Newspace parameters
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.73531515095\) |
Analytic rank: | \(0\) |
Dimension: | \(14\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{14} + 66x^{12} + 1705x^{10} + 22060x^{8} + 151880x^{6} + 537860x^{4} + 825344x^{2} + 262144 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{4}\cdot 3^{4}\cdot 5 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{14} + 66x^{12} + 1705x^{10} + 22060x^{8} + 151880x^{6} + 537860x^{4} + 825344x^{2} + 262144 \)
:
\(\beta_{1}\) | \(=\) |
\( ( - 13137 \nu^{12} - 712162 \nu^{10} - 13476473 \nu^{8} - 100603116 \nu^{6} - 186755016 \nu^{4} + 533460412 \nu^{2} + 542747648 ) / 37402624 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 1221 \nu^{12} - 72330 \nu^{10} - 1598477 \nu^{8} - 16399708 \nu^{6} - 79067688 \nu^{4} - 150763924 \nu^{2} - 29614336 ) / 2337664 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 1221 \nu^{12} - 72330 \nu^{10} - 1598477 \nu^{8} - 16399708 \nu^{6} - 79067688 \nu^{4} - 154270420 \nu^{2} - 63510464 ) / 1168832 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 241963 \nu^{13} - 2468784 \nu^{12} - 18454550 \nu^{11} - 142340960 \nu^{10} - 545049955 \nu^{9} - 3018446640 \nu^{8} - 7792773220 \nu^{7} + \cdots - 11130454016 ) / 5984419840 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 6365 \nu^{13} + 427514 \nu^{11} + 10924517 \nu^{9} + 129108220 \nu^{7} + 653010728 \nu^{5} + 723078260 \nu^{3} - 1630262272 \nu ) / 85491712 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 51749 \nu^{13} - 3102858 \nu^{11} - 69715565 \nu^{9} - 732372828 \nu^{7} - 3661312872 \nu^{5} - 7592389012 \nu^{3} - 2918278144 \nu ) / 598441984 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 737029 \nu^{13} - 1877968 \nu^{12} + 46201930 \nu^{11} - 124343200 \nu^{10} + 1093595725 \nu^{9} - 3133573200 \nu^{8} + 12139022300 \nu^{7} + \cdots - 77504233472 ) / 5984419840 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 155247 \nu^{13} + 9308574 \nu^{11} + 209146695 \nu^{9} + 2197118484 \nu^{7} + 10983938616 \nu^{5} + 22777167036 \nu^{3} + \cdots + 10550160384 \nu ) / 598441984 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 1772009 \nu^{13} - 1877968 \nu^{12} + 108259090 \nu^{11} - 124343200 \nu^{10} + 2487907025 \nu^{9} - 3133573200 \nu^{8} + 26786478860 \nu^{7} + \cdots - 77504233472 ) / 5984419840 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 1254519 \nu^{13} + 1858288 \nu^{12} - 77230510 \nu^{11} + 101581280 \nu^{10} - 1790751375 \nu^{9} + 1988487280 \nu^{8} - 19462750580 \nu^{7} + \cdots + 4719460352 ) / 2992209920 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 55801 \nu^{13} + 3314994 \nu^{11} + 73138529 \nu^{9} + 739391436 \nu^{7} + 3369032456 \nu^{5} + 5057154276 \nu^{3} - 2673449984 \nu ) / 85491712 \)
|
\(\beta_{12}\) | \(=\) |
\( ( 4008547 \nu^{13} + 15002416 \nu^{12} + 238708870 \nu^{11} + 901354080 \nu^{10} + 5288248155 \nu^{9} + 20237566640 \nu^{8} + \cdots + 671570673664 ) / 5984419840 \)
|
\(\beta_{13}\) | \(=\) |
\( ( - 4008547 \nu^{13} + 10655664 \nu^{12} - 238708870 \nu^{11} + 634669920 \nu^{10} - 5288248155 \nu^{9} + 14085546800 \nu^{8} + \cdots + 582935986176 ) / 5984419840 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{8} + 3\beta_{6} ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -\beta_{3} + 2\beta_{2} - 29 ) / 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 3\beta_{9} - 16\beta_{8} - 3\beta_{7} - 42\beta_{6} ) / 3 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 5 \beta_{13} - 3 \beta_{12} + 4 \beta_{11} - 4 \beta_{10} + 4 \beta_{9} - 4 \beta_{6} - 4 \beta_{5} + 4 \beta_{4} + 20 \beta_{3} - 47 \beta_{2} - \beta _1 + 421 ) / 3 \)
|
