Newspace parameters
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.73531515095\) |
Analytic rank: | \(0\) |
Dimension: | \(14\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{14} + 97x^{12} + 3674x^{10} + 68702x^{8} + 656605x^{6} + 2988841x^{4} + 5502384x^{2} + 3385600 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{4}\cdot 3^{4} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{14} + 97x^{12} + 3674x^{10} + 68702x^{8} + 656605x^{6} + 2988841x^{4} + 5502384x^{2} + 3385600 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} + 14 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 161 \nu^{12} - 10710 \nu^{10} - 199154 \nu^{8} + 151996 \nu^{6} + 31552223 \nu^{4} + 192529678 \nu^{2} + 218873720 ) / 6066280 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 404 \nu^{12} - 20281 \nu^{10} - 28756 \nu^{8} + 12274706 \nu^{6} + 207485764 \nu^{4} + 1017337739 \nu^{2} + 1028949440 ) / 6066280 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 3361 \nu^{12} + 210392 \nu^{10} + 3562170 \nu^{8} - 7980844 \nu^{6} - 620131783 \nu^{4} - 3902728280 \nu^{2} - 4803256960 ) / 48530240 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 14977 \nu^{13} + 127397 \nu^{12} + 877608 \nu^{11} + 11204496 \nu^{10} + 10395194 \nu^{9} + 376493762 \nu^{8} - 209240012 \nu^{7} + \cdots + 193781027840 ) / 2232391040 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 14977 \nu^{13} - 127397 \nu^{12} + 877608 \nu^{11} - 11204496 \nu^{10} + 10395194 \nu^{9} - 376493762 \nu^{8} - 209240012 \nu^{7} + \cdots - 193781027840 ) / 2232391040 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 12225 \nu^{13} - 1215449 \nu^{11} - 46885290 \nu^{9} - 876526286 \nu^{7} - 7999028861 \nu^{5} - 30732972193 \nu^{3} + \cdots - 31841183648 \nu ) / 1116195520 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 43937 \nu^{13} + 3852489 \nu^{11} + 129337514 \nu^{9} + 2101712430 \nu^{7} + 16990191869 \nu^{5} + 60573152849 \nu^{3} + \cdots + 56499926848 \nu ) / 1116195520 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 63451 \nu^{13} - 5763816 \nu^{11} - 200137342 \nu^{9} - 3321524892 \nu^{7} - 26532139779 \nu^{5} - 87168670424 \nu^{3} + \cdots - 68876967744 \nu ) / 1116195520 \)
|
\(\beta_{11}\) | \(=\) |
\( ( - 137323 \nu^{13} - 426489 \nu^{12} - 13223110 \nu^{11} - 37166896 \nu^{10} - 492901054 \nu^{9} - 1227607658 \nu^{8} - 8921875848 \nu^{7} + \cdots - 424894743040 ) / 2232391040 \)
|
\(\beta_{12}\) | \(=\) |
\( ( 137323 \nu^{13} - 426489 \nu^{12} + 13223110 \nu^{11} - 37166896 \nu^{10} + 492901054 \nu^{9} - 1227607658 \nu^{8} + 8921875848 \nu^{7} + \cdots - 424894743040 ) / 2232391040 \)
|
\(\beta_{13}\) | \(=\) |
\( ( - 137323 \nu^{13} - 13223110 \nu^{11} - 492901054 \nu^{9} - 8921875848 \nu^{7} - 79648655243 \nu^{5} - 306551284006 \nu^{3} + \cdots - 312070537408 \nu ) / 1116195520 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} - 14 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{13} + \beta_{12} - \beta_{11} - 21\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( -\beta_{7} + \beta_{6} - 3\beta_{5} - 3\beta_{4} + 4\beta_{3} - 29\beta_{2} + 300 \)
|
\(\nu^{5}\) | \(=\) |
\( - 38 \beta_{13} - 38 \beta_{12} + 38 \beta_{11} + 4 \beta_{10} - 10 \beta_{9} - 42 \beta_{8} + 12 \beta_{7} + 12 \beta_{6} + 493 \beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( 8 \beta_{12} + 8 \beta_{11} + 22 \beta_{7} - 22 \beta_{6} + 138 \beta_{5} + 142 \beta_{4} - 206 \beta_{3} + 795 \beta_{2} - 7260 \)
