Properties

Label 165.6.a.d.1.1
Level $165$
Weight $6$
Character 165.1
Self dual yes
Analytic conductor $26.463$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [165,6,Mod(1,165)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(165, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("165.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 165.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.4633302691\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.788.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.476452\) of defining polynomial
Character \(\chi\) \(=\) 165.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.64018 q^{2} -9.00000 q^{3} -0.188384 q^{4} +25.0000 q^{5} +50.7616 q^{6} +145.021 q^{7} +181.548 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q-5.64018 q^{2} -9.00000 q^{3} -0.188384 q^{4} +25.0000 q^{5} +50.7616 q^{6} +145.021 q^{7} +181.548 q^{8} +81.0000 q^{9} -141.004 q^{10} -121.000 q^{11} +1.69545 q^{12} -69.9067 q^{13} -817.946 q^{14} -225.000 q^{15} -1017.94 q^{16} -500.495 q^{17} -456.854 q^{18} -670.685 q^{19} -4.70959 q^{20} -1305.19 q^{21} +682.462 q^{22} +791.025 q^{23} -1633.93 q^{24} +625.000 q^{25} +394.287 q^{26} -729.000 q^{27} -27.3196 q^{28} +1545.91 q^{29} +1269.04 q^{30} +2703.09 q^{31} -68.2013 q^{32} +1089.00 q^{33} +2822.88 q^{34} +3625.53 q^{35} -15.2591 q^{36} -2667.13 q^{37} +3782.78 q^{38} +629.161 q^{39} +4538.71 q^{40} +9622.09 q^{41} +7361.51 q^{42} -6681.57 q^{43} +22.7944 q^{44} +2025.00 q^{45} -4461.52 q^{46} -1167.06 q^{47} +9161.43 q^{48} +4224.17 q^{49} -3525.11 q^{50} +4504.46 q^{51} +13.1693 q^{52} +28872.9 q^{53} +4111.69 q^{54} -3025.00 q^{55} +26328.4 q^{56} +6036.16 q^{57} -8719.22 q^{58} +23599.3 q^{59} +42.3863 q^{60} +17601.3 q^{61} -15245.9 q^{62} +11746.7 q^{63} +32958.6 q^{64} -1747.67 q^{65} -6142.15 q^{66} +16501.5 q^{67} +94.2851 q^{68} -7119.22 q^{69} -20448.6 q^{70} +72059.4 q^{71} +14705.4 q^{72} -45480.8 q^{73} +15043.1 q^{74} -5625.00 q^{75} +126.346 q^{76} -17547.6 q^{77} -3548.58 q^{78} -21688.7 q^{79} -25448.4 q^{80} +6561.00 q^{81} -54270.3 q^{82} +6934.34 q^{83} +245.877 q^{84} -12512.4 q^{85} +37685.2 q^{86} -13913.2 q^{87} -21967.3 q^{88} +42779.8 q^{89} -11421.4 q^{90} -10138.0 q^{91} -149.016 q^{92} -24327.8 q^{93} +6582.41 q^{94} -16767.1 q^{95} +613.812 q^{96} -20992.6 q^{97} -23825.1 q^{98} -9801.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} - 27 q^{3} - 20 q^{4} + 75 q^{5} - 18 q^{6} + 152 q^{7} - 24 q^{8} + 243 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 2 q^{2} - 27 q^{3} - 20 q^{4} + 75 q^{5} - 18 q^{6} + 152 q^{7} - 24 q^{8} + 243 q^{9} + 50 q^{10} - 363 q^{11} + 180 q^{12} - 546 q^{13} - 8 q^{14} - 675 q^{15} - 1360 q^{16} - 314 q^{17} + 162 q^{18} + 1808 q^{19} - 500 q^{20} - 1368 q^{21} - 242 q^{22} + 4288 q^{23} + 216 q^{24} + 1875 q^{25} + 812 q^{26} - 2187 q^{27} + 5888 q^{28} + 5582 q^{29} - 450 q^{30} + 6328 q^{31} - 736 q^{32} + 3267 q^{33} + 11596 q^{34} + 3800 q^{35} - 1620 q^{36} + 16866 q^{37} + 9584 q^{38} + 4914 q^{39} - 600 q^{40} + 23282 q^{41} + 72 q^{42} + 20572 q^{43} + 2420 q^{44} + 6075 q^{45} + 16592 q^{46} + 3432 q^{47} + 12240 q^{48} + 11531 q^{49} + 1250 q^{50} + 2826 q^{51} + 21816 q^{52} + 16138 q^{53} - 1458 q^{54} - 9075 q^{55} + 15648 q^{56} - 16272 q^{57} + 17460 q^{58} + 21972 q^{59} + 4500 q^{60} + 8322 q^{61} + 5056 q^{62} + 12312 q^{63} + 22208 q^{64} - 13650 q^{65} + 2178 q^{66} - 84332 q^{67} + 59832 q^{68} - 38592 q^{69} - 200 q^{70} + 50528 q^{71} - 1944 q^{72} - 53838 q^{73} + 79212 q^{74} - 16875 q^{75} - 52448 q^{76} - 18392 q^{77} - 7308 q^{78} + 6364 q^{79} - 34000 q^{80} + 19683 q^{81} - 68020 q^{82} + 96272 q^{83} - 52992 q^{84} - 7850 q^{85} + 143152 q^{86} - 50238 q^{87} + 2904 q^{88} - 38938 q^{89} + 4050 q^{90} + 104968 q^{91} + 24000 q^{92} - 56952 q^{93} + 49088 q^{94} + 45200 q^{95} + 6624 q^{96} - 103242 q^{97} + 9554 q^{98} - 29403 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.64018 −0.997052 −0.498526 0.866875i \(-0.666125\pi\)
−0.498526 + 0.866875i \(0.666125\pi\)
\(3\) −9.00000 −0.577350
\(4\) −0.188384 −0.00588699
\(5\) 25.0000 0.447214
\(6\) 50.7616 0.575648
\(7\) 145.021 1.11863 0.559315 0.828955i \(-0.311064\pi\)
0.559315 + 0.828955i \(0.311064\pi\)
\(8\) 181.548 1.00292
\(9\) 81.0000 0.333333
\(10\) −141.004 −0.445895
\(11\) −121.000 −0.301511
\(12\) 1.69545 0.00339886
\(13\) −69.9067 −0.114726 −0.0573628 0.998353i \(-0.518269\pi\)
−0.0573628 + 0.998353i \(0.518269\pi\)
\(14\) −817.946 −1.11533
\(15\) −225.000 −0.258199
\(16\) −1017.94 −0.994078
\(17\) −500.495 −0.420027 −0.210014 0.977698i \(-0.567351\pi\)
−0.210014 + 0.977698i \(0.567351\pi\)
\(18\) −456.854 −0.332351
\(19\) −670.685 −0.426221 −0.213110 0.977028i \(-0.568359\pi\)
−0.213110 + 0.977028i \(0.568359\pi\)
\(20\) −4.70959 −0.00263274
\(21\) −1305.19 −0.645842
\(22\) 682.462 0.300623
\(23\) 791.025 0.311796 0.155898 0.987773i \(-0.450173\pi\)
0.155898 + 0.987773i \(0.450173\pi\)
\(24\) −1633.93 −0.579037
\(25\) 625.000 0.200000
\(26\) 394.287 0.114388
\(27\) −729.000 −0.192450
\(28\) −27.3196 −0.00658537
\(29\) 1545.91 0.341342 0.170671 0.985328i \(-0.445406\pi\)
0.170671 + 0.985328i \(0.445406\pi\)
\(30\) 1269.04 0.257438
\(31\) 2703.09 0.505191 0.252596 0.967572i \(-0.418716\pi\)
0.252596 + 0.967572i \(0.418716\pi\)
\(32\) −68.2013 −0.0117738
\(33\) 1089.00 0.174078
\(34\) 2822.88 0.418789
\(35\) 3625.53 0.500267
\(36\) −15.2591 −0.00196233
\(37\) −2667.13 −0.320287 −0.160144 0.987094i \(-0.551196\pi\)