\(\nu^{5}\) | \(=\) |
\( ( - 6 \beta_{13} + 6 \beta_{12} - 15 \beta_{11} + 3 \beta_{10} - 90 \beta_{9} + 302 \beta_{8} + 93 \beta_{7} + 699 \beta_{6} + 9 \beta_{5} + 9 \beta_{4} + 3 \beta_{2} ) / 3 \)
|
\(\nu^{6}\) | \(=\) |
\( ( - 139 \beta_{13} + 105 \beta_{12} - 122 \beta_{11} + 134 \beta_{10} - 110 \beta_{9} + 12 \beta_{7} + 122 \beta_{6} + 122 \beta_{5} - 122 \beta_{4} - 354 \beta_{3} + 1013 \beta_{2} + 59 \beta _1 - 7209 ) / 3 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 210 \beta_{13} - 210 \beta_{12} + 537 \beta_{11} - 143 \beta_{10} + 2180 \beta_{9} - 6080 \beta_{8} - 2247 \beta_{7} - 12683 \beta_{6} - 425 \beta_{5} - 353 \beta_{4} - 143 \beta_{2} ) / 3 \)
|
\(\nu^{8}\) | \(=\) |
\( ( 3023 \beta_{13} - 2865 \beta_{12} + 2944 \beta_{11} - 3436 \beta_{10} + 2452 \beta_{9} - 492 \beta_{7} - 2944 \beta_{6} - 2944 \beta_{5} + 2944 \beta_{4} + 5858 \beta_{3} - 21575 \beta_{2} - 1747 \beta _1 + 133657 ) / 3 \)
|
\(\nu^{9}\) | \(=\) |
\( ( - 5262 \beta_{13} + 5262 \beta_{12} - 14349 \beta_{11} + 4635 \beta_{10} - 49248 \beta_{9} + 126928 \beta_{8} + 49875 \beta_{7} + 240759 \beta_{6} + 13317 \beta_{5} + 9897 \beta_{4} + 4635 \beta_{2} ) / 3 \)
|
\(\nu^{10}\) | \(=\) |
\( ( - 60991 \beta_{13} + 71025 \beta_{12} - 66008 \beta_{11} + 79952 \beta_{10} - 52064 \beta_{9} + 13944 \beta_{7} + 66008 \beta_{6} + 66008 \beta_{5} - 66008 \beta_{4} - 92006 \beta_{3} + \cdots - 2578069 ) / 3 \)
|
\(\nu^{11}\) | \(=\) |
\( ( 117378 \beta_{13} - 117378 \beta_{12} + 344397 \beta_{11} - 129011 \beta_{10} + 1079324 \beta_{9} - 2693260 \beta_{8} - 1067691 \beta_{7} - 4688171 \beta_{6} - 354725 \beta_{5} + \cdots - 129011 \beta_{2} ) / 3 \)
|
\(\nu^{12}\) | \(=\) |
\( 399537 \beta_{13} - 557567 \beta_{12} + 478552 \beta_{11} - 592916 \beta_{10} + 364188 \beta_{9} - 114364 \beta_{7} - 478552 \beta_{6} - 478552 \beta_{5} + 478552 \beta_{4} + \cdots + 16938411 \)
|
\(\nu^{13}\) | \(=\) |
\( ( - 2496558 \beta_{13} + 2496558 \beta_{12} - 7857753 \beta_{11} + 3302799 \beta_{10} - 23294532 \beta_{9} + 57462296 \beta_{8} + 22488291 \beta_{7} + 92752251 \beta_{6} + \cdots + 3302799 \beta_{2} ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/165\mathbb{Z}\right)^\times\).
\(n\) | \(46\) | \(56\) | \(67\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34.1 |
|
− | 5.15324i | − | 3.00000i | −18.5558 | −7.01850 | − | 8.70291i | −15.4597 | 17.2148i | 54.3968i | −9.00000 | −44.8482 | + | 36.1680i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.2 | − | 3.70507i | − | 3.00000i | −5.72754 | −10.6368 | + | 3.44353i | −11.1152 | − | 30.9104i | − | 8.41961i | −9.00000 | 12.7585 | + | 39.4102i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
34.3 | − | 3.57884i | 3.00000i | −4.80807 | −0.925309 | − | 11.1420i | 10.7365 | 7.85216i | − | 11.4234i | −9.00000 | −39.8753 | + | 3.31153i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.4 | − | 2.98683i | − | 3.00000i | −0.921158 | 7.35339 | + | 8.42185i | −8.96049 | − | 6.37827i | − | 21.1433i | −9.00000 | 25.1547 | − | 21.9633i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
34.5 | − | 2.20690i | 3.00000i | 3.12958 | 4.62093 | + | 10.1807i | 6.62071 | 1.50972i | − | 24.5619i | −9.00000 | 22.4678 | − | 10.1979i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.6 | − | 1.41169i | 3.00000i | 6.00714 | −11.1339 | + | 1.01772i | 4.23506 | − | 15.2844i | − | 19.7737i | −9.00000 | 1.43670 | + | 15.7176i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.7 | − | 0.352288i | − | 3.00000i | 7.87589 | 10.7402 | − | 3.10602i | −1.05686 | − | 19.8486i | − | 5.59288i | −9.00000 | −1.09421 | − | 3.78365i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