|
\(\nu^{7}\) | \(=\) |
\( 1229 \beta_{13} + 1279 \beta_{12} - 1279 \beta_{11} - 174 \beta_{10} + 500 \beta_{9} + 2512 \beta_{8} - 612 \beta_{7} - 612 \beta_{6} - 12371 \beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( - 438 \beta_{12} - 438 \beta_{11} - 353 \beta_{7} + 353 \beta_{6} - 4861 \beta_{5} - 5185 \beta_{4} + 8150 \beta_{3} - 22251 \beta_{2} + 187798 \)
|
\(\nu^{9}\) | \(=\) |
\( - 38034 \beta_{13} - 41294 \beta_{12} + 41294 \beta_{11} + 6398 \beta_{10} - 18090 \beta_{9} - 106354 \beta_{8} + 23254 \beta_{7} + 23254 \beta_{6} + 326691 \beta_1 \)
|
\(\nu^{10}\) | \(=\) |
\( 16856 \beta_{12} + 16856 \beta_{11} + 4992 \beta_{7} - 4992 \beta_{6} + 156680 \beta_{5} + 173528 \beta_{4} - 290724 \beta_{3} + 638709 \beta_{2} - 5095498 \)
|
\(\nu^{11}\) | \(=\) |
\( 1159309 \beta_{13} + 1305209 \beta_{12} - 1305209 \beta_{11} - 223300 \beta_{10} + 583040 \beta_{9} + 3919080 \beta_{8} - 795240 \beta_{7} - 795240 \beta_{6} - 8979273 \beta_1 \)
|
\(\nu^{12}\) | \(=\) |
\( - 571940 \beta_{12} - 571940 \beta_{11} - 70629 \beta_{7} + 70629 \beta_{6} - 4867307 \beta_{5} - 5583507 \beta_{4} + 9809816 \beta_{3} - 18700905 \beta_{2} + 143215496 \)
|
\(\nu^{13}\) | \(=\) |
\( - 35162906 \beta_{13} - 40750986 \beta_{12} + 40750986 \beta_{11} + 7522056 \beta_{10} - 17895570 \beta_{9} - 134478098 \beta_{8} + 25909928 \beta_{7} + 25909928 \beta_{6} + \cdots + 254428041 \beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/165\mathbb{Z}\right)^\times\).
\(n\) | \(46\) | \(56\) | \(67\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34.1 |
|
− | 5.52667i | 3.00000i | −22.5440 | −7.34773 | − | 8.42680i | 16.5800 | − | 22.7119i | 80.3801i | −9.00000 | −46.5721 | + | 40.6084i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.2 | − | 4.66025i | − | 3.00000i | −13.7179 | 0.559505 | + | 11.1663i | −13.9808 | 20.4072i | 26.6471i | −9.00000 | 52.0379 | − | 2.60743i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.3 | − | 4.31207i | − | 3.00000i | −10.5939 | 7.94512 | − | 7.86608i | −12.9362 | − | 9.06309i | 11.1853i | −9.00000 | −33.9191 | − | 34.2599i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.4 | − | 4.00699i | 3.00000i | −8.05595 | −2.16823 | + | 10.9681i | 12.0210 | − | 26.2766i | 0.224208i | −9.00000 | 43.9490 | + | 8.68807i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.5 | − | 2.62783i | 3.00000i | 1.09451 | −10.6820 | − | 3.30060i | 7.88349 | 24.0582i | − | 23.8988i | −9.00000 | −8.67342 | + | 28.0706i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.6 | − | 1.35250i | − | 3.00000i | 6.17074 | −4.68011 | − | 10.1536i | −4.05750 | − | 5.74924i | − | 19.1659i | −9.00000 | −13.7328 | + | 6.32986i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
34.7 | − | 1.16334i | 3.00000i | 6.64664 | 9.37349 | − | 6.09407i | 3.49002 | − | 19.4748i | − | 17.0390i | −9.00000 | −7.08947 | − | 10.9046i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.8 | 1.16334i | − | 3.00000i | 6.64664 | 9.37349 | + | 6.09407i | 3.49002 | 19.4748i | 17.0390i | −9.00000 | −7.08947 | + | 10.9046i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.9 | 1.35250i | 3.00000i | 6.17074 | −4.68011 | + | 10.1536i | −4.05750 | 5.74924i | 19.1659i | −9.00000 | −13.7328 | − | 6.32986i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.10 | 2.62783i | − | 3.00000i | 1.09451 | −10.6820 | + | 3.30060i | 7.88349 | − | 24.0582i | 23.8988i | −9.00000 | −8.67342 | − | 28.0706i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.11 | 4.00699i | − | 3.00000i | −8.05595 | −2.16823 | − | 10.9681i | 12.0210 | 26.2766i | − | 0.224208i | −9.00000 | 43.9490 | − | 8.68807i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.12 | 4.31207i | 3.00000i | −10.5939 | 7.94512 | + | 7.86608i | −12.9362 | 9.06309i | − | 11.1853i | −9.00000 | −33.9191 | + | 34.2599i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.13 | 4.66025i | 3.00000i | −13.7179 | 0.559505 | − | 11.1663i | −13.9808 | − | 20.4072i | − | 26.6471i | −9.00000 | 52.0379 | + | 2.60743i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
34.14 | 5.52667i | − | 3.00000i | −22.5440 | −7.34773 | + | 8.42680i | 16.5800 | 22.7119i | − | 80.3801i | −9.00000 | −46.5721 | − | 40.6084i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 165.4.c.a | ✓ | 14 |
3.b | odd | 2 | 1 | 495.4.c.c | 14 | ||
5.b | even | 2 | 1 | inner | 165.4.c.a | ✓ | 14 |
5.c | odd | 4 | 1 | 825.4.a.bb | 7 | ||
5.c | odd | 4 | 1 | 825.4.a.bc | 7 | ||
15.d | odd | 2 | 1 | 495.4.c.c | 14 | ||
15.e | even | 4 | 1 | 2475.4.a.bq | 7 | ||
15.e | even | 4 | 1 | 2475.4.a.br | 7 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
165.4.c.a | ✓ | 14 | 1.a | even | 1 | 1 | trivial |
165.4.c.a | ✓ | 14 | 5.b | even | 2 | 1 | inner |
495.4.c.c | 14 | 3.b | odd | 2 | 1 | ||
495.4.c.c | 14 | 15.d | odd | 2 | 1 | ||
825.4.a.bb | 7 | 5.c | odd | 4 | 1 | ||
825.4.a.bc | 7 | 5.c | odd | 4 | 1 | ||
2475.4.a.bq | 7 | 15.e | even | 4 | 1 | ||
2475.4.a.br | 7 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{14} + 97T_{2}^{12} + 3674T_{2}^{10} + 68702T_{2}^{8} + 656605T_{2}^{6} + 2988841T_{2}^{4} + 5502384T_{2}^{2} + 3385600 \)
acting on \(S_{4}^{\mathrm{new}}(165, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{14} + 97 T^{12} + 3674 T^{10} + \cdots + 3385600 \)
$3$
\( (T^{2} + 9)^{7} \)
$5$
\( T^{14} + \cdots + 476837158203125 \)
$7$
\( T^{14} + 2696 T^{12} + \cdots + 88\!\cdots\!04 \)
$11$
\( (T + 11)^{14} \)
$13$
\( T^{14} + 13532 T^{12} + \cdots + 88\!\cdots\!96 \)
$17$
\( T^{14} + 31700 T^{12} + \cdots + 13\!\cdots\!00 \)
$19$
\( (T^{7} + 26 T^{6} + \cdots + 300905291776)^{2} \)
$23$
\( T^{14} + 66284 T^{12} + \cdots + 29\!\cdots\!16 \)
$29$
\( (T^{7} + 572 T^{6} + \cdots + 95816988486144)^{2} \)
$31$
\( (T^{7} + 140 T^{6} + \cdots - 75419306700800)^{2} \)
$37$
\( T^{14} + 97992 T^{12} + \cdots + 17\!\cdots\!36 \)
$41$
\( (T^{7} - 896 T^{6} + \cdots - 15\!\cdots\!56)^{2} \)
$43$
\( T^{14} + 207116 T^{12} + \cdots + 40\!\cdots\!96 \)
$47$
\( T^{14} + 350396 T^{12} + \cdots + 32\!\cdots\!00 \)
$53$
\( T^{14} + 911380 T^{12} + \cdots + 21\!\cdots\!64 \)
$59$
\( (T^{7} + 1316 T^{6} + \cdots + 13\!\cdots\!60)^{2} \)
$61$
\( (T^{7} + 386 T^{6} + \cdots + 45\!\cdots\!20)^{2} \)
$67$
\( T^{14} + 2078072 T^{12} + \cdots + 17\!\cdots\!00 \)
$71$
\( (T^{7} - 804 T^{6} + \cdots + 20\!\cdots\!84)^{2} \)
$73$
\( T^{14} + 2787456 T^{12} + \cdots + 18\!\cdots\!84 \)
$79$
\( (T^{7} - 374 T^{6} + \cdots + 60\!\cdots\!68)^{2} \)
$83$
\( T^{14} + 3964376 T^{12} + \cdots + 79\!\cdots\!00 \)
$89$
\( (T^{7} + 694 T^{6} + \cdots + 66\!\cdots\!08)^{2} \)
$97$
\( T^{14} + 5503736 T^{12} + \cdots + 22\!\cdots\!00 \)
show more
show less