Properties

Label 1650.2.a
Level $1650$
Weight $2$
Character orbit 1650.a
Rep. character $\chi_{1650}(1,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $26$
Sturm bound $720$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1650.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 26 \)
Sturm bound: \(720\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(7\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1650))\).

Total New Old
Modular forms 384 32 352
Cusp forms 337 32 305
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(18\)\(3\)\(15\)\(16\)\(3\)\(13\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(27\)\(1\)\(26\)\(24\)\(1\)\(23\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(27\)\(2\)\(25\)\(24\)\(2\)\(22\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(23\)\(2\)\(21\)\(20\)\(2\)\(18\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(24\)\(3\)\(21\)\(21\)\(3\)\(18\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(24\)\(2\)\(22\)\(21\)\(2\)\(19\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(24\)\(1\)\(23\)\(21\)\(1\)\(20\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(25\)\(3\)\(22\)\(22\)\(3\)\(19\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(24\)\(2\)\(22\)\(21\)\(2\)\(19\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(27\)\(1\)\(26\)\(24\)\(1\)\(23\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(24\)\(1\)\(23\)\(21\)\(1\)\(20\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(22\)\(3\)\(19\)\(19\)\(3\)\(16\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(21\)\(0\)\(21\)\(18\)\(0\)\(18\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(27\)\(4\)\(23\)\(24\)\(4\)\(20\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(24\)\(4\)\(20\)\(21\)\(4\)\(17\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(23\)\(0\)\(23\)\(20\)\(0\)\(20\)\(3\)\(0\)\(3\)
Plus space\(+\)\(184\)\(10\)\(174\)\(161\)\(10\)\(151\)\(23\)\(0\)\(23\)
Minus space\(-\)\(200\)\(22\)\(178\)\(176\)\(22\)\(154\)\(24\)\(0\)\(24\)

