Properties

Label 165.6.a.c.1.2
Level $165$
Weight $6$
Character 165.1
Self dual yes
Analytic conductor $26.463$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [165,6,Mod(1,165)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(165, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("165.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 165.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.4633302691\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.18257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 26x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.305203\) of defining polynomial
Character \(\chi\) \(=\) 165.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.694797 q^{2} -9.00000 q^{3} -31.5173 q^{4} +25.0000 q^{5} -6.25317 q^{6} +83.1683 q^{7} -44.1316 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q+0.694797 q^{2} -9.00000 q^{3} -31.5173 q^{4} +25.0000 q^{5} -6.25317 q^{6} +83.1683 q^{7} -44.1316 q^{8} +81.0000 q^{9} +17.3699 q^{10} +121.000 q^{11} +283.655 q^{12} -674.655 q^{13} +57.7851 q^{14} -225.000 q^{15} +977.890 q^{16} +1927.66 q^{17} +56.2785 q^{18} -149.751 q^{19} -787.931 q^{20} -748.514 q^{21} +84.0704 q^{22} -1355.59 q^{23} +397.184 q^{24} +625.000 q^{25} -468.748 q^{26} -729.000 q^{27} -2621.24 q^{28} -7320.99 q^{29} -156.329 q^{30} -4215.76 q^{31} +2091.65 q^{32} -1089.00 q^{33} +1339.33 q^{34} +2079.21 q^{35} -2552.90 q^{36} -13420.1 q^{37} -104.046 q^{38} +6071.90 q^{39} -1103.29 q^{40} +2865.39 q^{41} -520.065 q^{42} -22078.1 q^{43} -3813.59 q^{44} +2025.00 q^{45} -941.861 q^{46} -14556.4 q^{47} -8801.01 q^{48} -9890.04 q^{49} +434.248 q^{50} -17348.9 q^{51} +21263.3 q^{52} +13349.7 q^{53} -506.507 q^{54} +3025.00 q^{55} -3670.35 q^{56} +1347.76 q^{57} -5086.60 q^{58} +45803.3 q^{59} +7091.38 q^{60} +18996.5 q^{61} -2929.10 q^{62} +6736.63 q^{63} -29839.2 q^{64} -16866.4 q^{65} -756.634 q^{66} +6651.05 q^{67} -60754.5 q^{68} +12200.3 q^{69} +1444.63 q^{70} -61028.7 q^{71} -3574.66 q^{72} -17353.4 q^{73} -9324.27 q^{74} -5625.00 q^{75} +4719.73 q^{76} +10063.4 q^{77} +4218.74 q^{78} +61676.5 q^{79} +24447.2 q^{80} +6561.00 q^{81} +1990.87 q^{82} -65230.8 q^{83} +23591.1 q^{84} +48191.4 q^{85} -15339.8 q^{86} +65888.9 q^{87} -5339.92 q^{88} -109563. q^{89} +1406.96 q^{90} -56109.9 q^{91} +42724.5 q^{92} +37941.8 q^{93} -10113.8 q^{94} -3743.76 q^{95} -18824.8 q^{96} +83736.1 q^{97} -6871.57 q^{98} +9801.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} - 27 q^{3} - 42 q^{4} + 75 q^{5} - 18 q^{6} - 68 q^{7} - 24 q^{8} + 243 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 2 q^{2} - 27 q^{3} - 42 q^{4} + 75 q^{5} - 18 q^{6} - 68 q^{7} - 24 q^{8} + 243 q^{9} + 50 q^{10} + 363 q^{11} + 378 q^{12} + 290 q^{13} + 916 q^{14} - 675 q^{15} - 590 q^{16} + 434 q^{17} + 162 q^{18} - 2856 q^{19} - 1050 q^{20} + 612 q^{21} + 242 q^{22} - 640 q^{23} + 216 q^{24} + 1875 q^{25} + 2132 q^{26} - 2187 q^{27} - 580 q^{28} - 4538 q^{29} - 450 q^{30} - 14968 q^{31} - 2496 q^{32} - 3267 q^{33} - 13704 q^{34} - 1700 q^{35} - 3402 q^{36} - 6190 q^{37} - 11668 q^{38} - 2610 q^{39} - 600 q^{40} - 8926 q^{41} - 8244 q^{42} - 33592 q^{43} - 5082 q^{44} + 6075 q^{45} - 35680 q^{46} - 24640 q^{47} + 5310 q^{48} - 14693 q^{49} + 1250 q^{50} - 3906 q^{51} + 18780 q^{52} - 22934 q^{53} - 1458 q^{54} + 9075 q^{55} - 40012 q^{56} + 25704 q^{57} - 32304 q^{58} - 13756 q^{59} + 9450 q^{60} + 24602 q^{61} - 7704 q^{62} - 5508 q^{63} + 35474 q^{64} + 7250 q^{65} - 2178 q^{66} + 16868 q^{67} - 71288 q^{68} + 5760 q^{69} + 22900 q^{70} + 4856 q^{71} - 1944 q^{72} + 1910 q^{73} + 29404 q^{74} - 16875 q^{75} + 6116 q^{76} - 8228 q^{77} - 19188 q^{78} - 36844 q^{79} - 14750 q^{80} + 19683 q^{81} + 84000 q^{82} - 48796 q^{83} + 5220 q^{84} + 10850 q^{85} - 83492 q^{86} + 40842 q^{87} - 2904 q^{88} - 188978 q^{89} + 4050 q^{90} - 93208 q^{91} - 6976 q^{92} + 134712 q^{93} + 70472 q^{94} - 71400 q^{95} + 22464 q^{96} + 247526 q^{97} - 154654 q^{98} + 29403 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.694797 0.122824 0.0614120 0.998113i \(-0.480440\pi\)
0.0614120 + 0.998113i \(0.480440\pi\)
\(3\) −9.00000 −0.577350
\(4\) −31.5173 −0.984914
\(5\) 25.0000 0.447214
\(6\) −6.25317 −0.0709124
\(7\) 83.1683 0.641523 0.320762 0.947160i \(-0.396061\pi\)
0.320762 + 0.947160i \(0.396061\pi\)
\(8\) −44.1316 −0.243795
\(9\) 81.0000 0.333333
\(10\) 17.3699 0.0549285
\(11\) 121.000 0.301511
\(12\) 283.655 0.568641
\(13\) −674.655 −1.10719 −0.553597 0.832785i \(-0.686745\pi\)
−0.553597 + 0.832785i \(0.686745\pi\)
\(14\) 57.7851 0.0787944
\(15\) −225.000 −0.258199
\(16\) 977.890 0.954970
\(17\) 1927.66 1.61774 0.808868 0.587991i \(-0.200081\pi\)
0.808868 + 0.587991i \(0.200081\pi\)
\(18\) 56.2785 0.0409413
\(19\) −149.751 −0.0951666 −0.0475833 0.998867i \(-0.515152\pi\)
−0.0475833 + 0.998867i \(0.515152\pi\)
\(20\) −787.931 −0.440467
\(21\) −748.514 −0.370384
\(22\) 84.0704 0.0370328
\(23\) −1355.59 −0.534330 −0.267165 0.963651i \(-0.586087\pi\)
−0.267165 + 0.963651i \(0.586087\pi\)
\(24\) 397.184 0.140755
\(25\) 625.000 0.200000
\(26\) −468.748 −0.135990
\(27\) −729.000 −0.192450
\(28\) −2621.24 −0.631846
\(29\) −7320.99 −1.61650 −0.808248 0.588842i \(-0.799584\pi\)
−0.808248 + 0.588842i \(0.799584\pi\)
\(30\) −156.329 −0.0317130
\(31\) −4215.76 −0.787901 −0.393951 0.919132i \(-0.628892\pi\)
−0.393951 + 0.919132i \(0.628892\pi\)
\(32\) 2091.65 0.361088
\(33\) −1089.00 −0.174078
\(34\) 1339.33 0.198697
\(35\) 2079.21 0.286898
