Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [165,6,Mod(34,165)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(165, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("165.34");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(26.4633302691\) |
Analytic rank: | \(0\) |
Dimension: | \(26\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34.1 | − | 10.7531i | 9.00000i | −83.6283 | 8.68170 | + | 55.2234i | 96.7775 | − | 41.3813i | 555.162i | −81.0000 | 593.821 | − | 93.3549i | ||||||||||||
34.2 | − | 10.4306i | − | 9.00000i | −76.7973 | −52.2792 | + | 19.7960i | −93.8753 | 21.9028i | 467.262i | −81.0000 | 206.484 | + | 545.303i | ||||||||||||
34.3 | − | 10.0460i | 9.00000i | −68.9227 | 24.7608 | − | 50.1189i | 90.4143 | 29.0524i | 370.927i | −81.0000 | −503.496 | − | 248.748i | |||||||||||||
34.4 | − | 8.57523i | 9.00000i | −41.5346 | −51.2624 | − | 22.2971i | 77.1771 | − | 178.462i | 81.7612i | −81.0000 | −191.203 | + | 439.587i | ||||||||||||
34.5 | − | 7.81495i | − | 9.00000i | −29.0734 | 48.1851 | − | 28.3407i | −70.3345 | 11.0326i | − | 22.8710i | −81.0000 | −221.481 | − | 376.564i | |||||||||||
34.6 | − | 7.39855i | − | 9.00000i | −22.7385 | −50.7560 | + | 23.4272i | −66.5869 | 150.852i | − | 68.5217i | −81.0000 | 173.327 | + | 375.520i | |||||||||||
34.7 | − | 5.72893i | 9.00000i | −0.820586 | −32.0393 | + | 45.8092i | 51.5603 | 158.171i | − | 178.625i | −81.0000 | 262.437 | + | 183.551i | ||||||||||||
34.8 | − | 5.09558i | 9.00000i | 6.03505 | 54.3767 | + | 12.9683i | 45.8602 | − | 170.277i | − | 193.811i | −81.0000 | 66.0813 | − | 277.081i | |||||||||||
34.9 | − | 4.97394i | 9.00000i | 7.25990 | 47.6857 | − | 29.1732i | 44.7655 | 155.412i | − | 195.276i | −81.0000 | −145.106 | − | 237.186i | ||||||||||||
34.10 | − | 3.62206i | − | 9.00000i | 18.8807 | 5.26063 | − | 55.6536i | −32.5985 | − | 168.040i | − | 184.293i | −81.0000 | −201.581 | − | 19.0543i | ||||||||||
34.11 | − | 3.33747i | − | 9.00000i | 20.8613 | 21.4823 | + | 51.6092i | −30.0373 | 103.473i | − | 176.423i | −81.0000 | 172.244 | − | 71.6967i | |||||||||||
34.12 | − | 1.31741i | 9.00000i | 30.2644 | −35.6376 | − | 43.0693i | 11.8567 | 87.4786i | − | 82.0279i | −81.0000 | −56.7399 | + | 46.9494i | ||||||||||||
34.13 | − | 0.886559i | − | 9.00000i | 31.2140 | −37.4584 | − | 41.4954i | −7.97903 | 224.774i | − | 56.0430i | −81.0000 | −36.7881 | + | 33.2091i | |||||||||||
34.14 | 0.886559i | 9.00000i | 31.2140 | −37.4584 | + | 41.4954i | −7.97903 | − | 224.774i | 56.0430i | −81.0000 | −36.7881 | − | 33.2091i | |||||||||||||
34.15 | 1.31741i | − | 9.00000i | 30.2644 | −35.6376 | + | 43.0693i | 11.8567 | − | 87.4786i | 82.0279i | −81.0000 | −56.7399 | − | 46.9494i | ||||||||||||
34.16 | 3.33747i | 9.00000i | 20.8613 | 21.4823 | − | 51.6092i | −30.0373 | − | 103.473i | 176.423i | −81.0000 | 172.244 | + | 71.6967i | |||||||||||||
34.17 | 3.62206i | 9.00000i | 18.8807 | 5.26063 | + | 55.6536i | −32.5985 | 168.040i | 184.293i | −81.0000 | −201.581 | + | 19.0543i | ||||||||||||||
34.18 | 4.97394i | − | 9.00000i | 7.25990 | 47.6857 | + | 29.1732i | 44.7655 | − | 155.412i | 195.276i | −81.0000 | −145.106 | + | 237.186i | ||||||||||||
34.19 | 5.09558i | − | 9.00000i | 6.03505 | 54.3767 | − | 12.9683i | 45.8602 | 170.277i | 193.811i | −81.0000 | 66.0813 | + | 277.081i | |||||||||||||
34.20 | 5.72893i | − | 9.00000i | −0.820586 | −32.0393 | − | 45.8092i | 51.5603 | − | 158.171i | 178.625i | −81.0000 | 262.437 | − | 183.551i | ||||||||||||
See all 26 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 165.6.c.b | ✓ | 26 |
5.b | even | 2 | 1 | inner | 165.6.c.b | ✓ | 26 |
5.c | odd | 4 | 1 | 825.6.a.v | 13 | ||
5.c | odd | 4 | 1 | 825.6.a.y | 13 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
165.6.c.b | ✓ | 26 | 1.a | even | 1 | 1 | trivial |
165.6.c.b | ✓ | 26 | 5.b | even | 2 | 1 | inner |
825.6.a.v | 13 | 5.c | odd | 4 | 1 | ||
825.6.a.y | 13 | 5.c | odd | 4 | 1 |