Defining parameters
| Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 165.c (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(144\) | ||
| Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(165, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 124 | 52 | 72 |
| Cusp forms | 116 | 52 | 64 |
| Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(165, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 165.6.c.a | $26$ | $26.463$ | None | \(0\) | \(0\) | \(-98\) | \(0\) | ||
| 165.6.c.b | $26$ | $26.463$ | None | \(0\) | \(0\) | \(-98\) | \(0\) | ||
Decomposition of \(S_{6}^{\mathrm{old}}(165, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(165, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)