1\) | \(1\) | \(0\) | \(2\) | \(+\) | \(-\) | \(+\) | \(+\) | \(q-q^{2}+q^{3}+q^{4}-q^{6}+2q^{7}-q^{8}+\cdots\) | |
1650.2.a.j | \(1\) | \(13.175\) | \(\Q\) | None | \(-1\) | \(1\) | \(0\) | \(2\) | \(+\) | \(-\) | \(-\) | \(-\) | \(q-q^{2}+q^{3}+q^{4}-q^{6}+2q^{7}-q^{8}+\cdots\) | |
1650.2.a.k | \(1\) | \(13.175\) | \(\Q\) | None | \(-1\) | \(1\) | \(0\) | \(4\) | \(+\) | \(-\) | \(+\) | \(+\) | \(q-q^{2}+q^{3}+q^{4}-q^{6}+4q^{7}-q^{8}+\cdots\) | |
1650.2.a.l | \(1\) | \(13.175\) | \(\Q\) | None | \(1\) | \(-1\) | \(0\) | \(-2\) | \(-\) | \(+\) | \(-\) | \(+\) | \(q+q^{2}-q^{3}+q^{4}-q^{6}-2q^{7}+q^{8}+\cdots\) | |
1650.2.a.m | \(1\) | \(13.175\) | \(\Q\) | None | \(1\) | \(-1\) | \(0\) | \(-2\) | \(-\) | \(+\) | \(+\) | \(+\) | \(q+q^{2}-q^{3}+q^{4}-q^{6}-2q^{7}+q^{8}+\cdots\) | |
1650.2.a.n | \(1\) | \(13.175\) | \(\Q\) | None | \(1\) | \(-1\) | \(0\) | \(-2\) | \(-\) | \(+\) | \(+\) | \(-\) | \(q+q^{2}-q^{3}+q^{4}-q^{6}-2q^{7}+q^{8}+\cdots\) | |
1650.2.a.o | \(1\) | \(13.175\) | \(\Q\) | None | \(1\) | \(-1\) | \(0\) | \(1\) | \(-\) | \(+\) | \(+\) | \(+\) | \(q+q^{2}-q^{3}+q^{4}-q^{6}+q^{7}+q^{8}+\cdots\) | |
1650.2.a.p | \(1\) | \(13.175\) | \(\Q\) | None | \(1\) | \(-1\) | \(0\) | \(3\) | \(-\) | \(+\) | \(-\) | \(-\) | \(q+q^{2}-q^{3}+q^{4}-q^{6}+3q^{7}+q^{8}+\cdots\) | |
1650.2.a.q | \(1\) | \(13.175\) | \(\Q\) | None | \(1\) | \(1\) | \(0\) | \(-2\) | \(-\) | \(-\) | \(+\) | \(-\) | \(q+q^{2}+q^{3}+q^{4}+q^{6}-2q^{7}+q^{8}+\cdots\) | |
1650.2.a.r | \(1\) | \(13.175\) | \(\Q\) | None | \(1\) | \(1\) | \(0\) | \(0\) | \(-\) | \(-\) | \(+\) | \(-\) | \(q+q^{2}+q^{3}+q^{4}+q^{6}+q^{8}+q^{9}+\cdots\) | |
1650.2.a.s | \(1\) | \(13.175\) | \(\Q\) | None | \(1\) | \(1\) | \(0\) | \(3\) | \(-\) | \(-\) | \(+\) | \(-\) | \(q+q^{2}+q^{3}+q^{4}+q^{6}+3q^{7}+q^{8}+\cdots\) | |
1650.2.a.t | \(1\) | \(13.175\) | \(\Q\) | None | \(1\) | \(1\) | \(0\) | \(4\) | \(-\) | \(-\) | \(+\) | \(-\) | \(q+q^{2}+q^{3}+q^{4}+q^{6}+4q^{7}+q^{8}+\cdots\) | |
1650.2.a.u | \(2\) | \(13.175\) | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(-2\) | \(0\) | \(-4\) | \(+\) | \(+\) | \(-\) | \(+\) | \(q-q^{2}-q^{3}+q^{4}+q^{6}+(-2+\beta )q^{7}+\cdots\) | |
1650.2.a.v | \(2\) | \(13.175\) | \(\Q(\sqrt{73}) \) | None | \(-2\) | \(-2\) | \(0\) | \(1\) | \(+\) | \(+\) | \(+\) | \(+\) | \(q-q^{2}-q^{3}+q^{4}+q^{6}+\beta q^{7}-q^{8}+\cdots\) | |
1650.2.a.w | \(2\) | \(13.175\) | \(\Q(\sqrt{10}) \) | None | \(-2\) | \(2\) | \(0\) | \(4\) | \(+\) | \(-\) | \(-\) | \(-\) | \(q-q^{2}+q^{3}+q^{4}-q^{6}+(2+\beta )q^{7}+\cdots\) | |
1650.2.a.x | \(2\) | \(13.175\) | \(\Q(\sqrt{10}) \) | None | \(2\) | \(-2\) | \(0\) | \(-4\) | \(-\) | \(+\) | \(-\) | \(-\) | \(q+q^{2}-q^{3}+q^{4}-q^{6}+(-2+\beta )q^{7}+\cdots\) | |
1650.2.a.y | \(2\) | \(13.175\) | \(\Q(\sqrt{73}) \) | None | \(2\) | \(2\) | \(0\) | \(-1\) | \(-\) | \(-\) | \(-\) | \(+\) | \(q+q^{2}+q^{3}+q^{4}+q^{6}-\beta q^{7}+q^{8}+\cdots\) | |
1650.2.a.z | \(2\) | \(13.175\) | \(\Q(\sqrt{2}) \) | None | \(2\) | \(2\) | \(0\) | \(4\) | \(-\) | \(-\) | \(-\) | \(+\) | \(q+q^{2}+q^{3}+q^{4}+q^{6}+(2+\beta )q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1650))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1650)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(275))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(330))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(550))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(825))\)\(^{\oplus 2}\)