\(36\) −2552.90 −0.328305
\(37\) −13420.1 −1.61158 −0.805792 0.592199i \(-0.798260\pi\)
−0.805792 + 0.592199i \(0.798260\pi\)
\(38\) −104.046 −0.0116887
\(39\) 6071.90 0.639238
\(40\) −1103.29 −0.109028
\(41\) 2865.39 0.266210 0.133105 0.991102i \(-0.457505\pi\)
0.133105 + 0.991102i \(0.457505\pi\)
\(42\) −520.065 −0.0454920
\(43\) −22078.1 −1.82092 −0.910458 0.413601i \(-0.864271\pi\)
−0.910458 + 0.413601i \(0.864271\pi\)
\(44\) −3813.59 −0.296963
\(45\) 2025.00 0.149071
\(46\) −941.861 −0.0656285
\(47\) −14556.4 −0.961192 −0.480596 0.876942i \(-0.659580\pi\)
−0.480596 + 0.876942i \(0.659580\pi\)
\(48\) −8801.01 −0.551352
\(49\) −9890.04 −0.588448
\(50\) 434.248 0.0245648
\(51\) −17348.9 −0.934000
\(52\) 21263.3 1.09049
\(53\) 13349.7 0.652805 0.326402 0.945231i \(-0.394164\pi\)
0.326402 + 0.945231i \(0.394164\pi\)
\(54\) −506.507 −0.0236375
\(55\) 3025.00 0.134840
\(56\) −3670.35 −0.156400
\(57\) 1347.76 0.0549445
\(58\) −5086.60 −0.198544
\(59\) 45803.3 1.71304 0.856518 0.516117i \(-0.172623\pi\)
0.856518 + 0.516117i \(0.172623\pi\)
\(60\) 7091.38 0.254304
\(61\) 18996.5 0.653655 0.326827 0.945084i \(-0.394020\pi\)
0.326827 + 0.945084i \(0.394020\pi\)
\(62\) −2929.10 −0.0967731
\(63\) 6736.63 0.213841
\(64\) −29839.2 −0.910620
\(65\) −16866.4 −0.495152
\(66\) −756.634 −0.0213809
\(67\) 6651.05 0.181010 0.0905052 0.995896i \(-0.471152\pi\)
0.0905052 + 0.995896i \(0.471152\pi\)
\(68\) −60754.5 −1.59333
\(69\) 12200.3 0.308495
\(70\) 1444.63 0.0352379
\(71\) −61028.7 −1.43677 −0.718386 0.695644i \(-0.755119\pi\)
−0.718386 + 0.695644i \(0.755119\pi\)
\(72\) −3574.66 −0.0812650
\(73\) −17353.4 −0.381134 −0.190567 0.981674i \(-0.561033\pi\)
−0.190567 + 0.981674i \(0.561033\pi\)
\(74\) −9324.27 −0.197941
\(75\) −5625.00 −0.115470
\(76\) 4719.73 0.0937309
\(77\) 10063.4 0.193427
\(78\) 4218.74 0.0785138
\(79\) 61676.5 1.11187 0.555933 0.831227i \(-0.312361\pi\)
0.555933 + 0.831227i \(0.312361\pi\)
\(80\) 24447.2 0.427076
\(81\) 6561.00 0.111111
\(82\) 1990.87 0.0326969
\(83\) −65230.8 −1.03934 −0.519670 0.854367i \(-0.673945\pi\)
−0.519670 + 0.854367i \(0.673945\pi\)
\(84\) 23591.1 0.364796
\(85\) 48191.4 0.723473
\(86\) −15339.8 −0.223652
\(87\) 65888.9 0.933284
\(88\) −5339.92 −0.0735069
\(89\) −109563. −1.46618 −0.733091 0.680131i \(-0.761923\pi\)
−0.733091 + 0.680131i \(0.761923\pi\)
\(90\) 1406.96 0.0183095
\(91\) −56109.9 −0.710291
\(92\) 42724.5 0.526269
\(93\) 37941.8 0.454895
\(94\) −10113.8 −0.118057
\(95\) −3743.76 −0.0425598
\(96\) −18824.8 −0.208474
\(97\) 83736.1 0.903615 0.451808 0.892115i \(-0.350779\pi\)
0.451808 + 0.892115i \(0.350779\pi\)
\(98\) −6871.57 −0.0722754
\(99\) 9801.00 0.100504
\(100\) −19698.3 −0.196983
\(101\) −129877. −1.26686 −0.633428 0.773801i \(-0.718353\pi\)
−0.633428 + 0.773801i \(0.718353\pi\)
\(102\) −12054.0 −0.114718
\(103\) 201851. 1.87472 0.937362 0.348358i \(-0.113261\pi\)
0.937362 + 0.348358i \(0.113261\pi\)
\(104\) 29773.6 0.269928
\(105\) −18712.9 −0.165641
\(106\) 9275.36 0.0801800
\(107\) −132285. −1.11699 −0.558496 0.829507i \(-0.688622\pi\)
−0.558496 + 0.829507i \(0.688622\pi\)
\(108\) 22976.1 0.189547
\(109\) −144044. −1.16126 −0.580629 0.814168i \(-0.697193\pi\)
−0.580629 + 0.814168i \(0.697193\pi\)
\(110\) 2101.76 0.0165616
\(111\) 120781. 0.930448
\(112\) 81329.4 0.612636
\(113\) −1095.62 −0.00807165 −0.00403582 0.999992i \(-0.501285\pi\)
−0.00403582 + 0.999992i \(0.501285\pi\)
\(114\) 936.416 0.00674849
\(115\) −33889.8 −0.238960
\(116\) 230737. 1.59211
\(117\) −54647.1 −0.369065
\(118\) 31824.0 0.210402
\(119\) 160320. 1.03782
\(120\) 9929.61 0.0629476
\(121\) 14641.0 0.0909091
\(122\) 13198.7 0.0802844
\(123\) −25788.5 −0.153696
\(124\) 132869. 0.776015
\(125\) 15625.0 0.0894427
\(126\) 4680.59 0.0262648
\(127\) 315758. 1.73718 0.868591 0.495529i \(-0.165026\pi\)
0.868591 + 0.495529i \(0.165026\pi\)
\(128\) −87664.9 −0.472934
\(129\) 198703. 1.05131
\(130\) −11718.7 −0.0608165
\(131\) −187001. −0.952064 −0.476032 0.879428i \(-0.657925\pi\)
−0.476032 + 0.879428i \(0.657925\pi\)
\(132\) 34322.3 0.171452
\(133\) −12454.5 −0.0610516
\(134\) 4621.13 0.0222324
\(135\) −18225.0 −0.0860663
\(136\) −85070.6 −0.394396
\(137\) 232301. 1.05743 0.528713 0.848801i \(-0.322675\pi\)
0.528713 + 0.848801i \(0.322675\pi\)
\(138\) 8476.75 0.0378906
\(139\) −311665. −1.36820 −0.684102 0.729386i \(-0.739806\pi\)
−0.684102 + 0.729386i \(0.739806\pi\)
\(140\) −65530.9 −0.282570
\(141\) 131008. 0.554944
\(142\) −42402.5 −0.176470
\(143\) −81633.3 −0.333831
\(144\) 79209.1 0.318323
\(145\) −183025. −0.722919
\(146\) −12057.1 −0.0468124
\(147\) 89010.4 0.339740
\(148\) 422966. 1.58727
\(149\) 30354.5 0.112010 0.0560050 0.998430i \(-0.482164\pi\)
0.0560050 + 0.998430i \(0.482164\pi\)
\(150\) −3908.23 −0.0141825
\(151\) 131015. 0.467604 0.233802 0.972284i \(-0.424883\pi\)
0.233802 + 0.972284i \(0.424883\pi\)
\(152\) 6608.73 0.0232011
\(153\) 156140. 0.539245
\(154\) 6991.99 0.0237574
\(155\) −105394. −0.352360
\(156\) −191370. −0.629595
\(157\) 326922. 1.05851 0.529255 0.848463i \(-0.322472\pi\)
0.529255 + 0.848463i \(0.322472\pi\)
\(158\) 42852.7 0.136564
\(159\) −120148. −0.376897
\(160\) 52291.1 0.161484
\(161\) −112742. −0.342785
\(162\) 4558.56 0.0136471
\(163\) −501854. −1.47948 −0.739739 0.672894i \(-0.765051\pi\)
−0.739739 + 0.672894i \(0.765051\pi\)
\(164\) −90309.3 −0.262194
\(165\) −27225.0 −0.0778499
\(166\) −45322.2 −0.127656
\(167\) −590462. −1.63833 −0.819164 0.573559i \(-0.805562\pi\)