−0.160144 + 0.987094i \(0.551196\pi\)
\(38\) 3782.78 0.424964
\(39\) 629.161 0.0662369
\(40\) 4538.71 0.448520
\(41\) 9622.09 0.893942 0.446971 0.894548i \(-0.352503\pi\)
0.446971 + 0.894548i \(0.352503\pi\)
\(42\) 7361.51 0.643938
\(43\) −6681.57 −0.551070 −0.275535 0.961291i \(-0.588855\pi\)
−0.275535 + 0.961291i \(0.588855\pi\)
\(44\) 22.7944 0.00177499
\(45\) 2025.00 0.149071
\(46\) −4461.52 −0.310877
\(47\) −1167.06 −0.0770632 −0.0385316 0.999257i \(-0.512268\pi\)
−0.0385316 + 0.999257i \(0.512268\pi\)
\(48\) 9161.43 0.573931
\(49\) 4224.17 0.251334
\(50\) −3525.11 −0.199410
\(51\) 4504.46 0.242503
\(52\) 13.1693 0.000675389 0
\(53\) 28872.9 1.41189 0.705944 0.708268i \(-0.250523\pi\)
0.705944 + 0.708268i \(0.250523\pi\)
\(54\) 4111.69 0.191883
\(55\) −3025.00 −0.134840
\(56\) 26328.4 1.12190
\(57\) 6036.16 0.246079
\(58\) −8719.22 −0.340336
\(59\) 23599.3 0.882610 0.441305 0.897357i \(-0.354516\pi\)
0.441305 + 0.897357i \(0.354516\pi\)
\(60\) 42.3863 0.00152001
\(61\) 17601.3 0.605648 0.302824 0.953046i \(-0.402070\pi\)
0.302824 + 0.953046i \(0.402070\pi\)
\(62\) −15245.9 −0.503702
\(63\) 11746.7 0.372877
\(64\) 32958.6 1.00582
\(65\) −1747.67 −0.0513069
\(66\) −6142.15 −0.173565
\(67\) 16501.5 0.449092 0.224546 0.974463i \(-0.427910\pi\)
0.224546 + 0.974463i \(0.427910\pi\)
\(68\) 94.2851 0.00247270
\(69\) −7119.22 −0.180016
\(70\) −20448.6 −0.498792
\(71\) 72059.4 1.69646 0.848232 0.529625i \(-0.177667\pi\)
0.848232 + 0.529625i \(0.177667\pi\)
\(72\) 14705.4 0.334307
\(73\) −45480.8 −0.998898 −0.499449 0.866343i \(-0.666464\pi\)
−0.499449 + 0.866343i \(0.666464\pi\)
\(74\) 15043.1 0.319343
\(75\) −5625.00 −0.115470
\(76\) 126.346 0.00250916
\(77\) −17547.6 −0.337280
\(78\) −3548.58 −0.0660417
\(79\) −21688.7 −0.390990 −0.195495 0.980705i \(-0.562631\pi\)
−0.195495 + 0.980705i \(0.562631\pi\)
\(80\) −25448.4 −0.444565
\(81\) 6561.00 0.111111
\(82\) −54270.3 −0.891307
\(83\) 6934.34 0.110487 0.0552434 0.998473i \(-0.482407\pi\)
0.0552434 + 0.998473i \(0.482407\pi\)
\(84\) 245.877 0.00380206
\(85\) −12512.4 −0.187842
\(86\) 37685.2 0.549446
\(87\) −13913.2 −0.197074
\(88\) −21967.3 −0.302392
\(89\) 42779.8 0.572484 0.286242 0.958157i \(-0.407594\pi\)
0.286242 + 0.958157i \(0.407594\pi\)
\(90\) −11421.4 −0.148632
\(91\) −10138.0 −0.128336
\(92\) −149.016 −0.00183554
\(93\) −24327.8 −0.291672
\(94\) 6582.41 0.0768361
\(95\) −16767.1 −0.190612
\(96\) 613.812 0.00679762
\(97\) −20992.6 −0.226535 −0.113268 0.993565i \(-0.536132\pi\)
−0.113268 + 0.993565i \(0.536132\pi\)
\(98\) −23825.1 −0.250593
\(99\) −9801.00 −0.100504
\(100\) −117.740 −0.00117740
\(101\) 189654. 1.84995 0.924973 0.380033i \(-0.124087\pi\)
0.924973 + 0.380033i \(0.124087\pi\)
\(102\) −25405.9 −0.241788
\(103\) −160899. −1.49438 −0.747190 0.664611i \(-0.768597\pi\)
−0.747190 + 0.664611i \(0.768597\pi\)
\(104\) −12691.4 −0.115061
\(105\) −32629.8 −0.288829
\(106\) −162848. −1.40773
\(107\) 113244. 0.956216 0.478108 0.878301i \(-0.341323\pi\)
0.478108 + 0.878301i \(0.341323\pi\)
\(108\) 137.332 0.00113295
\(109\) −1768.32 −0.0142559 −0.00712797 0.999975i \(-0.502269\pi\)
−0.00712797 + 0.999975i \(0.502269\pi\)
\(110\) 17061.5 0.134442
\(111\) 24004.1 0.184918
\(112\) −147622. −1.11201
\(113\) −77273.2 −0.569289 −0.284645 0.958633i \(-0.591876\pi\)
−0.284645 + 0.958633i \(0.591876\pi\)
\(114\) −34045.0 −0.245353
\(115\) 19775.6 0.139439
\(116\) −291.224 −0.00200948
\(117\) −5662.45 −0.0382419
\(118\) −133104. −0.880008
\(119\) −72582.5 −0.469855
\(120\) −40848.4 −0.258953
\(121\) 14641.0 0.0909091
\(122\) −99274.6 −0.603863
\(123\) −86598.8 −0.516118
\(124\) −509.218 −0.00297406
\(125\) 15625.0 0.0894427
\(126\) −66253.6 −0.371778
\(127\) 104707. 0.576058 0.288029 0.957622i \(-0.407000\pi\)
0.288029 + 0.957622i \(0.407000\pi\)
\(128\) −183710. −0.991079
\(129\) 60134.1 0.318161
\(130\) 9857.16 0.0511556
\(131\) 101248. 0.515476 0.257738 0.966215i \(-0.417023\pi\)
0.257738 + 0.966215i \(0.417023\pi\)
\(132\) −205.150 −0.00102479
\(133\) −97263.6 −0.476783
\(134\) −93071.2 −0.447768
\(135\) −18225.0 −0.0860663
\(136\) −90864.0 −0.421255
\(137\) 128311. 0.584068 0.292034 0.956408i \(-0.405668\pi\)
0.292034 + 0.956408i \(0.405668\pi\)
\(138\) 40153.7 0.179485
\(139\) 161754. 0.710100 0.355050 0.934847i \(-0.384464\pi\)
0.355050 + 0.934847i \(0.384464\pi\)
\(140\) −682.991 −0.00294507
\(141\) 10503.5 0.0444925
\(142\) −406428. −1.69146
\(143\) 8458.72 0.0345911
\(144\) −82452.8 −0.331359
\(145\) 38647.8 0.152653
\(146\) 256520. 0.995954
\(147\) −38017.5 −0.145108
\(148\) 502.443 0.00188553
\(149\) −404421. −1.49234 −0.746170 0.665755i \(-0.768110\pi\)
−0.746170 + 0.665755i \(0.768110\pi\)
\(150\) 31726.0 0.115130
\(151\) 416180. 1.48538 0.742692 0.669633i \(-0.233549\pi\)
0.742692 + 0.669633i \(0.233549\pi\)
\(152\) −121762. −0.427466
\(153\) −40540.1 −0.140009
\(154\) 98971.5 0.336286
\(155\) 67577.2 0.225929
\(156\) −118.524 −0.000389936 0
\(157\) 332834. 1.07765 0.538827 0.842417i \(-0.318868\pi\)
0.538827 + 0.842417i \(0.318868\pi\)
\(158\) 122328. 0.389837
\(159\) −259856. −0.815154
\(160\) −1705.03 −0.00526542
\(161\) 114715. 0.348785
\(162\) −37005.2 −0.110784
\(163\) −14764.9 −0.0435272 −0.0217636 0.999763i \(-0.506928\pi\)
−0.0217636 + 0.999763i \(0.506928\pi\)
\(164\) −1812.64 −0.00526263
\(165\) 27225.0 0.0778499
\(166\) −39110.9 −0.110161
\(167\) 169960. 0.471579 0.235790 0.971804i \(-0.424232\pi\)
0.235790 + 0.971804i \(0.424232\pi\)
\(168\) −236955. −0.647729
