Properties

Label 165.6.a.c
Level $165$
Weight $6$
Character orbit 165.a
Self dual yes
Analytic conductor $26.463$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [165,6,Mod(1,165)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(165, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("165.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 165.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.4633302691\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.18257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 26x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} - 9 q^{3} + (\beta_{2} - \beta_1 - 14) q^{4} + 25 q^{5} + (9 \beta_1 - 9) q^{6} + ( - 6 \beta_{2} - 20 \beta_1 - 14) q^{7} + (2 \beta_{2} + 37 \beta_1 - 21) q^{8} + 81 q^{9}+ \cdots + 9801 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} - 27 q^{3} - 42 q^{4} + 75 q^{5} - 18 q^{6} - 68 q^{7} - 24 q^{8} + 243 q^{9} + 50 q^{10} + 363 q^{11} + 378 q^{12} + 290 q^{13} + 916 q^{14} - 675 q^{15} - 590 q^{16} + 434 q^{17} + 162 q^{18}+ \cdots + 29403 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 26x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 17 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 17 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.47894
0.305203
−4.78415
−4.47894 −9.00000 −11.9391 25.0000 40.3105 −168.818 196.801 81.0000 −111.974
1.2 0.694797 −9.00000 −31.5173 25.0000 −6.25317 83.1683 −44.1316 81.0000 17.3699
1.3 5.78415 −9.00000 1.45634 25.0000 −52.0573 17.6498 −176.669 81.0000 144.604
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 165.6.a.c 3
3.b odd 2 1 495.6.a.b 3
5.b even 2 1 825.6.a.g 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.6.a.c 3 1.a even 1 1 trivial
495.6.a.b 3 3.b odd 2 1
825.6.a.g 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 2T_{2}^{2} - 25T_{2} + 18 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(165))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 2 T^{2} + \cdots + 18 \) Copy content Toggle raw display
$3$ \( (T + 9)^{3} \) Copy content Toggle raw display
$5$ \( (T - 25)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 68 T^{2} + \cdots + 247808 \) Copy content Toggle raw display
$11$ \( (T - 121)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 290 T^{2} + \cdots + 132063592 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 2547052488 \) Copy content Toggle raw display
$19$ \( T^{3} + 2856 T^{2} + \cdots + 137703680 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 15777349632 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 44413548456 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 121645522944 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 28013661736 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 119305168392 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 38997547520 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 679997104128 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 4393759072056 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 20798004639936 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 43064794504 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 1826752720192 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 34155066048000 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 163103734088 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 70772253539328 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 70386077185728 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 16088649675432 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 148869121092488 \) Copy content Toggle raw display
show more
show less