−0.819164 + 0.573559i \(0.805562\pi\)
\(168\) 33033.1 0.0902977
\(169\) 83866.7 0.225877
\(170\) 33483.3 0.0888598
\(171\) −12129.8 −0.0317222
\(172\) 695840. 1.79345
\(173\) 570934. 1.45034 0.725172 0.688568i \(-0.241760\pi\)
0.725172 + 0.688568i \(0.241760\pi\)
\(174\) 45779.4 0.114630
\(175\) 51980.2 0.128305
\(176\) 118325. 0.287934
\(177\) −412230. −0.989022
\(178\) −76123.9 −0.180082
\(179\) −464402. −1.08333 −0.541666 0.840594i \(-0.682206\pi\)
−0.541666 + 0.840594i \(0.682206\pi\)
\(180\) −63822.4 −0.146822
\(181\) −409792. −0.929751 −0.464876 0.885376i \(-0.653901\pi\)
−0.464876 + 0.885376i \(0.653901\pi\)
\(182\) −38985.0 −0.0872407
\(183\) −170968. −0.377388
\(184\) 59824.4 0.130267
\(185\) −335504. −0.720722
\(186\) 26361.9 0.0558720
\(187\) 233247. 0.487766
\(188\) 458778. 0.946691
\(189\) −60629.7 −0.123461
\(190\) −2601.16 −0.00522736
\(191\) −591029. −1.17226 −0.586132 0.810216i \(-0.699350\pi\)
−0.586132 + 0.810216i \(0.699350\pi\)
\(192\) 268553. 0.525747
\(193\) −310907. −0.600811 −0.300405 0.953812i \(-0.597122\pi\)
−0.300405 + 0.953812i \(0.597122\pi\)
\(194\) 58179.6 0.110986
\(195\) 151797. 0.285876
\(196\) 311707. 0.579571
\(197\) 161613. 0.296695 0.148348 0.988935i \(-0.452605\pi\)
0.148348 + 0.988935i \(0.452605\pi\)
\(198\) 6809.70 0.0123443
\(199\) 435622. 0.779790 0.389895 0.920859i \(-0.372511\pi\)
0.389895 + 0.920859i \(0.372511\pi\)
\(200\) −27582.2 −0.0487590
\(201\) −59859.5 −0.104506
\(202\) −90237.8 −0.155600
\(203\) −608874. −1.03702
\(204\) 546790. 0.919910
\(205\) 71634.8 0.119053
\(206\) 140245. 0.230261
\(207\) −109803. −0.178110
\(208\) −659738. −1.05734
\(209\) −18119.8 −0.0286938
\(210\) −13001.6 −0.0203446
\(211\) −539434. −0.834127 −0.417063 0.908877i \(-0.636941\pi\)
−0.417063 + 0.908877i \(0.636941\pi\)
\(212\) −420747. −0.642957
\(213\) 549258. 0.829521
\(214\) −91911.1 −0.137193
\(215\) −551952. −0.814339
\(216\) 32171.9 0.0469184
\(217\) −350618. −0.505457
\(218\) −100081. −0.142630
\(219\) 156181. 0.220048
\(220\) −95339.7 −0.132806
\(221\) −1.30050e6 −1.79115
\(222\) 83918.5 0.114281
\(223\) 452834. 0.609786 0.304893 0.952387i \(-0.401379\pi\)
0.304893 + 0.952387i \(0.401379\pi\)
\(224\) 173959. 0.231646
\(225\) 50625.0 0.0666667
\(226\) −761.230 −0.000991391 0
\(227\) −40608.6 −0.0523062 −0.0261531 0.999658i \(-0.508326\pi\)
−0.0261531 + 0.999658i \(0.508326\pi\)
\(228\) −42477.5 −0.0541156
\(229\) 988410. 1.24551 0.622757 0.782415i \(-0.286013\pi\)
0.622757 + 0.782415i \(0.286013\pi\)
\(230\) −23546.5 −0.0293499
\(231\) −90570.2 −0.111675
\(232\) 323087. 0.394093
\(233\) −47673.4 −0.0575289 −0.0287645 0.999586i \(-0.509157\pi\)
−0.0287645 + 0.999586i \(0.509157\pi\)
\(234\) −37968.6 −0.0453299
\(235\) −363911. −0.429858
\(236\) −1.44359e6 −1.68719
\(237\) −555089. −0.641936
\(238\) 111390. 0.127469
\(239\) −165174. −0.187045 −0.0935224 0.995617i \(-0.529813\pi\)
−0.0935224 + 0.995617i \(0.529813\pi\)
\(240\) −220025. −0.246572
\(241\) −1.13302e6 −1.25659 −0.628294 0.777976i \(-0.716247\pi\)
−0.628294 + 0.777976i \(0.716247\pi\)
\(242\) 10172.5 0.0111658
\(243\) −59049.0 −0.0641500
\(244\) −598717. −0.643794
\(245\) −247251. −0.263162
\(246\) −17917.8 −0.0188776
\(247\) 101030. 0.105368
\(248\) 186048. 0.192086
\(249\) 587078. 0.600063
\(250\) 10856.2 0.0109857
\(251\) −1.08030e6 −1.08233 −0.541165 0.840917i \(-0.682016\pi\)
−0.541165 + 0.840917i \(0.682016\pi\)
\(252\) −212320. −0.210615
\(253\) −164027. −0.161106
\(254\) 219388. 0.213368
\(255\) −433723. −0.417698
\(256\) 893945. 0.852533
\(257\) 301460. 0.284707 0.142353 0.989816i \(-0.454533\pi\)
0.142353 + 0.989816i \(0.454533\pi\)
\(258\) 138058. 0.129126
\(259\) −1.11613e6 −1.03387
\(260\) 531582. 0.487682
\(261\) −593000. −0.538832
\(262\) −129928. −0.116936
\(263\) −347755. −0.310016 −0.155008 0.987913i \(-0.549540\pi\)
−0.155008 + 0.987913i \(0.549540\pi\)
\(264\) 48059.3 0.0424392
\(265\) 333744. 0.291943
\(266\) −8653.34 −0.00749860
\(267\) 986065. 0.846501
\(268\) −209623. −0.178280
\(269\) 980953. 0.826547 0.413274 0.910607i \(-0.364385\pi\)
0.413274 + 0.910607i \(0.364385\pi\)
\(270\) −12662.7 −0.0105710
\(271\) 9630.73 0.00796592 0.00398296 0.999992i \(-0.498732\pi\)
0.00398296 + 0.999992i \(0.498732\pi\)
\(272\) 1.88504e6 1.54489
\(273\) 504989. 0.410086
\(274\) 161402. 0.129877
\(275\) 75625.0 0.0603023
\(276\) −384521. −0.303842
\(277\) 324368. 0.254003 0.127001 0.991903i \(-0.459465\pi\)
0.127001 + 0.991903i \(0.459465\pi\)
\(278\) −216544. −0.168048
\(279\) −341477. −0.262634
\(280\) −91758.7 −0.0699443
\(281\) 866856. 0.654909 0.327455 0.944867i \(-0.393809\pi\)
0.327455 + 0.944867i \(0.393809\pi\)
\(282\) 91023.8 0.0681604
\(283\) −575157. −0.426895 −0.213447 0.976955i \(-0.568469\pi\)
−0.213447 + 0.976955i \(0.568469\pi\)
\(284\) 1.92346e6 1.41510
\(285\) 33693.9 0.0245719
\(286\) −56718.6 −0.0410025
\(287\) 238310. 0.170780
\(288\) 169423. 0.120363
\(289\) 2.29601e6 1.61707
\(290\) −127165. −0.0887917
\(291\) −753625. −0.521702
\(292\) 546932. 0.375384
\(293\) 1.96073e6 1.33429 0.667144 0.744929i \(-0.267517\pi\)
0.667144 + 0.744929i \(0.267517\pi\)
\(294\) 61844.1 0.0417282
\(295\) 1.14508e6 0.766093
\(296\) 592252. 0.392896
\(297\) −88209.0 −0.0580259
\(298\) 21090.2 0.0137575
\(299\) 914557. 0.591606
\(300\) 177285. 0.113728
\(301\) −1.83620e6 −1.16816
\(302\) 91028.8 0.0574330
\(303\) 1.16889e6 0.731420
\(304\) −146440. −0.0908813
\(305\) 474912. 0.292323
\(306\) 108486. 0.0662322