Trace form

\( 32 q - 2 q^{2} + 2 q^{3} + 32 q^{4} + 4 q^{7} - 2 q^{8} + 32 q^{9} + 2 q^{12} + 32 q^{16} + 4 q^{17} - 2 q^{18} + 28 q^{19} + 20 q^{21} + 2 q^{22} - 4 q^{23} + 32 q^{26} + 2 q^{27} + 4 q^{28} + 4 q^{29}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1650))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 11
1650.2.a.a 1650.a 1.a $1$ $13.175$ \(\Q\) None 1650.2.a.a \(-1\) \(-1\) \(0\) \(-3\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}-3q^{7}-q^{8}+\cdots\)
1650.2.a.b 1650.a 1.a $1$ $13.175$ \(\Q\) None 330.2.a.e \(-1\) \(-1\) \(0\) \(0\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}-q^{8}+q^{9}+\cdots\)
1650.2.a.c 1650.a 1.a $1$ $13.175$ \(\Q\) None 66.2.a.c \(-1\) \(-1\) \(0\) \(2\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}+2q^{7}-q^{8}+\cdots\)
1650.2.a.d 1650.a 1.a $1$ $13.175$ \(\Q\) None 1650.2.a.d \(-1\) \(-1\) \(0\) \(2\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}+2q^{7}-q^{8}+\cdots\)
1650.2.a.e 1650.a 1.a $1$ $13.175$ \(\Q\) None 330.2.a.c \(-1\) \(1\) \(0\) \(-4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}-4q^{7}-q^{8}+\cdots\)
1650.2.a.f 1650.a 1.a $1$ $13.175$ \(\Q\) None 1650.2.a.f \(-1\) \(1\) \(0\) \(-3\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}-3q^{7}-q^{8}+\cdots\)
1650.2.a.g 1650.a 1.a $1$ $13.175$ \(\Q\) None 1650.2.a.g \(-1\) \(1\) \(0\) \(-1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}-q^{8}+\cdots\)
1650.2.a.h 1650.a 1.a $1$ $13.175$ \(\Q\) None 330.2.a.d \(-1\) \(1\) \(0\) \(0\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}-q^{8}+q^{9}+\cdots\)
1650.2.a.i 1650.a 1.a $1$ $13.175$ \(\Q\) None 1650.2.a.i \(-1\) \(1\) \(0\) \(2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}+2q^{7}-q^{8}+\cdots\)
1650.2.a.j 1650.a 1.a $1$ $13.175$ \(\Q\) None 1650.2.a.j \(-1\) \(1\) \(0\) \(2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}+2q^{7}-q^{8}+\cdots\)
1650.2.a.k 1650.a 1.a $1$ $13.175$ \(\Q\) None 66.2.a.b \(-1\) \(1\) \(0\) \(4\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}+4q^{7}-q^{8}+\cdots\)
1650.2.a.l 1650.a 1.a $1$ $13.175$ \(\Q\) None 1650.2.a.i \(1\) \(-1\) \(0\) \(-2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}-2q^{7}+q^{8}+\cdots\)
1650.2.a.m 1650.a 1.a $1$ $13.175$ \(\Q\) None 66.2.a.a \(1\) \(-1\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}-2q^{7}+q^{8}+\cdots\)
1650.2.a.n 1650.a 1.a $1$ $13.175$ \(\Q\) None 1650.2.a.j \(1\) \(-1\) \(0\) \(-2\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}-2q^{7}+q^{8}+\cdots\)
1650.2.a.o 1650.a 1.a $1$ $13.175$ \(\Q\) None 1650.2.a.g \(1\) \(-1\) \(0\) \(1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}+q^{7}+q^{8}+\cdots\)
1650.2.a.p 1650.a 1.a $1$ $13.175$ \(\Q\) None 1650.2.a.f \(1\) \(-1\) \(0\) \(3\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}+3q^{7}+q^{8}+\cdots\)
1650.2.a.q 1650.a 1.a $1$ $13.175$ \(\Q\) None 1650.2.a.d \(1\) \(1\) \(0\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}-2q^{7}+q^{8}+\cdots\)
1650.2.a.r 1650.a 1.a $1$ $13.175$ \(\Q\) None 330.2.a.a \(1\) \(1\) \(0\) \(0\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}+q^{8}+q^{9}+\cdots\)
1650.2.a.s 1650.a 1.a $1$ $13.175$ \(\Q\) None 1650.2.a.a \(1\) \(1\) \(0\) \(3\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}+3q^{7}+q^{8}+\cdots\)
1650.2.a.t 1650.a 1.a $1$ $13.175$ \(\Q\) None 330.2.a.b \(1\) \(1\) \(0\) \(4\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}+4q^{7}+q^{8}+\cdots\)
1650.2.a.u 1650.a 1.a $2$ $13.175$ \(\Q(\sqrt{2}) \) None 330.2.c.b \(-2\) \(-2\) \(0\) \(-4\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}+(-2+\beta )q^{7}+\cdots\)
1650.2.a.v 1650.a 1.a $2$ $13.175$ \(\Q(\sqrt{73}) \) None 1650.2.a.v \(-2\) \(-2\) \(0\) \(1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}+\beta q^{7}-q^{8}+\cdots\)
1650.2.a.w 1650.a 1.a $2$ $13.175$ \(\Q(\sqrt{10}) \) None 330.2.c.a \(-2\) \(2\) \(0\) \(4\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}+(2+\beta )q^{7}+\cdots\)
1650.2.a.x 1650.a 1.a $2$ $13.175$ \(\Q(\sqrt{10}) \) None 330.2.c.a \(2\) \(-2\) \(0\) \(-4\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}+(-2+\beta )q^{7}+\cdots\)
1650.2.a.y 1650.a 1.a $2$ $13.175$ \(\Q(\sqrt{73}) \) None 1650.2.a.v \(2\) \(2\) \(0\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}-\beta q^{7}+q^{8}+\cdots\)
1650.2.a.z 1650.a 1.a $2$ $13.175$ \(\Q(\sqrt{2}) \) None 330.2.c.b \(2\) \(2\) \(0\) \(4\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}+(2+\beta )q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1650))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1650)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(275))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(330))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(550))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(825))\)\(^{\oplus 2}\)