\(169\) −366406. −0.986838
\(170\) 70572.1 0.187288
\(171\) −54325.5 −0.142074
\(172\) 1258.70 0.00324415
\(173\) 725869. 1.84392 0.921962 0.387281i \(-0.126586\pi\)
0.921962 + 0.387281i \(0.126586\pi\)
\(174\) 78472.9 0.196493
\(175\) 90638.3 0.223726
\(176\) 123170. 0.299726
\(177\) −212394. −0.509575
\(178\) −241286. −0.570797
\(179\) 69311.4 0.161686 0.0808429 0.996727i \(-0.474239\pi\)
0.0808429 + 0.996727i \(0.474239\pi\)
\(180\) −381.477 −0.000877581 0
\(181\) 790396. 1.79328 0.896640 0.442761i \(-0.146001\pi\)
0.896640 + 0.442761i \(0.146001\pi\)
\(182\) 57179.9 0.127957
\(183\) −158412. −0.349671
\(184\) 143609. 0.312707
\(185\) −66678.2 −0.143237
\(186\) 137213. 0.290813
\(187\) 60559.9 0.126643
\(188\) 219.854 0.000453670 0
\(189\) −105721. −0.215281
\(190\) 94569.6 0.190050
\(191\) 418979. 0.831015 0.415507 0.909590i \(-0.363604\pi\)
0.415507 + 0.909590i \(0.363604\pi\)
\(192\) −296628. −0.580709
\(193\) 265524. 0.513110 0.256555 0.966530i \(-0.417413\pi\)
0.256555 + 0.966530i \(0.417413\pi\)
\(194\) 118402. 0.225868
\(195\) 15729.0 0.0296220
\(196\) −795.765 −0.00147960
\(197\) −87754.1 −0.161102 −0.0805512 0.996750i \(-0.525668\pi\)
−0.0805512 + 0.996750i \(0.525668\pi\)
\(198\) 55279.4 0.100208
\(199\) 380988. 0.681992 0.340996 0.940065i \(-0.389236\pi\)
0.340996 + 0.940065i \(0.389236\pi\)
\(200\) 113468. 0.200584
\(201\) −148513. −0.259284
\(202\) −1.06968e6 −1.84449
\(203\) 224190. 0.381835
\(204\) −848.566 −0.00142761
\(205\) 240552. 0.399783
\(206\) 907501. 1.48997
\(207\) 64073.0 0.103932
\(208\) 71160.6 0.114046
\(209\) 81152.9 0.128510
\(210\) 184038. 0.287978
\(211\) 624404. 0.965516 0.482758 0.875754i \(-0.339635\pi\)
0.482758 + 0.875754i \(0.339635\pi\)
\(212\) −5439.18 −0.00831177
\(213\) −648534. −0.979454
\(214\) −638717. −0.953398
\(215\) −167039. −0.246446
\(216\) −132349. −0.193012
\(217\) 392005. 0.565123
\(218\) 9973.67 0.0142139
\(219\) 409328. 0.576714
\(220\) 569.861 0.000793802 0
\(221\) 34988.0 0.0481879
\(222\) −135388. −0.184373
\(223\) −658298. −0.886462 −0.443231 0.896407i \(-0.646168\pi\)
−0.443231 + 0.896407i \(0.646168\pi\)
\(224\) −9890.64 −0.0131706
\(225\) 50625.0 0.0666667
\(226\) 435835. 0.567611
\(227\) 219954. 0.283313 0.141657 0.989916i \(-0.454757\pi\)
0.141657 + 0.989916i \(0.454757\pi\)
\(228\) −1137.11 −0.00144866
\(229\) −313324. −0.394825 −0.197412 0.980321i \(-0.563254\pi\)
−0.197412 + 0.980321i \(0.563254\pi\)
\(230\) −111538. −0.139028
\(231\) 157928. 0.194729
\(232\) 280657. 0.342339
\(233\) −1.01608e6 −1.22614 −0.613069 0.790030i \(-0.710065\pi\)
−0.613069 + 0.790030i \(0.710065\pi\)
\(234\) 31937.2 0.0381292
\(235\) −29176.4 −0.0344637
\(236\) −4445.72 −0.00519592
\(237\) 195198. 0.225738
\(238\) 409378. 0.468470
\(239\) 762420. 0.863375 0.431688 0.902023i \(-0.357918\pi\)
0.431688 + 0.902023i \(0.357918\pi\)
\(240\) 229036. 0.256670
\(241\) −22909.2 −0.0254078 −0.0127039 0.999919i \(-0.504044\pi\)
−0.0127039 + 0.999919i \(0.504044\pi\)
\(242\) −82577.9 −0.0906411
\(243\) −59049.0 −0.0641500
\(244\) −3315.80 −0.00356545
\(245\) 105604. 0.112400
\(246\) 488433. 0.514596
\(247\) 46885.4 0.0488985
\(248\) 490741. 0.506668
\(249\) −62409.1 −0.0637895
\(250\) −88127.8 −0.0891791
\(251\) −691159. −0.692458 −0.346229 0.938150i \(-0.612538\pi\)
−0.346229 + 0.938150i \(0.612538\pi\)
\(252\) −2212.89 −0.00219512
\(253\) −95714.0 −0.0940100
\(254\) −590566. −0.574360
\(255\) 112611. 0.108451
\(256\) −18518.2 −0.0176604
\(257\) −1.34845e6 −1.27351 −0.636753 0.771068i \(-0.719723\pi\)
−0.636753 + 0.771068i \(0.719723\pi\)
\(258\) −339167. −0.317223
\(259\) −386790. −0.358283
\(260\) 329.232 0.000302043 0
\(261\) 125219. 0.113781
\(262\) −571057. −0.513957
\(263\) 1.34541e6 1.19940 0.599700 0.800225i \(-0.295287\pi\)
0.599700 + 0.800225i \(0.295287\pi\)
\(264\) 197706. 0.174586
\(265\) 721821. 0.631415
\(266\) 548584. 0.475378
\(267\) −385018. −0.330524
\(268\) −3108.61 −0.00264380
\(269\) −2.03803e6 −1.71724 −0.858620 0.512613i \(-0.828678\pi\)
−0.858620 + 0.512613i \(0.828678\pi\)
\(270\) 102792. 0.0858126
\(271\) −218053. −0.180360 −0.0901799 0.995925i \(-0.528744\pi\)
−0.0901799 + 0.995925i \(0.528744\pi\)
\(272\) 509472. 0.417540
\(273\) 91241.7 0.0740946
\(274\) −723698. −0.582346
\(275\) −75625.0 −0.0603023
\(276\) 1341.15 0.00105975
\(277\) −410179. −0.321199 −0.160599 0.987020i \(-0.551343\pi\)
−0.160599 + 0.987020i \(0.551343\pi\)
\(278\) −912324. −0.708006
\(279\) 218950. 0.168397
\(280\) 658209. 0.501728
\(281\) −406589. −0.307178 −0.153589 0.988135i \(-0.549083\pi\)
−0.153589 + 0.988135i \(0.549083\pi\)
\(282\) −59241.7 −0.0443613
\(283\) 1.26416e6 0.938291 0.469146 0.883121i \(-0.344562\pi\)
0.469146 + 0.883121i \(0.344562\pi\)
\(284\) −13574.8 −0.00998707
\(285\) 150904. 0.110050
\(286\) −47708.7 −0.0344891
\(287\) 1.39541e6 0.999991
\(288\) −5524.30 −0.00392461
\(289\) −1.16936e6 −0.823577
\(290\) −217980. −0.152203
\(291\) 188933. 0.130790
\(292\) 8567.85 0.00588050
\(293\) 351099. 0.238924 0.119462 0.992839i \(-0.461883\pi\)
0.119462 + 0.992839i \(0.461883\pi\)
\(294\) 214426. 0.144680
\(295\) 589982. 0.394715
\(296\) −484212. −0.321223
\(297\) 88209.0 0.0580259
\(298\) 2.28101e6 1.48794
\(299\) −55298.0 −0.0357710
\(300\) 1059.66 0.000679771 0
\(301\) −968969. −0.616444
\(302\) −2.34733e6 −1.48101
\(303\) −1.70689e6 −1.06807
\(304\) 682714. 0.423697
\(305\) 440033. 0.270854
\(306\) 228654. 0.139596
\(307\) −1.46228e6 −0.885493 −0.442747 0.896647i \(-0.645996\pi\)
−0.442747 + 0.896647i \(0.645996\pi\)