\(307\) 1.60549e6 0.972215 0.486108 0.873899i \(-0.338416\pi\)
0.486108 + 0.873899i \(0.338416\pi\)
\(308\) −317170. −0.190509
\(309\) −1.81666e6 −1.08237
\(310\) −73227.4 −0.0432782
\(311\) 6622.52 0.00388260 0.00194130 0.999998i \(-0.499382\pi\)
0.00194130 + 0.999998i \(0.499382\pi\)
\(312\) −267963. −0.155843
\(313\) −1.08764e6 −0.627516 −0.313758 0.949503i \(-0.601588\pi\)
−0.313758 + 0.949503i \(0.601588\pi\)
\(314\) 227144. 0.130010
\(315\) 168416. 0.0956327
\(316\) −1.94387e6 −1.09509
\(317\) −456183. −0.254971 −0.127486 0.991840i \(-0.540691\pi\)
−0.127486 + 0.991840i \(0.540691\pi\)
\(318\) −83478.2 −0.0462920
\(319\) −885839. −0.487392
\(320\) −745980. −0.407242
\(321\) 1.19056e6 0.644896
\(322\) −78332.9 −0.0421022
\(323\) −288668. −0.153954
\(324\) −206785. −0.109435
\(325\) −421660. −0.221439
\(326\) −348687. −0.181715
\(327\) 1.29640e6 0.670452
\(328\) −126454. −0.0649006
\(329\) −1.21063e6 −0.616627
\(330\) −18915.8 −0.00956183
\(331\) 1.73077e6 0.868297 0.434149 0.900841i \(-0.357049\pi\)
0.434149 + 0.900841i \(0.357049\pi\)
\(332\) 2.05590e6 1.02366
\(333\) −1.08703e6 −0.537194
\(334\) −410251. −0.201226
\(335\) 166276. 0.0809503
\(336\) −731965. −0.353706
\(337\) 3.01707e6 1.44714 0.723571 0.690250i \(-0.242499\pi\)
0.723571 + 0.690250i \(0.242499\pi\)
\(338\) 58270.3 0.0277431
\(339\) 9860.54 0.00466017
\(340\) −1.51886e6 −0.712559
\(341\) −510107. −0.237561
\(342\) −8427.75 −0.00389624
\(343\) −2.22035e6 −1.01903
\(344\) 974341. 0.443930
\(345\) 305008. 0.137963
\(346\) 396683. 0.178137
\(347\) 1.26947e6 0.565978 0.282989 0.959123i \(-0.408674\pi\)
0.282989 + 0.959123i \(0.408674\pi\)
\(348\) −2.07664e6 −0.919205
\(349\) 3.26420e6 1.43454 0.717270 0.696795i \(-0.245391\pi\)
0.717270 + 0.696795i \(0.245391\pi\)
\(350\) 36115.7 0.0157589
\(351\) 491824. 0.213079
\(352\) 253089. 0.108872
\(353\) 1.70741e6 0.729290 0.364645 0.931147i \(-0.381190\pi\)
0.364645 + 0.931147i \(0.381190\pi\)
\(354\) −286416. −0.121476
\(355\) −1.52572e6 −0.642544
\(356\) 3.45312e6 1.44406
\(357\) −1.44288e6 −0.599183
\(358\) −322665. −0.133059
\(359\) 257688. 0.105526 0.0527628 0.998607i \(-0.483197\pi\)
0.0527628 + 0.998607i \(0.483197\pi\)
\(360\) −89366.5 −0.0363428
\(361\) −2.45367e6 −0.990943
\(362\) −284722. −0.114196
\(363\) −131769. −0.0524864
\(364\) 1.76843e6 0.699575
\(365\) −433835. −0.170448
\(366\) −118788. −0.0463522
\(367\) −683489. −0.264891 −0.132445 0.991190i \(-0.542283\pi\)
−0.132445 + 0.991190i \(0.542283\pi\)
\(368\) −1.32562e6 −0.510269
\(369\) 232097. 0.0887367
\(370\) −233107. −0.0885219
\(371\) 1.11027e6 0.418790
\(372\) −1.19582e6 −0.448033
\(373\) 3.58176e6 1.33298 0.666492 0.745512i \(-0.267795\pi\)
0.666492 + 0.745512i \(0.267795\pi\)
\(374\) 162059. 0.0599093
\(375\) −140625. −0.0516398
\(376\) 642398. 0.234334
\(377\) 4.93914e6 1.78977
\(378\) −42125.3 −0.0151640
\(379\) −4.87955e6 −1.74494 −0.872472 0.488665i \(-0.837484\pi\)
−0.872472 + 0.488665i \(0.837484\pi\)
\(380\) 117993. 0.0419177
\(381\) −2.84182e6 −1.00296
\(382\) −410645. −0.143982
\(383\) 4.97559e6 1.73319 0.866597 0.499008i \(-0.166302\pi\)
0.866597 + 0.499008i \(0.166302\pi\)
\(384\) 788984. 0.273049
\(385\) 251584. 0.0865030
\(386\) −216017. −0.0737939
\(387\) −1.78832e6 −0.606972
\(388\) −2.63913e6 −0.889983
\(389\) −4.09866e6 −1.37331 −0.686654 0.726984i \(-0.740921\pi\)
−0.686654 + 0.726984i \(0.740921\pi\)
\(390\) 105468. 0.0351124
\(391\) −2.61312e6 −0.864404
\(392\) 436463. 0.143461
\(393\) 1.68301e6 0.549674
\(394\) 112288. 0.0364413
\(395\) 1.54191e6 0.497241
\(396\) −308901. −0.0989876
\(397\) 1.61215e6 0.513369 0.256684 0.966495i \(-0.417370\pi\)
0.256684 + 0.966495i \(0.417370\pi\)
\(398\) 302669. 0.0957768
\(399\) 112090. 0.0352482
\(400\) 611181. 0.190994
\(401\) −648362. −0.201352 −0.100676 0.994919i \(-0.532101\pi\)
−0.100676 + 0.994919i \(0.532101\pi\)
\(402\) −41590.2 −0.0128359
\(403\) 2.84419e6 0.872359
\(404\) 4.09335e6 1.24775
\(405\) 164025. 0.0496904
\(406\) −423044. −0.127371
\(407\) −1.62384e6 −0.485911
\(408\) 765635. 0.227704
\(409\) 1.88327e6 0.556677 0.278338 0.960483i \(-0.410216\pi\)
0.278338 + 0.960483i \(0.410216\pi\)
\(410\) 49771.6 0.0146225
\(411\) −2.09071e6 −0.610505
\(412\) −6.36178e6 −1.84644
\(413\) 3.80938e6 1.09895
\(414\) −76290.7 −0.0218762
\(415\) −1.63077e6 −0.464807
\(416\) −1.41114e6 −0.399794
\(417\) 2.80499e6 0.789933
\(418\) −12589.6 −0.00352429
\(419\) −5.10510e6 −1.42059 −0.710296 0.703903i \(-0.751439\pi\)
−0.710296 + 0.703903i \(0.751439\pi\)
\(420\) 589778. 0.163142
\(421\) 5.48811e6 1.50910 0.754550 0.656243i \(-0.227855\pi\)
0.754550 + 0.656243i \(0.227855\pi\)
\(422\) −374797. −0.102451
\(423\) −1.17907e6 −0.320397
\(424\) −589145. −0.159150
\(425\) 1.20479e6 0.323547
\(426\) 381623. 0.101885
\(427\) 1.57990e6 0.419335
\(428\) 4.16925e6 1.10014
\(429\) 734700. 0.192738
\(430\) −383494. −0.100020
\(431\) −3.59589e6 −0.932424 −0.466212 0.884673i \(-0.654382\pi\)
−0.466212 + 0.884673i \(0.654382\pi\)
\(432\) −712882. −0.183784
\(433\) −5.03603e6 −1.29083 −0.645414 0.763833i \(-0.723315\pi\)
−0.645414 + 0.763833i \(0.723315\pi\)
\(434\) −243608. −0.0620822
\(435\) 1.64722e6 0.417377
\(436\) 4.53987e6 1.14374
\(437\) 203001. 0.0508503
\(438\) 108514. 0.0270271
\(439\) −3.25961e6 −0.807244 −0.403622 0.914926i \(-0.632249\pi\)
−0.403622 + 0.914926i \(0.632249\pi\)
\(440\) −133498. −0.0328733
\(441\) −801093. −0.196149
\(442\) −903586. −0.219996
\(443\) −1.35658e6 −0.328424 −0.164212 0.986425i \(-0.552508\pi\)
