Properties

Label 165.6.a
Level $165$
Weight $6$
Character orbit 165.a
Rep. character $\chi_{165}(1,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $8$
Sturm bound $144$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 165.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(144\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(165))\).

Total New Old
Modular forms 124 32 92
Cusp forms 116 32 84
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(5\)
\(+\)\(+\)\(-\)\(-\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(3\)
\(+\)\(-\)\(-\)\(+\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(5\)
\(-\)\(+\)\(-\)\(+\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(7\)
Plus space\(+\)\(14\)
Minus space\(-\)\(18\)

Trace form

\( 32 q + 36 q^{3} + 468 q^{4} - 180 q^{6} + 72 q^{7} + 2592 q^{9} - 100 q^{10} + 1728 q^{12} + 1024 q^{13} + 1240 q^{14} + 900 q^{15} + 6220 q^{16} + 1912 q^{17} + 1752 q^{19} - 3800 q^{20} - 4608 q^{21}+ \cdots - 5032 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(165))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 11
165.6.a.a 165.a 1.a $3$ $26.463$ 3.3.34253.1 None 165.6.a.a \(-7\) \(27\) \(75\) \(-172\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{2}+9q^{3}+(7+4\beta _{1}+\beta _{2})q^{4}+\cdots\)
165.6.a.b 165.a 1.a $3$ $26.463$ 3.3.3368.1 None 165.6.a.b \(-2\) \(27\) \(-75\) \(-232\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{2}+9q^{3}+(8+4\beta _{2})q^{4}+\cdots\)
165.6.a.c 165.a 1.a $3$ $26.463$ 3.3.18257.1 None 165.6.a.c \(2\) \(-27\) \(75\) \(-68\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}-9q^{3}+(-14-\beta _{1}+\beta _{2})q^{4}+\cdots\)
165.6.a.d 165.a 1.a $3$ $26.463$ 3.3.788.1 None 165.6.a.d \(2\) \(-27\) \(75\) \(152\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{2}-9q^{3}+(-8-4\beta _{1})q^{4}+\cdots\)
165.6.a.e 165.a 1.a $3$ $26.463$ 3.3.307532.1 None 165.6.a.e \(7\) \(-27\) \(-75\) \(92\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta _{1})q^{2}-9q^{3}+(24+2\beta _{1}+\beta _{2})q^{4}+\cdots\)
165.6.a.f 165.a 1.a $5$ $26.463$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 165.6.a.f \(-2\) \(45\) \(-125\) \(184\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+9q^{3}+(2^{4}+\beta _{2})q^{4}-5^{2}q^{5}+\cdots\)
165.6.a.g 165.a 1.a $5$ $26.463$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 165.6.a.g \(-1\) \(-45\) \(-125\) \(116\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-9q^{3}+(5^{2}+\beta _{1}+\beta _{3})q^{4}+\cdots\)
165.6.a.h 165.a 1.a $7$ $26.463$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 165.6.a.h \(1\) \(63\) \(175\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+9q^{3}+(28+\beta _{2})q^{4}+5^{2}q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(165))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(165)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 2}\)