Properties

Label 165.6.a.a
Level $165$
Weight $6$
Character orbit 165.a
Self dual yes
Analytic conductor $26.463$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [165,6,Mod(1,165)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(165, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("165.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 165.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.4633302691\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.34253.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 52x + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 2) q^{2} + 9 q^{3} + (\beta_{2} + 4 \beta_1 + 7) q^{4} + 25 q^{5} + ( - 9 \beta_1 - 18) q^{6} + (\beta_{2} + 11 \beta_1 - 61) q^{7} + ( - 7 \beta_{2} - 77) q^{8} + 81 q^{9} + ( - 25 \beta_1 - 50) q^{10}+ \cdots - 9801 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 7 q^{2} + 27 q^{3} + 25 q^{4} + 75 q^{5} - 63 q^{6} - 172 q^{7} - 231 q^{8} + 243 q^{9} - 175 q^{10} - 363 q^{11} + 225 q^{12} - 654 q^{13} - 728 q^{14} + 675 q^{15} - 415 q^{16} - 2366 q^{17} - 567 q^{18}+ \cdots - 29403 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 52x + 48 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 35 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 35 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.25531
0.921799
−7.17710
−9.25531 9.00000 53.6607 25.0000 −83.2977 36.4478 −200.476 81.0000 −231.383
1.2 −2.92180 9.00000 −23.4631 25.0000 −26.2962 −85.0105 162.052 81.0000 −73.0450
1.3 5.17710 9.00000 −5.19759 25.0000 46.5939 −123.437 −192.576 81.0000 129.428
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 165.6.a.a 3
3.b odd 2 1 495.6.a.e 3
5.b even 2 1 825.6.a.j 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.6.a.a 3 1.a even 1 1 trivial
495.6.a.e 3 3.b odd 2 1
825.6.a.j 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} + 7T_{2}^{2} - 36T_{2} - 140 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(165))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 7 T^{2} + \cdots - 140 \) Copy content Toggle raw display
$3$ \( (T - 9)^{3} \) Copy content Toggle raw display
$5$ \( (T - 25)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 172 T^{2} + \cdots - 382464 \) Copy content Toggle raw display
$11$ \( (T + 121)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 654 T^{2} + \cdots - 317918392 \) Copy content Toggle raw display
$17$ \( T^{3} + 2366 T^{2} + \cdots - 137826264 \) Copy content Toggle raw display
$19$ \( T^{3} + 2872 T^{2} + \cdots + 11543616 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 3706904576 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 5220625848 \) Copy content Toggle raw display
$31$ \( T^{3} - 568 T^{2} + \cdots - 289787904 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 129972509048 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 1122652557432 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 518908872384 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 1508908531200 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 728896505288 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 6267836310080 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 13500896397400 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 8479952260160 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 17011990639616 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 9750515676328 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 9069370346752 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 739830059345664 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 158914472576552 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 352998320493112 \) Copy content Toggle raw display
show more
show less