−0.164212 + 0.986425i \(0.552508\pi\)
\(444\) −3.80669e6 −0.916412
\(445\) −2.73907e6 −0.655696
\(446\) 314628. 0.0748962
\(447\) −273190. −0.0646690
\(448\) −2.48167e6 −0.584184
\(449\) −6.80906e6 −1.59394 −0.796969 0.604020i \(-0.793565\pi\)
−0.796969 + 0.604020i \(0.793565\pi\)
\(450\) 35174.1 0.00818826
\(451\) 346712. 0.0802653
\(452\) 34530.8 0.00794988
\(453\) −1.17913e6 −0.269972
\(454\) −28214.7 −0.00642445
\(455\) −1.40275e6 −0.317652
\(456\) −59478.6 −0.0133952
\(457\) −3.03977e6 −0.680848 −0.340424 0.940272i \(-0.610571\pi\)
−0.340424 + 0.940272i \(0.610571\pi\)
\(458\) 686744. 0.152979
\(459\) −1.40526e6 −0.311333
\(460\) 1.06811e6 0.235355
\(461\) 3.27858e6 0.718511 0.359256 0.933239i \(-0.383031\pi\)
0.359256 + 0.933239i \(0.383031\pi\)
\(462\) −62927.9 −0.0137163
\(463\) 5.51970e6 1.19664 0.598319 0.801258i \(-0.295836\pi\)
0.598319 + 0.801258i \(0.295836\pi\)
\(464\) −7.15912e6 −1.54371
\(465\) 948546. 0.203435
\(466\) −33123.3 −0.00706593
\(467\) −4.07534e6 −0.864711 −0.432356 0.901703i \(-0.642317\pi\)
−0.432356 + 0.901703i \(0.642317\pi\)
\(468\) 1.72233e6 0.363497
\(469\) 553157. 0.116122
\(470\) −252844. −0.0527968
\(471\) −2.94230e6 −0.611131
\(472\) −2.02137e6 −0.417630
\(473\) −2.67145e6 −0.549027
\(474\) −385674. −0.0788450
\(475\) −93594.1 −0.0190333
\(476\) −5.05284e6 −1.02216
\(477\) 1.08133e6 0.217602
\(478\) −114762. −0.0229736
\(479\) 4.77799e6 0.951495 0.475748 0.879582i \(-0.342178\pi\)
0.475748 + 0.879582i \(0.342178\pi\)
\(480\) −470620. −0.0932325
\(481\) 9.05397e6 1.78433
\(482\) −787216. −0.154339
\(483\) 1.01468e6 0.197907
\(484\) −461444. −0.0895377
\(485\) 2.09340e6 0.404109
\(486\) −41027.1 −0.00787916
\(487\) 1.76923e6 0.338035 0.169017 0.985613i \(-0.445941\pi\)
0.169017 + 0.985613i \(0.445941\pi\)
\(488\) −838345. −0.159358
\(489\) 4.51669e6 0.854177
\(490\) −171789. −0.0323226
\(491\) −1.04139e6 −0.194943 −0.0974716 0.995238i \(-0.531076\pi\)
−0.0974716 + 0.995238i \(0.531076\pi\)
\(492\) 812784. 0.151378
\(493\) −1.41124e7 −2.61506
\(494\) 70195.3 0.0129417
\(495\) 245025. 0.0449467
\(496\) −4.12255e6 −0.752422
\(497\) −5.07565e6 −0.921723
\(498\) 407900. 0.0737021
\(499\) 2.03068e6 0.365082 0.182541 0.983198i \(-0.441568\pi\)
0.182541 + 0.983198i \(0.441568\pi\)
\(500\) −492457. −0.0880934
\(501\) 5.31416e6 0.945890
\(502\) −750588. −0.132936
\(503\) −5.06008e6 −0.891739 −0.445869 0.895098i \(-0.647105\pi\)
−0.445869 + 0.895098i \(0.647105\pi\)
\(504\) −297298. −0.0521334
\(505\) −3.24691e6 −0.566555
\(506\) −113965. −0.0197877
\(507\) −754800. −0.130410
\(508\) −9.95183e6 −1.71098
\(509\) 5.64302e6 0.965421 0.482711 0.875780i \(-0.339652\pi\)
0.482711 + 0.875780i \(0.339652\pi\)
\(510\) −301349. −0.0513032
\(511\) −1.44325e6 −0.244506
\(512\) 3.42639e6 0.577645
\(513\) 109168. 0.0183148
\(514\) 209454. 0.0349688
\(515\) 5.04627e6 0.838402
\(516\) −6.26256e6 −1.03545
\(517\) −1.76133e6 −0.289810
\(518\) −775484. −0.126984
\(519\) −5.13841e6 −0.837356
\(520\) 744340. 0.120716
\(521\) 5.37673e6 0.867809 0.433905 0.900959i \(-0.357136\pi\)
0.433905 + 0.900959i \(0.357136\pi\)
\(522\) −412014. −0.0661814
\(523\) 8.42403e6 1.34668 0.673342 0.739331i \(-0.264858\pi\)
0.673342 + 0.739331i \(0.264858\pi\)
\(524\) 5.89376e6 0.937701
\(525\) −467821. −0.0740767
\(526\) −241619. −0.0380773
\(527\) −8.12654e6 −1.27462
\(528\) −1.06492e6 −0.166239
\(529\) −4.59871e6 −0.714492
\(530\) 231884. 0.0358576
\(531\) 3.71007e6 0.571012
\(532\) 392532. 0.0601306
\(533\) −1.93315e6 −0.294746
\(534\) 685115. 0.103970
\(535\) −3.30712e6 −0.499534
\(536\) −293522. −0.0441294
\(537\) 4.17962e6 0.625462
\(538\) 681563. 0.101520
\(539\) −1.19669e6 −0.177424
\(540\) 574402. 0.0847679
\(541\) 8.85130e6 1.30021 0.650106 0.759844i \(-0.274725\pi\)
0.650106 + 0.759844i \(0.274725\pi\)
\(542\) 6691.40 0.000978405 0
\(543\) 3.68813e6 0.536792
\(544\) 4.03198e6 0.584145
\(545\) −3.60110e6 −0.519330
\(546\) 350865. 0.0503684
\(547\) 3.13327e6 0.447744 0.223872 0.974619i \(-0.428130\pi\)
0.223872 + 0.974619i \(0.428130\pi\)
\(548\) −7.32150e6 −1.04147
\(549\) 1.53871e6 0.217885
\(550\) 52544.0 0.00740656
\(551\) 1.09632e6 0.153836
\(552\) −538420. −0.0752096
\(553\) 5.12953e6 0.713288
\(554\) 225370. 0.0311976
\(555\) 3.01953e6 0.416109
\(556\) 9.82283e6 1.34756
\(557\) −5.46691e6 −0.746627 −0.373313 0.927705i \(-0.621778\pi\)
−0.373313 + 0.927705i \(0.621778\pi\)
\(558\) −237257. −0.0322577
\(559\) 1.48951e7 2.01611
\(560\) 2.03323e6 0.273979
\(561\) −2.09922e6 −0.281612
\(562\) 602289. 0.0804385
\(563\) 5.19043e6 0.690132 0.345066 0.938578i \(-0.387857\pi\)
0.345066 + 0.938578i \(0.387857\pi\)
\(564\) −4.12901e6 −0.546573
\(565\) −27390.4 −0.00360975
\(566\) −399618. −0.0524329
\(567\) 545667. 0.0712804
\(568\) 2.69329e6 0.350278
\(569\) 1.24058e7 1.60636 0.803180 0.595737i \(-0.203140\pi\)
0.803180 + 0.595737i \(0.203140\pi\)
\(570\) 23410.4 0.00301802
\(571\) 8.79234e6 1.12853 0.564266 0.825593i \(-0.309159\pi\)
0.564266 + 0.825593i \(0.309159\pi\)
\(572\) 2.57286e6 0.328795
\(573\) 5.31926e6 0.676807
\(574\) 165577. 0.0209759
\(575\) −847245. −0.106866
\(576\) −2.41698e6 −0.303540
\(577\) −1.14336e7 −1.42969 −0.714845 0.699283i \(-0.753503\pi\)
−0.714845 + 0.699283i \(0.753503\pi\)
\(578\) 1.59526e6 0.198615
\(579\) 2.79817e6 0.346878
\(580\) 5.76843e6 0.712013
\(581\) −5.42514e6 −0.666761
\(582\) −523616. −0.0640775
\(583\) 1.61532e6 0.196828
\(584\) 765834. 0.0929185
\(585\) −1.36618e6 −0.165051
\(586\) 1.36231e6 0.163882