\(308\) 3305.68 0.00198556
\(309\) 1.44809e6 0.862781
\(310\) −381148. −0.225263
\(311\) 2.20292e6 1.29151 0.645755 0.763545i \(-0.276543\pi\)
0.645755 + 0.763545i \(0.276543\pi\)
\(312\) 114223. 0.0664304
\(313\) 647848. 0.373777 0.186888 0.982381i \(-0.440160\pi\)
0.186888 + 0.982381i \(0.440160\pi\)
\(314\) −1.87725e6 −1.07448
\(315\) 293668. 0.166756
\(316\) 4085.80 0.00230175
\(317\) −1.62933e6 −0.910670 −0.455335 0.890320i \(-0.650481\pi\)
−0.455335 + 0.890320i \(0.650481\pi\)
\(318\) 1.46563e6 0.812751
\(319\) −187055. −0.102918
\(320\) 823966. 0.449815
\(321\) −1.01920e6 −0.552072
\(322\) −647016. −0.347756
\(323\) 335675. 0.179024
\(324\) −1235.99 −0.000654110 0
\(325\) −43691.7 −0.0229451
\(326\) 83276.6 0.0433989
\(327\) 15914.9 0.00823067
\(328\) 1.74687e6 0.896554
\(329\) −169248. −0.0862053
\(330\) −153554. −0.0776204
\(331\) 799339. 0.401016 0.200508 0.979692i \(-0.435741\pi\)
0.200508 + 0.979692i \(0.435741\pi\)
\(332\) −1306.32 −0.000650434 0
\(333\) −216037. −0.106762
\(334\) −958603. −0.470189
\(335\) 412537. 0.200840
\(336\) 1.32860e6 0.642017
\(337\) −3.76736e6 −1.80702 −0.903508 0.428570i \(-0.859017\pi\)
−0.903508 + 0.428570i \(0.859017\pi\)
\(338\) 2.06660e6 0.983929
\(339\) 695459. 0.328679
\(340\) 2357.13 0.00110582
\(341\) −327074. −0.152321
\(342\) 306405. 0.141655
\(343\) −1.82478e6 −0.837481
\(344\) −1.21303e6 −0.552681
\(345\) −177981. −0.0805054
\(346\) −4.09403e6 −1.83849
\(347\) 923519. 0.411739 0.205869 0.978579i \(-0.433998\pi\)
0.205869 + 0.978579i \(0.433998\pi\)
\(348\) 2621.02 0.00116017
\(349\) 2.61022e6 1.14713 0.573567 0.819159i \(-0.305559\pi\)
0.573567 + 0.819159i \(0.305559\pi\)
\(350\) −511216. −0.223067
\(351\) 50962.0 0.0220790
\(352\) 8252.36 0.00354994
\(353\) 1.25644e6 0.536669 0.268335 0.963326i \(-0.413527\pi\)
0.268335 + 0.963326i \(0.413527\pi\)
\(354\) 1.19794e6 0.508073
\(355\) 1.80148e6 0.758682
\(356\) −8059.01 −0.00337021
\(357\) 653242. 0.271271
\(358\) −390928. −0.161209
\(359\) −2.38200e6 −0.975451 −0.487726 0.872997i \(-0.662173\pi\)
−0.487726 + 0.872997i \(0.662173\pi\)
\(360\) 367635. 0.149507
\(361\) −2.02628e6 −0.818336
\(362\) −4.45797e6 −1.78799
\(363\) −131769. −0.0524864
\(364\) 1909.83 0.000755511 0
\(365\) −1.13702e6 −0.446721
\(366\) 893471. 0.348641
\(367\) −3.46320e6 −1.34219 −0.671093 0.741373i \(-0.734175\pi\)
−0.671093 + 0.741373i \(0.734175\pi\)
\(368\) −805213. −0.309950
\(369\) 779389. 0.297981
\(370\) 376077. 0.142815
\(371\) 4.18718e6 1.57938
\(372\) 4582.96 0.00171707
\(373\) 811517. 0.302013 0.151006 0.988533i \(-0.451749\pi\)
0.151006 + 0.988533i \(0.451749\pi\)
\(374\) −341569. −0.126270
\(375\) −140625. −0.0516398
\(376\) −211877. −0.0772884
\(377\) −108070. −0.0391607
\(378\) 596283. 0.214646
\(379\) −522481. −0.186841 −0.0934206 0.995627i \(-0.529780\pi\)
−0.0934206 + 0.995627i \(0.529780\pi\)
\(380\) 3158.65 0.00112213
\(381\) −942362. −0.332587
\(382\) −2.36312e6 −0.828565
\(383\) −2.24960e6 −0.783625 −0.391813 0.920045i \(-0.628152\pi\)
−0.391813 + 0.920045i \(0.628152\pi\)
\(384\) 1.65339e6 0.572200
\(385\) −438689. −0.150836
\(386\) −1.49760e6 −0.511598
\(387\) −541207. −0.183690
\(388\) 3954.65 0.00133361
\(389\) −2.42055e6 −0.811035 −0.405518 0.914087i \(-0.632909\pi\)
−0.405518 + 0.914087i \(0.632909\pi\)
\(390\) −88714.5 −0.0295347
\(391\) −395904. −0.130963
\(392\) 766891. 0.252068
\(393\) −911233. −0.297610
\(394\) 494949. 0.160627
\(395\) −542217. −0.174856
\(396\) 1846.35 0.000591665 0
\(397\) 1.96075e6 0.624375 0.312187 0.950021i \(-0.398938\pi\)
0.312187 + 0.950021i \(0.398938\pi\)
\(398\) −2.14884e6 −0.679981
\(399\) 875372. 0.275271
\(400\) −636210. −0.198816
\(401\) −3.86313e6 −1.19972 −0.599858 0.800107i \(-0.704776\pi\)
−0.599858 + 0.800107i \(0.704776\pi\)
\(402\) 837641. 0.258519
\(403\) −188964. −0.0579584
\(404\) −35727.8 −0.0108906
\(405\) 164025. 0.0496904
\(406\) −1.26447e6 −0.380710
\(407\) 322722. 0.0965702
\(408\) 817776. 0.243212
\(409\) 1.75292e6 0.518149 0.259075 0.965857i \(-0.416582\pi\)
0.259075 + 0.965857i \(0.416582\pi\)
\(410\) −1.35676e6 −0.398605
\(411\) −1.15480e6 −0.337212
\(412\) 30310.8 0.00879740
\(413\) 3.42240e6 0.987314
\(414\) −361383. −0.103626
\(415\) 173359. 0.0494112
\(416\) 4767.73 0.00135076
\(417\) −1.45579e6 −0.409976
\(418\) −457717. −0.128132
\(419\) −4.28414e6 −1.19214 −0.596071 0.802932i \(-0.703272\pi\)
−0.596071 + 0.802932i \(0.703272\pi\)
\(420\) 6146.92 0.00170033
\(421\) 5.74050e6 1.57850 0.789250 0.614072i \(-0.210470\pi\)
0.789250 + 0.614072i \(0.210470\pi\)
\(422\) −3.52175e6 −0.962670
\(423\) −94531.6 −0.0256877
\(424\) 5.24182e6 1.41601
\(425\) −312810. −0.0840055
\(426\) 3.65785e6 0.976567
\(427\) 2.55257e6 0.677497
\(428\) −21333.3 −0.00562924
\(429\) −76128.4 −0.0199712
\(430\) 942131. 0.245720
\(431\) 5.29228e6 1.37230 0.686150 0.727460i \(-0.259299\pi\)
0.686150 + 0.727460i \(0.259299\pi\)
\(432\) 742076. 0.191310
\(433\) −2.37840e6 −0.609628 −0.304814 0.952412i \(-0.598594\pi\)
−0.304814 + 0.952412i \(0.598594\pi\)
\(434\) −2.21098e6 −0.563457
\(435\) −347830. −0.0881341
\(436\) 333.123 8.39245e−5 0
\(437\) −530528. −0.132894
\(438\) −2.30868e6 −0.575014
\(439\) 6.44393e6 1.59584 0.797921 0.602762i \(-0.205933\pi\)
0.797921 + 0.602762i \(0.205933\pi\)
\(440\) −549183. −0.135234
\(441\) 342158. 0.0837780
\(442\) −197339. −0.0480459
\(443\) 2501.14 0.000605520 0 0.000302760 1.00000i \(-0.499904\pi\)
0.000302760 1.00000i \(0.499904\pi\)
\(444\) −4521.99 −0.00108861