34.8 | 0.352288i | 3.00000i | 7.87589 | 10.7402 | + | 3.10602i | −1.05686 | 19.8486i | 5.59288i | −9.00000 | −1.09421 | + | 3.78365i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.9 | 1.41169i | − | 3.00000i | 6.00714 | −11.1339 | − | 1.01772i | 4.23506 | 15.2844i | 19.7737i | −9.00000 | 1.43670 | − | 15.7176i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.10 | 2.20690i | − | 3.00000i | 3.12958 | 4.62093 | − | 10.1807i | 6.62071 | − | 1.50972i | 24.5619i | −9.00000 | 22.4678 | + | 10.1979i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.11 | 2.98683i | 3.00000i | −0.921158 | 7.35339 | − | 8.42185i | −8.96049 | 6.37827i | 21.1433i | −9.00000 | 25.1547 | + | 21.9633i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.12 | 3.57884i | − | 3.00000i | −4.80807 | −0.925309 | + | 11.1420i | 10.7365 | − | 7.85216i | 11.4234i | −9.00000 | −39.8753 | − | 3.31153i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.13 | 3.70507i | 3.00000i | −5.72754 | −10.6368 | − | 3.44353i | −11.1152 | 30.9104i | 8.41961i | −9.00000 | 12.7585 | − | 39.4102i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.14 | 5.15324i | 3.00000i | −18.5558 | −7.01850 | + | 8.70291i | −15.4597 | − | 17.2148i | − | 54.3968i | −9.00000 | −44.8482 | − | 36.1680i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 165.4.c.b | ✓ | 14 |
3.b | odd | 2 | 1 | 495.4.c.d | 14 | ||
5.b | even | 2 | 1 | inner | 165.4.c.b | ✓ | 14 |
5.c | odd | 4 | 1 | 825.4.a.ba | 7 | ||
5.c | odd | 4 | 1 | 825.4.a.bd | 7 | ||
15.d | odd | 2 | 1 | 495.4.c.d | 14 | ||
15.e | even | 4 | 1 | 2475.4.a.bo | 7 | ||
15.e | even | 4 | 1 | 2475.4.a.bs | 7 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
165.4.c.b | ✓ | 14 | 1.a | even | 1 | 1 | trivial |
165.4.c.b | ✓ | 14 | 5.b | even | 2 | 1 | inner |
495.4.c.d | 14 | 3.b | odd | 2 | 1 | ||
495.4.c.d | 14 | 15.d | odd | 2 | 1 | ||
825.4.a.ba | 7 | 5.c | odd | 4 | 1 | ||
825.4.a.bd | 7 | 5.c | odd | 4 | 1 | ||
2475.4.a.bo | 7 | 15.e | even | 4 | 1 | ||
2475.4.a.bs | 7 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{14} + 69T_{2}^{12} + 1798T_{2}^{10} + 22642T_{2}^{8} + 143537T_{2}^{6} + 424913T_{2}^{4} + 454864T_{2}^{2} + 50176 \)
acting on \(S_{4}^{\mathrm{new}}(165, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{14} + 69 T^{12} + 1798 T^{10} + \cdots + 50176 \)
$3$
\( (T^{2} + 9)^{7} \)
$5$
\( T^{14} + \cdots + 476837158203125 \)
$7$
\( T^{14} + \cdots + 148986826592256 \)
$11$
\( (T - 11)^{14} \)
$13$
\( T^{14} + 17988 T^{12} + \cdots + 24\!\cdots\!76 \)
$17$
\( T^{14} + 54892 T^{12} + \cdots + 46\!\cdots\!64 \)
$19$
\( (T^{7} + 58 T^{6} + \cdots - 46691778560000)^{2} \)
$23$
\( T^{14} + 103772 T^{12} + \cdots + 40\!\cdots\!36 \)
$29$
\( (T^{7} + 64 T^{6} + \cdots + 38672535237120)^{2} \)
$31$
\( (T^{7} + 348 T^{6} + \cdots + 197687760429056)^{2} \)
$37$
\( T^{14} + 562632 T^{12} + \cdots + 94\!\cdots\!96 \)
$41$
\( (T^{7} + 332 T^{6} + \cdots + 26\!\cdots\!92)^{2} \)
$43$
\( T^{14} + 1022676 T^{12} + \cdots + 24\!\cdots\!00 \)
$47$
\( T^{14} + 887148 T^{12} + \cdots + 74\!\cdots\!96 \)
$53$
\( T^{14} + 1430852 T^{12} + \cdots + 61\!\cdots\!56 \)
$59$
\( (T^{7} - 332 T^{6} + \cdots - 30\!\cdots\!20)^{2} \)
$61$
\( (T^{7} - 22 T^{6} + \cdots + 39\!\cdots\!12)^{2} \)
$67$
\( T^{14} + 3775064 T^{12} + \cdots + 17\!\cdots\!56 \)
$71$
\( (T^{7} + 516 T^{6} + \cdots + 765697934131200)^{2} \)
$73$
\( T^{14} + 4480568 T^{12} + \cdots + 13\!\cdots\!56 \)
$79$
\( (T^{7} + 1746 T^{6} + \cdots + 55\!\cdots\!00)^{2} \)
$83$
\( T^{14} + 4133328 T^{12} + \cdots + 58\!\cdots\!44 \)
$89$
\( (T^{7} - 2226 T^{6} + \cdots - 70\!\cdots\!40)^{2} \)
$97$
\( T^{14} + 3938712 T^{12} + \cdots + 40\!\cdots\!76 \)
show more
show less