\(587\) −2.32244e6 −0.278195 −0.139097 0.990279i \(-0.544420\pi\)
−0.139097 + 0.990279i \(0.544420\pi\)
\(588\) −2.80536e6 −0.334615
\(589\) 631313. 0.0749819
\(590\) 795599. 0.0940945
\(591\) −1.45452e6 −0.171297
\(592\) −1.31234e7 −1.53901
\(593\) 7.98435e6 0.932401 0.466201 0.884679i \(-0.345623\pi\)
0.466201 + 0.884679i \(0.345623\pi\)
\(594\) −61287.3 −0.00712697
\(595\) 4.00800e6 0.464125
\(596\) −956690. −0.110320
\(597\) −3.92060e6 −0.450212
\(598\) 635431. 0.0726634
\(599\) −139225. −0.0158544 −0.00792721 0.999969i \(-0.502523\pi\)
−0.00792721 + 0.999969i \(0.502523\pi\)
\(600\) 248240. 0.0281510
\(601\) 1.55602e7 1.75723 0.878616 0.477529i \(-0.158467\pi\)
0.878616 + 0.477529i \(0.158467\pi\)
\(602\) −1.27578e6 −0.143478
\(603\) 538735. 0.0603368
\(604\) −4.12923e6 −0.460550
\(605\) 366025. 0.0406558
\(606\) 812141. 0.0898358
\(607\) −6.00544e6 −0.661566 −0.330783 0.943707i \(-0.607313\pi\)
−0.330783 + 0.943707i \(0.607313\pi\)
\(608\) −313225. −0.0343635
\(609\) 5.47986e6 0.598724
\(610\) 329967. 0.0359043
\(611\) 9.82057e6 1.06423
\(612\) −4.92111e6 −0.531110
\(613\) −2.32775e6 −0.250199 −0.125099 0.992144i \(-0.539925\pi\)
−0.125099 + 0.992144i \(0.539925\pi\)
\(614\) 1.11549e6 0.119411
\(615\) −644713. −0.0687351
\(616\) −444112. −0.0471564
\(617\) 1.30284e7 1.37777 0.688886 0.724870i \(-0.258100\pi\)
0.688886 + 0.724870i \(0.258100\pi\)
\(618\) −1.26221e6 −0.132941
\(619\) −2.53159e6 −0.265562 −0.132781 0.991145i \(-0.542391\pi\)
−0.132781 + 0.991145i \(0.542391\pi\)
\(620\) 3.32173e6 0.347045
\(621\) 988226. 0.102832
\(622\) 4601.30 0.000476876 0
\(623\) −9.11214e6 −0.940590
\(624\) 5.93765e6 0.610454
\(625\) 390625. 0.0400000
\(626\) −755689. −0.0770739
\(627\) 163078. 0.0165664
\(628\) −1.03037e7 −1.04254
\(629\) −2.58694e7 −2.60712
\(630\) 117015. 0.0117460
\(631\) −2.17733e6 −0.217696 −0.108848 0.994058i \(-0.534716\pi\)
−0.108848 + 0.994058i \(0.534716\pi\)
\(632\) −2.72188e6 −0.271067
\(633\) 4.85491e6 0.481583
\(634\) −316955. −0.0313166
\(635\) 7.89396e6 0.776892
\(636\) 3.78673e6 0.371211
\(637\) 6.67237e6 0.651525
\(638\) −615478. −0.0598634
\(639\) −4.94332e6 −0.478924
\(640\) −2.19162e6 −0.211503
\(641\) −2.58180e6 −0.248187 −0.124093 0.992271i \(-0.539602\pi\)
−0.124093 + 0.992271i \(0.539602\pi\)
\(642\) 827200. 0.0792087
\(643\) −1.67813e7 −1.60066 −0.800329 0.599561i \(-0.795342\pi\)
−0.800329 + 0.599561i \(0.795342\pi\)
\(644\) 3.55333e6 0.337614
\(645\) 4.96757e6 0.470159
\(646\) −200566. −0.0189093
\(647\) −1.01691e7 −0.955037 −0.477518 0.878622i \(-0.658464\pi\)
−0.477518 + 0.878622i \(0.658464\pi\)
\(648\) −289547. −0.0270883
\(649\) 5.54220e6 0.516500
\(650\) −292968. −0.0271980
\(651\) 3.15556e6 0.291826
\(652\) 1.58171e7 1.45716
\(653\) −8.99282e6 −0.825302 −0.412651 0.910889i \(-0.635397\pi\)
−0.412651 + 0.910889i \(0.635397\pi\)
\(654\) 900731. 0.0823476
\(655\) −4.67503e6 −0.425776
\(656\) 2.80204e6 0.254223
\(657\) −1.40563e6 −0.127045
\(658\) −841144. −0.0757365
\(659\) −1.03480e7 −0.928203 −0.464102 0.885782i \(-0.653623\pi\)
−0.464102 + 0.885782i \(0.653623\pi\)
\(660\) 858057. 0.0766755
\(661\) 1.48595e7 1.32282 0.661409 0.750025i \(-0.269959\pi\)
0.661409 + 0.750025i \(0.269959\pi\)
\(662\) 1.20253e6 0.106648
\(663\) 1.17045e7 1.03412
\(664\) 2.87874e6 0.253386
\(665\) −311362. −0.0273031
\(666\) −755266. −0.0659803
\(667\) 9.92427e6 0.863742
\(668\) 1.86098e7 1.61361
\(669\) −4.07551e6 −0.352060
\(670\) 115528. 0.00994263
\(671\) 2.29857e6 0.197084
\(672\) −1.56563e6 −0.133741
\(673\) 217545. 0.0185145 0.00925725 0.999957i \(-0.497053\pi\)
0.00925725 + 0.999957i \(0.497053\pi\)
\(674\) 2.09625e6 0.177744
\(675\) −455625. −0.0384900
\(676\) −2.64325e6 −0.222470
\(677\) −2.64314e6 −0.221640 −0.110820 0.993840i \(-0.535348\pi\)
−0.110820 + 0.993840i \(0.535348\pi\)
\(678\) 6851.07 0.000572380 0
\(679\) 6.96419e6 0.579690
\(680\) −2.12676e6 −0.176379
\(681\) 365477. 0.0301990
\(682\) −354421. −0.0291782
\(683\) 4.66785e6 0.382882 0.191441 0.981504i \(-0.438684\pi\)
0.191441 + 0.981504i \(0.438684\pi\)
\(684\) 382298. 0.0312436
\(685\) 5.80753e6 0.472895
\(686\) −1.54269e6 −0.125161
\(687\) −8.89569e6 −0.719098
\(688\) −2.15899e7 −1.73892
\(689\) −9.00647e6 −0.722781
\(690\) 211919. 0.0169452
\(691\) 3.11273e6 0.247997 0.123998 0.992282i \(-0.460428\pi\)
0.123998 + 0.992282i \(0.460428\pi\)
\(692\) −1.79943e7 −1.42846
\(693\) 815132. 0.0644755
\(694\) 882026. 0.0695156
\(695\) −7.79163e6 −0.611880
\(696\) −2.90778e6 −0.227530
\(697\) 5.52349e6 0.430657
\(698\) 2.26795e6 0.176196
\(699\) 429061. 0.0332143
\(700\) −1.63827e6 −0.126369
\(701\) 1.16786e7 0.897629 0.448815 0.893625i \(-0.351846\pi\)
0.448815 + 0.893625i \(0.351846\pi\)
\(702\) 341718. 0.0261713
\(703\) 2.00967e6 0.153369
\(704\) −3.61054e6 −0.274562
\(705\) 3.27519e6 0.248179
\(706\) 1.18630e6 0.0895743
\(707\) −1.08016e7 −0.812718
\(708\) 1.29923e7 0.974102
\(709\) −1.96571e7 −1.46860 −0.734302 0.678823i \(-0.762490\pi\)
−0.734302 + 0.678823i \(0.762490\pi\)
\(710\) −1.06006e6 −0.0789198
\(711\) 4.99580e6 0.370622
\(712\) 4.83518e6 0.357448
\(713\) 5.71485e6 0.420999
\(714\) −1.00251e6 −0.0735940
\(715\) −2.04083e6 −0.149294
\(716\) 1.46367e7 1.06699
\(717\) 1.48656e6 0.107990
\(718\) 179041. 0.0129611
\(719\) −1.89013e7 −1.36354 −0.681772 0.731565i \(-0.738790\pi\)
−0.681772 + 0.731565i \(0.738790\pi\)
\(720\) 1.98023e6 0.142359
\(721\) 1.67876e7 1.20268
\(722\) −1.70480e6 −0.121712
\(723\) 1.01971e7 0.725492
\(724\) 1.29155e7 0.915725