\(445\) 1.06949e6 0.256023
\(446\) 3.71292e6 0.883849
\(447\) 3.63979e6 0.861603
\(448\) 4.77970e6 1.12514
\(449\) −5.04731e6 −1.18153 −0.590764 0.806844i \(-0.701174\pi\)
−0.590764 + 0.806844i \(0.701174\pi\)
\(450\) −285534. −0.0664701
\(451\) −1.16427e6 −0.269534
\(452\) 14557.0 0.00335140
\(453\) −3.74562e6 −0.857587
\(454\) −1.24058e6 −0.282478
\(455\) −253449. −0.0573934
\(456\) 1.09585e6 0.246798
\(457\) 4.62692e6 1.03634 0.518169 0.855278i \(-0.326614\pi\)
0.518169 + 0.855278i \(0.326614\pi\)
\(458\) 1.76720e6 0.393661
\(459\) 364861. 0.0808343
\(460\) −3725.40 −0.000820879 0
\(461\) 1.43209e6 0.313846 0.156923 0.987611i \(-0.449842\pi\)
0.156923 + 0.987611i \(0.449842\pi\)
\(462\) −890743. −0.194155
\(463\) 1.58115e6 0.342785 0.171393 0.985203i \(-0.445173\pi\)
0.171393 + 0.985203i \(0.445173\pi\)
\(464\) −1.57364e6 −0.339321
\(465\) −608195. −0.130440
\(466\) 5.73089e6 1.22252
\(467\) 8724.92 0.00185127 0.000925634 1.00000i \(-0.499705\pi\)
0.000925634 1.00000i \(0.499705\pi\)
\(468\) 1066.71 0.000225130 0
\(469\) 2.39306e6 0.502368
\(470\) 164560. 0.0343621
\(471\) −2.99551e6 −0.622183
\(472\) 4.28441e6 0.885189
\(473\) 808470. 0.166154
\(474\) −1.10095e6 −0.225073
\(475\) −419178. −0.0852441
\(476\) 13673.4 0.00276603
\(477\) 2.33870e6 0.470629
\(478\) −4.30018e6 −0.860830
\(479\) 8.15482e6 1.62396 0.811981 0.583684i \(-0.198389\pi\)
0.811981 + 0.583684i \(0.198389\pi\)
\(480\) 15345.3 0.00303999
\(481\) 186450. 0.0367452
\(482\) 129212. 0.0253329
\(483\) −1.03244e6 −0.201371
\(484\) −2758.13 −0.000535181 0
\(485\) −524814. −0.101310
\(486\) 333047. 0.0639609
\(487\) 9.00123e6 1.71981 0.859903 0.510457i \(-0.170524\pi\)
0.859903 + 0.510457i \(0.170524\pi\)
\(488\) 3.19549e6 0.607418
\(489\) 132884. 0.0251305
\(490\) −595627. −0.112069
\(491\) 6.03644e6 1.13000 0.564999 0.825092i \(-0.308877\pi\)
0.564999 + 0.825092i \(0.308877\pi\)
\(492\) 16313.8 0.00303838
\(493\) −773721. −0.143373
\(494\) −264442. −0.0487543
\(495\) −245025. −0.0449467
\(496\) −2.75157e6 −0.502200
\(497\) 1.04501e7 1.89772
\(498\) 351998. 0.0636015
\(499\) 233452. 0.0419707 0.0209853 0.999780i \(-0.493320\pi\)
0.0209853 + 0.999780i \(0.493320\pi\)
\(500\) −2943.50 −0.000526548 0
\(501\) −1.52964e6 −0.272267
\(502\) 3.89826e6 0.690417
\(503\) −7.79728e6 −1.37412 −0.687058 0.726603i \(-0.741098\pi\)
−0.687058 + 0.726603i \(0.741098\pi\)
\(504\) 2.13260e6 0.373966
\(505\) 4.74135e6 0.827321
\(506\) 539844. 0.0937329
\(507\) 3.29765e6 0.569751
\(508\) −19725.1 −0.00339125
\(509\) 5.32415e6 0.910869 0.455434 0.890269i \(-0.349484\pi\)
0.455434 + 0.890269i \(0.349484\pi\)
\(510\) −635149. −0.108131
\(511\) −6.59569e6 −1.11740
\(512\) 5.98317e6 1.00869
\(513\) 488929. 0.0820262
\(514\) 7.60548e6 1.26975
\(515\) −4.02248e6 −0.668307
\(516\) −11328.3 −0.00187301
\(517\) 141214. 0.0232354
\(518\) 2.18157e6 0.357227
\(519\) −6.53282e6 −1.06459
\(520\) −317286. −0.0514568
\(521\) −8.42076e6 −1.35912 −0.679559 0.733621i \(-0.737829\pi\)
−0.679559 + 0.733621i \(0.737829\pi\)
\(522\) −706257. −0.113445
\(523\) −6.81759e6 −1.08988 −0.544938 0.838476i \(-0.683447\pi\)
−0.544938 + 0.838476i \(0.683447\pi\)
\(524\) −19073.5 −0.00303460
\(525\) −815745. −0.129168
\(526\) −7.58833e6 −1.19586
\(527\) −1.35288e6 −0.212194
\(528\) −1.10853e6 −0.173047
\(529\) −5.81062e6 −0.902783
\(530\) −4.07120e6 −0.629554
\(531\) 1.91154e6 0.294203
\(532\) 18322.9 0.00280682
\(533\) −672649. −0.102558
\(534\) 2.17157e6 0.329550
\(535\) 2.83110e6 0.427633
\(536\) 2.99581e6 0.450404
\(537\) −623802. −0.0933493
\(538\) 1.14949e7 1.71218
\(539\) −511125. −0.0757801
\(540\) 3433.29 0.000506671 0
\(541\) −1.00313e7 −1.47354 −0.736770 0.676143i \(-0.763650\pi\)
−0.736770 + 0.676143i \(0.763650\pi\)
\(542\) 1.22986e6 0.179828
\(543\) −7.11356e6 −1.03535
\(544\) 34134.4 0.00494533
\(545\) −44208.1 −0.00637545
\(546\) −514619. −0.0738762
\(547\) 341056. 0.0487368 0.0243684 0.999703i \(-0.492243\pi\)
0.0243684 + 0.999703i \(0.492243\pi\)
\(548\) −24171.7 −0.00343840
\(549\) 1.42571e6 0.201883
\(550\) 426539. 0.0601245
\(551\) −1.03682e6 −0.145487
\(552\) −1.29248e6 −0.180541
\(553\) −3.14532e6 −0.437373
\(554\) 2.31348e6 0.320252
\(555\) 600104. 0.0826978
\(556\) −30471.9 −0.00418035
\(557\) 8.70989e6 1.18953 0.594764 0.803901i \(-0.297246\pi\)
0.594764 + 0.803901i \(0.297246\pi\)
\(558\) −1.23492e6 −0.167901
\(559\) 467087. 0.0632219
\(560\) −3.69056e6 −0.497304
\(561\) −545039. −0.0731174
\(562\) 2.29324e6 0.306272
\(563\) −1.05570e7 −1.40369 −0.701845 0.712330i \(-0.747640\pi\)
−0.701845 + 0.712330i \(0.747640\pi\)
\(564\) −1978.69 −0.000261927 0
\(565\) −1.93183e6 −0.254594
\(566\) −7.13011e6 −0.935525
\(567\) 951485. 0.124292
\(568\) 1.30823e7 1.70142
\(569\) −2.88092e6 −0.373035 −0.186518 0.982452i \(-0.559720\pi\)
−0.186518 + 0.982452i \(0.559720\pi\)
\(570\) −851126. −0.109725
\(571\) −8.00484e6 −1.02745 −0.513727 0.857954i \(-0.671735\pi\)
−0.513727 + 0.857954i \(0.671735\pi\)
\(572\) −1593.48 −0.000203637 0
\(573\) −3.77081e6 −0.479786
\(574\) −7.87035e6 −0.997043
\(575\) 494391. 0.0623592
\(576\) 2.66965e6 0.335272
\(577\) −1.42967e7 −1.78770 −0.893852 0.448361i \(-0.852008\pi\)
−0.893852 + 0.448361i \(0.852008\pi\)
\(578\) 6.59541e6 0.821149
\(579\) −2.38972e6 −0.296244
\(580\) −7280.61 −0.000898665 0
\(581\) 1.00563e6 0.123594
\(582\) −1.06562e6 −0.130405
\(583\) −3.49362e6 −0.425700
\(584\) −8.25697e6 −1.00182
\(585\) −141561. −0.0171023
\(586\) −1.98026e6 −0.238220
\(587\) 9.83619e6 1.17823 0.589117 0.808047i \(-0.299476\pi\)
