Properties

Label 165.6.a.d
Level $165$
Weight $6$
Character orbit 165.a
Self dual yes
Analytic conductor $26.463$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [165,6,Mod(1,165)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("165.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(165, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 165.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,2,-27,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.4633302691\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.788.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{2} - 9 q^{3} + ( - 4 \beta_1 - 8) q^{4} + 25 q^{5} + ( - 9 \beta_{2} - 9) q^{6} + ( - 7 \beta_{2} - 31 \beta_1 + 38) q^{7} + ( - 28 \beta_{2} - 8 \beta_1 - 20) q^{8} + 81 q^{9} + (25 \beta_{2} + 25) q^{10}+ \cdots - 9801 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} - 27 q^{3} - 20 q^{4} + 75 q^{5} - 18 q^{6} + 152 q^{7} - 24 q^{8} + 243 q^{9} + 50 q^{10} - 363 q^{11} + 180 q^{12} - 546 q^{13} - 8 q^{14} - 675 q^{15} - 1360 q^{16} - 314 q^{17} + 162 q^{18}+ \cdots - 29403 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 7x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 4\nu - 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 2\beta _1 + 11 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.476452
3.35386
−1.87740
−5.64018 −9.00000 −0.188384 25.0000 50.7616 145.021 181.548 81.0000 −141.004
1.2 1.08127 −9.00000 −30.8308 25.0000 −9.73147 −139.508 −67.9374 81.0000 27.0319
1.3 6.55890 −9.00000 11.0192 25.0000 −59.0301 146.487 −137.611 81.0000 163.973
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 165.6.a.d 3
3.b odd 2 1 495.6.a.c 3
5.b even 2 1 825.6.a.h 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.6.a.d 3 1.a even 1 1 trivial
495.6.a.c 3 3.b odd 2 1
825.6.a.h 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 2T_{2}^{2} - 36T_{2} + 40 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(165))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 2 T^{2} + \cdots + 40 \) Copy content Toggle raw display
$3$ \( (T + 9)^{3} \) Copy content Toggle raw display
$5$ \( (T - 25)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 152 T^{2} + \cdots + 2963664 \) Copy content Toggle raw display
$11$ \( (T + 121)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 546 T^{2} + \cdots - 7691848 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 1079472216 \) Copy content Toggle raw display
$19$ \( T^{3} - 1808 T^{2} + \cdots + 729480096 \) Copy content Toggle raw display
$23$ \( T^{3} - 4288 T^{2} + \cdots - 857355136 \) Copy content Toggle raw display
$29$ \( T^{3} - 5582 T^{2} + \cdots - 329440872 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 5126546304 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 244700027368 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 945181300968 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 1240285492944 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 18016103040 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 985333601848 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 2567903224000 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 4408473611240 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 41154720036800 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 117803610062464 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 163971863295832 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 554174036768 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 3029676562224 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 96218735089528 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 251540556847112 \) Copy content Toggle raw display
show more
show less