\(725\) −4.57562e6 −0.323299
\(726\) −91552.7 −0.00644658
\(727\) 6.78994e6 0.476463 0.238232 0.971208i \(-0.423432\pi\)
0.238232 + 0.971208i \(0.423432\pi\)
\(728\) 2.47622e6 0.173165
\(729\) 531441. 0.0370370
\(730\) −301427. −0.0209351
\(731\) −4.25590e7 −2.94576
\(732\) 5.38845e6 0.371695
\(733\) −3.60300e6 −0.247688 −0.123844 0.992302i \(-0.539522\pi\)
−0.123844 + 0.992302i \(0.539522\pi\)
\(734\) −474886. −0.0325349
\(735\) 2.22526e6 0.151937
\(736\) −2.83542e6 −0.192940
\(737\) 804778. 0.0545767
\(738\) 161260. 0.0108990
\(739\) −7.58466e6 −0.510887 −0.255443 0.966824i \(-0.582221\pi\)
−0.255443 + 0.966824i \(0.582221\pi\)
\(740\) 1.05742e7 0.709849
\(741\) −909270. −0.0608341
\(742\) 771416. 0.0514374
\(743\) 1.17473e7 0.780669 0.390335 0.920673i \(-0.372359\pi\)
0.390335 + 0.920673i \(0.372359\pi\)
\(744\) −1.67443e6 −0.110901
\(745\) 758862. 0.0500924
\(746\) 2.48860e6 0.163722
\(747\) −5.28370e6 −0.346447
\(748\) −7.35129e6 −0.480407
\(749\) −1.10019e7 −0.716577
\(750\) −97705.8 −0.00634260
\(751\) 4.05057e6 0.262070 0.131035 0.991378i \(-0.458170\pi\)
0.131035 + 0.991378i \(0.458170\pi\)
\(752\) −1.42346e7 −0.917910
\(753\) 9.72269e6 0.624883
\(754\) 3.43170e6 0.219827
\(755\) 3.27537e6 0.209119
\(756\) 1.91088e6 0.121599
\(757\) 2.12290e7 1.34645 0.673225 0.739438i \(-0.264909\pi\)
0.673225 + 0.739438i \(0.264909\pi\)
\(758\) −3.39029e6 −0.214321
\(759\) 1.47624e6 0.0930149
\(760\) 165218. 0.0103759
\(761\) −1.06438e7 −0.666247 −0.333123 0.942883i \(-0.608103\pi\)
−0.333123 + 0.942883i \(0.608103\pi\)
\(762\) −1.97449e6 −0.123188
\(763\) −1.19799e7 −0.744974
\(764\) 1.86276e7 1.15458
\(765\) 3.90351e6 0.241158
\(766\) 3.45702e6 0.212878
\(767\) −3.09014e7 −1.89666
\(768\) −8.04551e6 −0.492210
\(769\) 3.17109e6 0.193372 0.0966859 0.995315i \(-0.469176\pi\)
0.0966859 + 0.995315i \(0.469176\pi\)
\(770\) 174800. 0.0106246
\(771\) −2.71314e6 −0.164375
\(772\) 9.79894e6 0.591747
\(773\) 1.80501e7 1.08650 0.543252 0.839570i \(-0.317193\pi\)
0.543252 + 0.839570i \(0.317193\pi\)
\(774\) −1.24252e6 −0.0745507
\(775\) −2.63485e6 −0.157580
\(776\) −3.69541e6 −0.220297
\(777\) 1.00452e7 0.596904
\(778\) −2.84774e6 −0.168675
\(779\) −429094. −0.0253343
\(780\) −4.78424e6 −0.281563
\(781\) −7.38447e6 −0.433203
\(782\) −1.81559e6 −0.106169
\(783\) 5.33700e6 0.311095
\(784\) −9.67137e6 −0.561950
\(785\) 8.17304e6 0.473380
\(786\) 1.16935e6 0.0675132
\(787\) −2.58223e7 −1.48614 −0.743068 0.669216i \(-0.766630\pi\)
−0.743068 + 0.669216i \(0.766630\pi\)
\(788\) −5.09360e6 −0.292219
\(789\) 3.12979e6 0.178988
\(790\) 1.07132e6 0.0610731
\(791\) −91120.5 −0.00517815
\(792\) −432534. −0.0245023
\(793\) −1.28161e7 −0.723722
\(794\) 1.12012e6 0.0630540
\(795\) −3.00369e6 −0.168553
\(796\) −1.37296e7 −0.768026
\(797\) 1.50658e7 0.840129 0.420065 0.907494i \(-0.362007\pi\)
0.420065 + 0.907494i \(0.362007\pi\)
\(798\) 77880.1 0.00432932
\(799\) −2.80598e7 −1.55495
\(800\) 1.30728e6 0.0722176
\(801\) −8.87458e6 −0.488727
\(802\) −450480. −0.0247309
\(803\) −2.09976e6 −0.114916
\(804\) 1.88661e6 0.102930
\(805\) −2.81856e6 −0.153298
\(806\) 1.97613e6 0.107147
\(807\) −8.82858e6 −0.477207
\(808\) 5.73166e6 0.308853
\(809\) −2.08560e7 −1.12037 −0.560183 0.828369i \(-0.689269\pi\)
−0.560183 + 0.828369i \(0.689269\pi\)
\(810\) 113964. 0.00610317
\(811\) 8.46233e6 0.451791 0.225896 0.974152i \(-0.427469\pi\)
0.225896 + 0.974152i \(0.427469\pi\)
\(812\) 1.91900e7 1.02138
\(813\) −86676.5 −0.00459912
\(814\) −1.12824e6 −0.0596814
\(815\) −1.25464e7 −0.661643
\(816\) −1.69653e7 −0.891943
\(817\) 3.30620e6 0.173290
\(818\) 1.30849e6 0.0683732
\(819\) −4.54490e6 −0.236764
\(820\) −2.25773e6 −0.117257
\(821\) 8.67359e6 0.449098 0.224549 0.974463i \(-0.427909\pi\)
0.224549 + 0.974463i \(0.427909\pi\)
\(822\) −1.45262e6 −0.0749846
\(823\) −1.24194e7 −0.639148 −0.319574 0.947561i \(-0.603540\pi\)
−0.319574 + 0.947561i \(0.603540\pi\)
\(824\) −8.90799e6 −0.457048
\(825\) −680625. −0.0348155
\(826\) 2.64675e6 0.134978
\(827\) −2.38473e7 −1.21248 −0.606242 0.795280i \(-0.707324\pi\)
−0.606242 + 0.795280i \(0.707324\pi\)
\(828\) 3.46069e6 0.175423
\(829\) −3.26873e7 −1.65193 −0.825967 0.563719i \(-0.809370\pi\)
−0.825967 + 0.563719i \(0.809370\pi\)
\(830\) −1.13305e6 −0.0570894
\(831\) −2.91931e6 −0.146649
\(832\) 2.01312e7 1.00823
\(833\) −1.90646e7 −0.951953
\(834\) 1.94890e6 0.0970227
\(835\) −1.47616e7 −0.732683
\(836\) 571087. 0.0282609
\(837\) 3.07329e6 0.151632
\(838\) −3.54701e6 −0.174483
\(839\) 8.09423e6 0.396982 0.198491 0.980103i \(-0.436396\pi\)
0.198491 + 0.980103i \(0.436396\pi\)
\(840\) 825828. 0.0403823
\(841\) 3.30857e7 1.61306
\(842\) 3.81313e6 0.185354
\(843\) −7.80171e6 −0.378112
\(844\) 1.70015e7 0.821544
\(845\) 2.09667e6 0.101015
\(846\) −819214. −0.0393524
\(847\) 1.21767e6 0.0583203
\(848\) 1.30546e7 0.623409
\(849\) 5.17642e6 0.246468
\(850\) 837082. 0.0397393
\(851\) 1.81922e7 0.861117
\(852\) −1.73111e7 −0.817007
\(853\) 3.67970e6 0.173157 0.0865785 0.996245i \(-0.472407\pi\)
0.0865785 + 0.996245i \(0.472407\pi\)
\(854\) 1.09771e6 0.0515043
\(855\) −303245. −0.0141866
\(856\) 5.83794e6 0.272317
\(857\) 2.17589e7 1.01201 0.506004 0.862531i \(-0.331122\pi\)
0.506004 + 0.862531i \(0.331122\pi\)
\(858\) 510467. 0.0236728
\(859\) −3.76305e7 −1.74003 −0.870015 0.493025i \(-0.835891\pi\)
−0.870015 + 0.493025i \(0.835891\pi\)
\(860\) 1.73960e7 0.802054
\(861\) −2.14479e6 −0.0985998
\(862\) −2.49841e6 −0.114524
\(863\) −2.50264e7 −1.14386 −0.571928 0.820304i \(-0.693804\pi\)