0.589117 + 0.808047i \(0.299476\pi\)
\(588\) 7161.88 0.000854248 0
\(589\) −1.81292e6 −0.215323
\(590\) −3.32760e6 −0.393552
\(591\) 789787. 0.0930125
\(592\) 2.71497e6 0.318390
\(593\) −9.84429e6 −1.14960 −0.574801 0.818293i \(-0.694921\pi\)
−0.574801 + 0.818293i \(0.694921\pi\)
\(594\) −497515. −0.0578548
\(595\) −1.81456e6 −0.210126
\(596\) 76186.3 0.00878540
\(597\) −3.42890e6 −0.393748
\(598\) 311890. 0.0356656
\(599\) −3.94699e6 −0.449468 −0.224734 0.974420i \(-0.572151\pi\)
−0.224734 + 0.974420i \(0.572151\pi\)
\(600\) −1.02121e6 −0.115807
\(601\) −7.63150e6 −0.861834 −0.430917 0.902392i \(-0.641810\pi\)
−0.430917 + 0.902392i \(0.641810\pi\)
\(602\) 5.46516e6 0.614627
\(603\) 1.33662e6 0.149697
\(604\) −78401.5 −0.00874444
\(605\) 366025. 0.0406558
\(606\) 9.62715e6 1.06492
\(607\) −1.12292e7 −1.23703 −0.618513 0.785775i \(-0.712264\pi\)
−0.618513 + 0.785775i \(0.712264\pi\)
\(608\) 45741.6 0.00501825
\(609\) −2.01771e6 −0.220453
\(610\) −2.48186e6 −0.270056
\(611\) 81585.1 0.00884113
\(612\) 7637.10 0.000824232 0
\(613\) 2.62390e6 0.282031 0.141016 0.990007i \(-0.454963\pi\)
0.141016 + 0.990007i \(0.454963\pi\)
\(614\) 8.24753e6 0.882883
\(615\) −2.16497e6 −0.230815
\(616\) −3.18573e6 −0.338265
\(617\) −3.59228e6 −0.379889 −0.189945 0.981795i \(-0.560831\pi\)
−0.189945 + 0.981795i \(0.560831\pi\)
\(618\) −8.16750e6 −0.860237
\(619\) −1.19777e7 −1.25646 −0.628228 0.778029i \(-0.716219\pi\)
−0.628228 + 0.778029i \(0.716219\pi\)
\(620\) −12730.4 −0.00133004
\(621\) −576657. −0.0600052
\(622\) −1.24249e7 −1.28770
\(623\) 6.20398e6 0.640398
\(624\) −640445. −0.0658447
\(625\) 390625. 0.0400000
\(626\) −3.65398e6 −0.372675
\(627\) −730376. −0.0741955
\(628\) −62700.6 −0.00634413
\(629\) 1.33488e6 0.134529
\(630\) −1.65634e6 −0.166264
\(631\) 2.50844e6 0.250801 0.125401 0.992106i \(-0.459978\pi\)
0.125401 + 0.992106i \(0.459978\pi\)
\(632\) −3.93754e6 −0.392132
\(633\) −5.61963e6 −0.557441
\(634\) 9.18972e6 0.907986
\(635\) 2.61767e6 0.257621
\(636\) 48952.6 0.00479880
\(637\) −295298. −0.0288345
\(638\) 1.05503e6 0.102615
\(639\) 5.83681e6 0.565488
\(640\) −4.59275e6 −0.443224
\(641\) 1.12431e7 1.08079 0.540395 0.841411i \(-0.318275\pi\)
0.540395 + 0.841411i \(0.318275\pi\)
\(642\) 5.74845e6 0.550444
\(643\) 5.61271e6 0.535360 0.267680 0.963508i \(-0.413743\pi\)
0.267680 + 0.963508i \(0.413743\pi\)
\(644\) −21610.5 −0.00205329
\(645\) 1.50335e6 0.142286
\(646\) −1.89326e6 −0.178497
\(647\) 1.10739e7 1.04002 0.520008 0.854162i \(-0.325929\pi\)
0.520008 + 0.854162i \(0.325929\pi\)
\(648\) 1.19114e6 0.111436
\(649\) −2.85551e6 −0.266117
\(650\) 246429. 0.0228775
\(651\) −3.52805e6 −0.326274
\(652\) 2781.46 0.000256244 0
\(653\) −7.83486e6 −0.719032 −0.359516 0.933139i \(-0.617058\pi\)
−0.359516 + 0.933139i \(0.617058\pi\)
\(654\) −89763.0 −0.00820640
\(655\) 2.53120e6 0.230528
\(656\) −9.79467e6 −0.888649
\(657\) −3.68395e6 −0.332966
\(658\) 954589. 0.0859511
\(659\) 1.02774e7 0.921868 0.460934 0.887434i \(-0.347514\pi\)
0.460934 + 0.887434i \(0.347514\pi\)
\(660\) −5128.75 −0.000458302 0
\(661\) −1.42467e7 −1.26827 −0.634134 0.773223i \(-0.718643\pi\)
−0.634134 + 0.773223i \(0.718643\pi\)
\(662\) −4.50842e6 −0.399833
\(663\) −314892. −0.0278213
\(664\) 1.25892e6 0.110810
\(665\) −2.43159e6 −0.213224
\(666\) 1.21849e6 0.106448
\(667\) 1.22285e6 0.106429
\(668\) −32017.6 −0.00277618
\(669\) 5.92468e6 0.511799
\(670\) −2.32678e6 −0.200248
\(671\) −2.12976e6 −0.182610
\(672\) 89015.7 0.00760403
\(673\) −3.85183e6 −0.327815 −0.163908 0.986476i \(-0.552410\pi\)
−0.163908 + 0.986476i \(0.552410\pi\)
\(674\) 2.12486e7 1.80169
\(675\) −455625. −0.0384900
\(676\) 69024.9 0.00580951
\(677\) 1.39430e7 1.16919 0.584594 0.811326i \(-0.301254\pi\)
0.584594 + 0.811326i \(0.301254\pi\)
\(678\) −3.92251e6 −0.327710
\(679\) −3.04437e6 −0.253409
\(680\) −2.27160e6 −0.188391
\(681\) −1.97959e6 −0.163571
\(682\) 1.84475e6 0.151872
\(683\) −1.24329e7 −1.01981 −0.509905 0.860231i \(-0.670319\pi\)
−0.509905 + 0.860231i \(0.670319\pi\)
\(684\) 10234.0 0.000836386 0
\(685\) 3.20778e6 0.261203
\(686\) 1.02921e7 0.835012
\(687\) 2.81991e6 0.227952
\(688\) 6.80141e6 0.547807
\(689\) −2.01841e6 −0.161980
\(690\) 1.00384e6 0.0802681
\(691\) 1.46905e7 1.17042 0.585208 0.810883i \(-0.301013\pi\)
0.585208 + 0.810883i \(0.301013\pi\)
\(692\) −136742. −0.0108552
\(693\) −1.42135e6 −0.112427
\(694\) −5.20881e6 −0.410525
\(695\) 4.04386e6 0.317566
\(696\) −2.52592e6 −0.197650
\(697\) −4.81581e6 −0.375480
\(698\) −1.47221e7 −1.14375
\(699\) 9.14474e6 0.707911
\(700\) −17074.8 −0.00131707
\(701\) −3.55096e6 −0.272930 −0.136465 0.990645i \(-0.543574\pi\)
−0.136465 + 0.990645i \(0.543574\pi\)
\(702\) −287435. −0.0220139
\(703\) 1.78880e6 0.136513
\(704\) −3.98799e6 −0.303265
\(705\) 262588. 0.0198976
\(706\) −7.08657e6 −0.535087
\(707\) 2.75039e7 2.06941
\(708\) 40011.5 0.00299986
\(709\) −8.56408e6 −0.639831 −0.319915 0.947446i \(-0.603654\pi\)
−0.319915 + 0.947446i \(0.603654\pi\)
\(710\) −1.01607e7 −0.756445
\(711\) −1.75678e6 −0.130330
\(712\) 7.76659e6 0.574157
\(713\) 2.13821e6 0.157517
\(714\) −3.68440e6 −0.270472
\(715\) 211468. 0.0154696
\(716\) −13057.1 −0.000951843 0
\(717\) −6.86178e6 −0.498470
\(718\) 1.34349e7 0.972576
\(719\) 1.07318e7 0.774195 0.387097 0.922039i \(-0.373478\pi\)
0.387097 + 0.922039i \(0.373478\pi\)
\(720\) −2.06132e6 −0.148188
\(721\) −2.33338e7 −1.67166
\(722\) 1.14286e7 0.815924
\(723\) 206182. 0.0146692
\(724\) −148898. −0.0105570
\(725\) 966195. 0.0682684