−0.571928 + 0.820304i \(0.693804\pi\)
\(864\) −1.52481e6 −0.0694914
\(865\) 1.42734e7 0.648613
\(866\) −3.49902e6 −0.158545
\(867\) −2.06641e7 −0.933615
\(868\) 1.10505e7 0.497832
\(869\) 7.46286e6 0.335240
\(870\) 1.14448e6 0.0512639
\(871\) −4.48717e6 −0.200414
\(872\) 6.35689e6 0.283109
\(873\) 6.78263e6 0.301205
\(874\) 141044. 0.00624564
\(875\) 1.29950e6 0.0573796
\(876\) −4.92239e6 −0.216728
\(877\) 1.12677e7 0.494692 0.247346 0.968927i \(-0.420442\pi\)
0.247346 + 0.968927i \(0.420442\pi\)
\(878\) −2.26477e6 −0.0991488
\(879\) −1.76466e7 −0.770351
\(880\) 2.95812e6 0.128768
\(881\) −4.36223e7 −1.89352 −0.946758 0.321947i \(-0.895663\pi\)
−0.946758 + 0.321947i \(0.895663\pi\)
\(882\) −556597. −0.0240918
\(883\) −3.14744e7 −1.35849 −0.679244 0.733912i \(-0.737692\pi\)
−0.679244 + 0.733912i \(0.737692\pi\)
\(884\) 4.09883e7 1.76413
\(885\) −1.03057e7 −0.442304
\(886\) −942545. −0.0403383
\(887\) 2.33777e7 0.997684 0.498842 0.866693i \(-0.333759\pi\)
0.498842 + 0.866693i \(0.333759\pi\)
\(888\) −5.33027e6 −0.226839
\(889\) 2.62611e7 1.11444
\(890\) −1.90310e6 −0.0805352
\(891\) 793881. 0.0335013
\(892\) −1.42721e7 −0.600587
\(893\) 2.17983e6 0.0914733
\(894\) −189812. −0.00794290
\(895\) −1.16101e7 −0.484481
\(896\) −7.29093e6 −0.303398
\(897\) −8.23101e6 −0.341564
\(898\) −4.73091e6 −0.195774
\(899\) 3.08635e7 1.27364
\(900\) −1.59556e6 −0.0656610
\(901\) 2.57337e7 1.05607
\(902\) 240895. 0.00985850
\(903\) 1.65258e7 0.674438
\(904\) 48351.3 0.00196783
\(905\) −1.02448e7 −0.415797
\(906\) −819259. −0.0331590
\(907\) 2.58345e7 1.04275 0.521377 0.853326i \(-0.325418\pi\)
0.521377 + 0.853326i \(0.325418\pi\)
\(908\) 1.27987e6 0.0515171
\(909\) −1.05200e7 −0.422285
\(910\) −974625. −0.0390152
\(911\) 1.24995e7 0.498996 0.249498 0.968375i \(-0.419734\pi\)
0.249498 + 0.968375i \(0.419734\pi\)
\(912\) 1.31796e6 0.0524703
\(913\) −7.89293e6 −0.313373
\(914\) −2.11202e6 −0.0836244
\(915\) −4.27421e6 −0.168773
\(916\) −3.11520e7 −1.22672
\(917\) −1.55526e7 −0.610771
\(918\) −976372. −0.0382392
\(919\) 1.24766e7 0.487313 0.243657 0.969862i \(-0.421653\pi\)
0.243657 + 0.969862i \(0.421653\pi\)
\(920\) 1.49561e6 0.0582571
\(921\) −1.44494e7 −0.561309
\(922\) 2.27795e6 0.0882503
\(923\) 4.11733e7 1.59079
\(924\) 2.85453e6 0.109990
\(925\) −8.38759e6 −0.322317
\(926\) 3.83507e6 0.146976
\(927\) 1.63499e7 0.624908
\(928\) −1.53129e7 −0.583697
\(929\) −1.63852e6 −0.0622891 −0.0311445 0.999515i \(-0.509915\pi\)
−0.0311445 + 0.999515i \(0.509915\pi\)
\(930\) 659047. 0.0249867
\(931\) 1.48104e6 0.0560006
\(932\) 1.50253e6 0.0566611
\(933\) −59602.7 −0.00224162
\(934\) −2.83153e6 −0.106207
\(935\) 5.83116e6 0.218135
\(936\) 2.41166e6 0.0899760
\(937\) 1.03137e7 0.383766 0.191883 0.981418i \(-0.438541\pi\)
0.191883 + 0.981418i \(0.438541\pi\)
\(938\) 384331. 0.0142626
\(939\) 9.78876e6 0.362296
\(940\) 1.14695e7 0.423373
\(941\) −1.30200e7 −0.479332 −0.239666 0.970855i \(-0.577038\pi\)
−0.239666 + 0.970855i \(0.577038\pi\)
\(942\) −2.04430e6 −0.0750615
\(943\) −3.88430e6 −0.142244
\(944\) 4.47906e7 1.63590
\(945\) −1.51574e6 −0.0552135
\(946\) −1.85611e6 −0.0674336
\(947\) 4.07950e7 1.47820 0.739098 0.673598i \(-0.235252\pi\)
0.739098 + 0.673598i \(0.235252\pi\)
\(948\) 1.74949e7 0.632252
\(949\) 1.17076e7 0.421989
\(950\) −65028.9 −0.00233775
\(951\) 4.10565e6 0.147208
\(952\) −7.07517e6 −0.253014
\(953\) 4.68439e7 1.67078 0.835392 0.549654i \(-0.185240\pi\)
0.835392 + 0.549654i \(0.185240\pi\)
\(954\) 751304. 0.0267267
\(955\) −1.47757e7 −0.524252
\(956\) 5.20582e6 0.184223
\(957\) 7.97255e6 0.281396
\(958\) 3.31973e6 0.116866
\(959\) 1.93201e7 0.678364
\(960\) 6.71382e6 0.235121
\(961\) −1.08565e7 −0.379212
\(962\) 6.29067e6 0.219159
\(963\) −1.07151e7 −0.372331
\(964\) 3.57095e7 1.23763
\(965\) −7.77268e6 −0.268691
\(966\) 704996. 0.0243077
\(967\) 1.63484e7 0.562223 0.281111 0.959675i \(-0.409297\pi\)
0.281111 + 0.959675i \(0.409297\pi\)
\(968\) −646131. −0.0221632
\(969\) 2.59801e6 0.0888856
\(970\) 1.45449e6 0.0496342
\(971\) −1.62139e6 −0.0551875 −0.0275937 0.999619i \(-0.508784\pi\)
−0.0275937 + 0.999619i \(0.508784\pi\)
\(972\) 1.86106e6 0.0631823
\(973\) −2.59206e7 −0.877735
\(974\) 1.22925e6 0.0415187
\(975\) 3.79494e6 0.127848
\(976\) 1.85765e7 0.624221
\(977\) −2.33840e7 −0.783759 −0.391880 0.920017i \(-0.628175\pi\)
−0.391880 + 0.920017i \(0.628175\pi\)
\(978\) 3.13818e6 0.104913
\(979\) −1.32571e7 −0.442070
\(980\) 7.79267e6 0.259192
\(981\) −1.16676e7 −0.387086
\(982\) −723552. −0.0239437
\(983\) 1.96781e7 0.649529 0.324764 0.945795i \(-0.394715\pi\)
0.324764 + 0.945795i \(0.394715\pi\)
\(984\) 1.13809e6 0.0374704
\(985\) 4.04033e6 0.132686
\(986\) −9.80522e6 −0.321192
\(987\) 1.08957e7 0.356010
\(988\) −3.18419e6 −0.103778
\(989\) 2.99289e7 0.972970
\(990\) 170243. 0.00552052
\(991\) 1.56015e7 0.504642 0.252321 0.967644i \(-0.418806\pi\)
0.252321 + 0.967644i \(0.418806\pi\)
\(992\) −8.81788e6 −0.284502
\(993\) −1.55769e7 −0.501312
\(994\) −3.52654e6 −0.113210
\(995\) 1.08906e7 0.348733
\(996\) −1.85031e7 −0.591011
\(997\) −5.71913e6 −0.182218 −0.0911091 0.995841i \(-0.529041\pi\)
−0.0911091 + 0.995841i \(0.529041\pi\)
\(998\) 1.41091e6 0.0448408
\(999\) 9.78328e6 0.310149
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 165.6.a.c.1.2 3
3.2 odd 2 495.6.a.b.1.2 3
5.4 even 2 825.6.a.g.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.6.a.c.1.2 3 1.1 even 1 trivial
495.6.a.b.1.2 3 3.2 odd 2
825.6.a.g.1.2 3 5.4 even 2