\(726\) 743201. 0.0523317
\(727\) 1.49237e7 1.04722 0.523611 0.851957i \(-0.324584\pi\)
0.523611 + 0.851957i \(0.324584\pi\)
\(728\) −1.84053e6 −0.128711
\(729\) 531441. 0.0370370
\(730\) 6.41300e6 0.445404
\(731\) 3.34409e6 0.231465
\(732\) 29842.2 0.00205851
\(733\) 1.21777e7 0.837155 0.418577 0.908181i \(-0.362529\pi\)
0.418577 + 0.908181i \(0.362529\pi\)
\(734\) 1.95331e7 1.33823
\(735\) −950438. −0.0648942
\(736\) −53948.9 −0.00367103
\(737\) −1.99668e6 −0.135406
\(738\) −4.39589e6 −0.297102
\(739\) 4.10708e6 0.276644 0.138322 0.990387i \(-0.455829\pi\)
0.138322 + 0.990387i \(0.455829\pi\)
\(740\) 12561.1 0.000843233 0
\(741\) −421969. −0.0282315
\(742\) −2.36164e7 −1.57472
\(743\) 2.73077e7 1.81474 0.907368 0.420337i \(-0.138088\pi\)
0.907368 + 0.420337i \(0.138088\pi\)
\(744\) −4.41667e6 −0.292525
\(745\) −1.01105e7 −0.667395
\(746\) −4.57710e6 −0.301123
\(747\) 561682. 0.0368289
\(748\) −11408.5 −0.000745546 0
\(749\) 1.64228e7 1.06965
\(750\) 793150. 0.0514876
\(751\) −1.54004e7 −0.996398 −0.498199 0.867063i \(-0.666005\pi\)
−0.498199 + 0.867063i \(0.666005\pi\)
\(752\) 1.18799e6 0.0766069
\(753\) 6.22043e6 0.399791
\(754\) 609532. 0.0390452
\(755\) 1.04045e7 0.664284
\(756\) 19916.0 0.00126735
\(757\) 8.23327e6 0.522195 0.261097 0.965312i \(-0.415916\pi\)
0.261097 + 0.965312i \(0.415916\pi\)
\(758\) 2.94689e6 0.186290
\(759\) 861426. 0.0542767
\(760\) −3.04404e6 −0.191169
\(761\) 1.69020e7 1.05798 0.528989 0.848629i \(-0.322571\pi\)
0.528989 + 0.848629i \(0.322571\pi\)
\(762\) 5.31509e6 0.331607
\(763\) −256445. −0.0159471
\(764\) −78928.8 −0.00489217
\(765\) −1.01350e6 −0.0626140
\(766\) 1.26881e7 0.781315
\(767\) −1.64975e6 −0.101258
\(768\) 166664. 0.0101962
\(769\) −1.72204e7 −1.05009 −0.525045 0.851075i \(-0.675951\pi\)
−0.525045 + 0.851075i \(0.675951\pi\)
\(770\) 2.47429e6 0.150391
\(771\) 1.21360e7 0.735259
\(772\) −50020.4 −0.00302067
\(773\) 1.86902e7 1.12503 0.562517 0.826786i \(-0.309833\pi\)
0.562517 + 0.826786i \(0.309833\pi\)
\(774\) 3.05250e6 0.183149
\(775\) 1.68943e6 0.101038
\(776\) −3.81116e6 −0.227197
\(777\) 3.48111e6 0.206855
\(778\) 1.36523e7 0.808644
\(779\) −6.45339e6 −0.381017
\(780\) −2963.09 −0.000174385 0
\(781\) −8.71919e6 −0.511503
\(782\) 2.23297e6 0.130577
\(783\) −1.12697e6 −0.0656913
\(784\) −4.29994e6 −0.249846
\(785\) 8.32086e6 0.481941
\(786\) 5.13952e6 0.296733
\(787\) −8.17563e6 −0.470527 −0.235264 0.971932i \(-0.575595\pi\)
−0.235264 + 0.971932i \(0.575595\pi\)
\(788\) 16531.4 0.000948408 0
\(789\) −1.21087e7 −0.692474
\(790\) 3.05820e6 0.174341
\(791\) −1.12063e7 −0.636824
\(792\) −1.77935e6 −0.100797
\(793\) −1.23045e6 −0.0694834
\(794\) −1.10590e7 −0.622534
\(795\) −6.49639e6 −0.364548
\(796\) −71772.0 −0.00401488
\(797\) −3.39844e7 −1.89511 −0.947554 0.319595i \(-0.896453\pi\)
−0.947554 + 0.319595i \(0.896453\pi\)
\(798\) −4.93726e6 −0.274460
\(799\) 584106. 0.0323687
\(800\) −42625.8 −0.00235477
\(801\) 3.46516e6 0.190828
\(802\) 2.17887e7 1.19618
\(803\) 5.50318e6 0.301179
\(804\) 27977.5 0.00152640
\(805\) 2.86789e6 0.155981
\(806\) 1.06579e6 0.0577876
\(807\) 1.83423e7 0.991449
\(808\) 3.44314e7 1.85535
\(809\) 2.50619e7 1.34630 0.673151 0.739505i \(-0.264940\pi\)
0.673151 + 0.739505i \(0.264940\pi\)
\(810\) −925130. −0.0495439
\(811\) −1.73791e7 −0.927844 −0.463922 0.885876i \(-0.653558\pi\)
−0.463922 + 0.885876i \(0.653558\pi\)
\(812\) −42233.7 −0.00224786
\(813\) 1.96248e6 0.104131
\(814\) −1.82021e6 −0.0962855
\(815\) −369122. −0.0194660
\(816\) −4.58525e6 −0.241067
\(817\) 4.48123e6 0.234878
\(818\) −9.88681e6 −0.516622
\(819\) −821175. −0.0427786
\(820\) −45316.1 −0.00235352
\(821\) −1.21448e7 −0.628827 −0.314413 0.949286i \(-0.601808\pi\)
−0.314413 + 0.949286i \(0.601808\pi\)
\(822\) 6.51329e6 0.336218
\(823\) 9.33503e6 0.480415 0.240207 0.970722i \(-0.422785\pi\)
0.240207 + 0.970722i \(0.422785\pi\)
\(824\) −2.92110e7 −1.49875
\(825\) 680625. 0.0348155
\(826\) −1.93029e7 −0.984404
\(827\) −1.15378e7 −0.586622 −0.293311 0.956017i \(-0.594757\pi\)
−0.293311 + 0.956017i \(0.594757\pi\)
\(828\) −12070.3 −0.000611847 0
\(829\) −1.25927e7 −0.636404 −0.318202 0.948023i \(-0.603079\pi\)
−0.318202 + 0.948023i \(0.603079\pi\)
\(830\) −977773. −0.0492655
\(831\) 3.69161e6 0.185444
\(832\) −2.30403e6 −0.115393
\(833\) −2.11418e6 −0.105567
\(834\) 8.21092e6 0.408768
\(835\) 4.24899e6 0.210897
\(836\) −15287.9 −0.000756539 0
\(837\) −1.97055e6 −0.0972241
\(838\) 2.41633e7 1.18863
\(839\) 3.69853e7 1.81395 0.906973 0.421189i \(-0.138387\pi\)
0.906973 + 0.421189i \(0.138387\pi\)
\(840\) −5.92388e6 −0.289673
\(841\) −1.81213e7 −0.883486
\(842\) −3.23775e7 −1.57385
\(843\) 3.65930e6 0.177349
\(844\) −117627. −0.00568398
\(845\) −9.16015e6 −0.441327
\(846\) 533175. 0.0256120
\(847\) 2.12326e6 0.101694
\(848\) −2.93907e7 −1.40353
\(849\) −1.13775e7 −0.541723
\(850\) 1.76430e6 0.0837579
\(851\) −2.10976e6 −0.0998642
\(852\) 122173. 0.00576604
\(853\) 3.49513e7 1.64471 0.822357 0.568972i \(-0.192659\pi\)
0.822357 + 0.568972i \(0.192659\pi\)
\(854\) −1.43969e7 −0.675500
\(855\) −1.35814e6 −0.0635372
\(856\) 2.05593e7 0.959010
\(857\) −2.24410e7 −1.04373 −0.521867 0.853027i \(-0.674764\pi\)
−0.521867 + 0.853027i \(0.674764\pi\)
\(858\) 429378. 0.0199123
\(859\) 3.30887e7 1.53002 0.765010 0.644019i \(-0.222734\pi\)
0.765010 + 0.644019i \(0.222734\pi\)
\(860\) 31467.5 0.00145083
\(861\) −1.25587e7 −0.577345
\(862\) −2.98494e7 −1.36826
\(863\) 1.58950e6 0.0726495 0.0363248 0.999340i \(-0.488435\pi\)
0.0363248 + 0.999340i \(0.488435\pi\)
\(864\) 49718.7 0.00226587
\(865\) 1.81467e7 0.824628
\(866\) 1.34146e7 0.607830
\(867\) 1.05243e7 0.475492
\(868\) −73847.4 −0.00332687
\(869\) 2.62433e6 0.117888
\(870\) 1.96182e6 0.0878743
\(871\) −1.15356e6 −0.0515224
\(872\) −321036. −0.0142976
\(873\) −1.70040e6 −0.0755118
\(874\) 2.99228e6 0.132502
\(875\) 2.26596e6 0.100053
\(876\) −77110.6 −0.00339511
\(877\) −1.78401e7 −0.783246 −0.391623 0.920126i \(-0.628086\pi\)
−0.391623 + 0.920126i \(0.628086\pi\)
\(878\) −3.63449e7 −1.59114
\(879\) −3.15989e6 −0.137943
\(880\) 3.07926e6 0.134041
\(881\) −1.53213e7 −0.665054 −0.332527 0.943094i \(-0.607901\pi\)
−0.332527 + 0.943094i \(0.607901\pi\)
\(882\) −1.92983e6 −0.0835310
\(883\) 1.92226e7 0.829680 0.414840 0.909894i \(-0.363838\pi\)
0.414840 + 0.909894i \(0.363838\pi\)
\(884\) −6591.17 −0.000283682 0
\(885\) −5.30984e6 −0.227889
\(886\) −14106.9 −0.000603735 0
\(887\) −1.78729e7 −0.762756 −0.381378 0.924419i \(-0.624550\pi\)
−0.381378 + 0.924419i \(0.624550\pi\)
\(888\) 4.35791e6 0.185458
\(889\) 1.51847e7 0.644396
\(890\) −6.03214e6 −0.255268
\(891\) −793881. −0.0335013
\(892\) 124013. 0.00521860
\(893\) 782727. 0.0328459
\(894\) −2.05291e7 −0.859063
\(895\) 1.73278e6 0.0723081
\(896\) −2.66419e7 −1.10865
\(897\) 497682. 0.0206524
\(898\) 2.84677e7 1.17804
\(899\) 4.17874e6 0.172443
\(900\) −9536.92 −0.000392466 0
\(901\) −1.44507e7 −0.593032
\(902\) 6.56670e6 0.268739
\(903\) 8.72072e6 0.355904
\(904\) −1.40288e7 −0.570953
\(905\) 1.97599e7 0.801979
\(906\) 2.11260e7 0.855059
\(907\) 2.36602e7 0.954993 0.477497 0.878634i \(-0.341544\pi\)
0.477497 + 0.878634i \(0.341544\pi\)
\(908\) −41435.7 −0.00166786
\(909\) 1.53620e7 0.616649
\(910\) 1.42950e6 0.0572243
\(911\) 2.62399e7 1.04753 0.523766 0.851862i \(-0.324527\pi\)
0.523766 + 0.851862i \(0.324527\pi\)
\(912\) −6.14443e6 −0.244621
\(913\) −839056. −0.0333130
\(914\) −2.60966e7 −1.03328
\(915\) −3.96030e6 −0.156378
\(916\) 59025.0 0.00232433
\(917\) 1.46831e7 0.576627
\(918\) −2.05788e6 −0.0805960
\(919\) 1.05336e7 0.411422 0.205711 0.978613i \(-0.434049\pi\)
0.205711 + 0.978613i \(0.434049\pi\)
\(920\) 3.59023e6 0.139847
\(921\) 1.31605e7 0.511240
\(922\) −8.07723e6 −0.312921
\(923\) −5.03744e6 −0.194628
\(924\) −29751.1 −0.00114637
\(925\) −1.66695e6 −0.0640574
\(926\) −8.91800e6 −0.341775
\(927\) −1.30328e7 −0.498127
\(928\) −105433. −0.00401890
\(929\) 4.93218e7 1.87499 0.937497 0.347993i \(-0.113137\pi\)
0.937497 + 0.347993i \(0.113137\pi\)
\(930\) 3.43033e6 0.130055
\(931\) −2.83309e6 −0.107124
\(932\) 191413. 0.00721826
\(933\) −1.98263e7 −0.745653
\(934\) −49210.1 −0.00184581
\(935\) 1.51400e6 0.0566365
\(936\) −1.02801e6 −0.0383536
\(937\) 3.96100e6 0.147386 0.0736929 0.997281i \(-0.476522\pi\)
0.0736929 + 0.997281i \(0.476522\pi\)
\(938\) −1.34973e7 −0.500887
\(939\) −5.83063e6 −0.215800
\(940\) 5496.36 0.000202888 0
\(941\) 3.82868e7 1.40953 0.704766 0.709440i \(-0.251052\pi\)
0.704766 + 0.709440i \(0.251052\pi\)
\(942\) 1.68952e7 0.620349
\(943\) 7.61131e6 0.278728
\(944\) −2.40226e7 −0.877383
\(945\) −2.64301e6 −0.0962764
\(946\) −4.55991e6 −0.165664
\(947\) −1.34832e7 −0.488562 −0.244281 0.969705i \(-0.578552\pi\)
−0.244281 + 0.969705i \(0.578552\pi\)
\(948\) −36772.2 −0.00132892
\(949\) 3.17942e6 0.114599
\(950\) 2.36424e6 0.0849928
\(951\) 1.46640e7 0.525776
\(952\) −1.31772e7 −0.471228
\(953\) −9.20696e6 −0.328385 −0.164193 0.986428i \(-0.552502\pi\)
−0.164193 + 0.986428i \(0.552502\pi\)
\(954\) −1.31907e7 −0.469242
\(955\) 1.04745e7 0.371641
\(956\) −143627. −0.00508268
\(957\) 1.68350e6 0.0594200
\(958\) −4.59947e7 −1.61917
\(959\) 1.86079e7 0.653356
\(960\) −7.41569e6 −0.259701
\(961\) −2.13225e7 −0.744782
\(962\) −1.05161e6 −0.0366368
\(963\) 9.17277e6 0.318739
\(964\) 4315.71 0.000149575 0
\(965\) 6.63810e6 0.229470
\(966\) 5.82314e6 0.200777
\(967\) 2.95285e6 0.101549 0.0507745 0.998710i \(-0.483831\pi\)
0.0507745 + 0.998710i \(0.483831\pi\)
\(968\) 2.65805e6 0.0911747
\(969\) −3.02107e6 −0.103360
\(970\) 2.96004e6 0.101011
\(971\) −3.09624e7 −1.05387 −0.526935 0.849906i \(-0.676659\pi\)
−0.526935 + 0.849906i \(0.676659\pi\)
\(972\) 11123.9 0.000377651 0
\(973\) 2.34578e7 0.794339
\(974\) −5.07686e7 −1.71474
\(975\) 393225. 0.0132474
\(976\) −1.79170e7 −0.602062
\(977\) −2.85400e7 −0.956573 −0.478287 0.878204i \(-0.658742\pi\)
−0.478287 + 0.878204i \(0.658742\pi\)
\(978\) −749489. −0.0250564
\(979\) −5.17635e6 −0.172610
\(980\) −19894.1 −0.000661698 0
\(981\) −143234. −0.00475198
\(982\) −3.40466e7 −1.12667
\(983\) −4.46869e7 −1.47501 −0.737507 0.675340i \(-0.763997\pi\)
−0.737507 + 0.675340i \(0.763997\pi\)
\(984\) −1.57219e7 −0.517626
\(985\) −2.19385e6 −0.0720472
\(986\) 4.36393e6 0.142950
\(987\) 1.52323e6 0.0497706
\(988\) −8832.44 −0.000287865 0
\(989\) −5.28529e6 −0.171822
\(990\) 1.38198e6 0.0448142
\(991\) 5.85115e7 1.89259 0.946296 0.323302i \(-0.104793\pi\)
0.946296 + 0.323302i \(0.104793\pi\)
\(992\) −184354. −0.00594804
\(993\) −7.19405e6 −0.231526
\(994\) −5.89407e7 −1.89212
\(995\) 9.52471e6 0.304996
\(996\) 11756.9 0.000375528 0
\(997\) −4.32684e7 −1.37858 −0.689292 0.724483i \(-0.742078\pi\)
−0.689292 + 0.724483i \(0.742078\pi\)
\(998\) −1.31671e6 −0.0418469
\(999\) 1.94434e6 0.0616393
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 165.6.a.d.1.1 3
3.2 odd 2 495.6.a.c.1.3 3
5.4 even 2 825.6.a.h.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.6.a.d.1.1 3 1.1 even 1 trivial
495.6.a.c.1.3 3 3.2 odd 2
825.6.a.h.1.3 3 5.4 even 2