Newspace parameters
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(9.73531515095\) |
Analytic rank: | \(0\) |
Dimension: | \(3\) |
Coefficient field: | 3.3.47528.1 |
Defining polynomial: |
\( x^{3} - x^{2} - 26x - 22 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{3} - x^{2} - 26x - 22 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} - 2\nu - 17 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} + 2\beta _1 + 17 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−5.06484 | 3.00000 | 17.6526 | −5.00000 | −15.1945 | 27.4348 | −48.8887 | 9.00000 | 25.3242 | |||||||||||||||||||||||||||
1.2 | −1.90639 | 3.00000 | −4.36567 | −5.00000 | −5.71918 | −22.9186 | 23.5738 | 9.00000 | 9.53196 | ||||||||||||||||||||||||||||
1.3 | 4.97123 | 3.00000 | 16.7131 | −5.00000 | 14.9137 | 5.48376 | 43.3148 | 9.00000 | −24.8561 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(-1\) |
\(5\) | \(1\) |
\(11\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 165.4.a.e | ✓ | 3 |
3.b | odd | 2 | 1 | 495.4.a.k | 3 | ||
5.b | even | 2 | 1 | 825.4.a.r | 3 | ||
5.c | odd | 4 | 2 | 825.4.c.k | 6 | ||
11.b | odd | 2 | 1 | 1815.4.a.r | 3 | ||
15.d | odd | 2 | 1 | 2475.4.a.t | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
165.4.a.e | ✓ | 3 | 1.a | even | 1 | 1 | trivial |
495.4.a.k | 3 | 3.b | odd | 2 | 1 | ||
825.4.a.r | 3 | 5.b | even | 2 | 1 | ||
825.4.c.k | 6 | 5.c | odd | 4 | 2 | ||
1815.4.a.r | 3 | 11.b | odd | 2 | 1 | ||
2475.4.a.t | 3 | 15.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} + 2T_{2}^{2} - 25T_{2} - 48 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(165))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{3} + 2 T^{2} - 25 T - 48 \)
$3$
\( (T - 3)^{3} \)
$5$
\( (T + 5)^{3} \)
$7$
\( T^{3} - 10 T^{2} - 604 T + 3448 \)
$11$
\( (T - 11)^{3} \)
$13$
\( T^{3} - 114 T^{2} + 3712 T - 37216 \)
$17$
\( T^{3} + 104 T^{2} + 2792 T + 8448 \)
$19$
\( T^{3} + 58 T^{2} - 11496 T + 65520 \)
$23$
\( T^{3} - 120 T^{2} - 10736 T + 148224 \)
$29$
\( T^{3} + 220 T^{2} - 14308 T - 629760 \)
$31$
\( T^{3} - 248 T^{2} - 38592 T + 9589248 \)
$37$
\( T^{3} - 838 T^{2} + \cdots - 18607336 \)
$41$
\( T^{3} - 156 T^{2} - 106596 T - 3013632 \)
$43$
\( T^{3} - 122 T^{2} - 44940 T + 1445400 \)
$47$
\( T^{3} - 504 T^{2} + 82192 T - 4372224 \)
$53$
\( T^{3} - 282 T^{2} - 222068 T - 3654264 \)
$59$
\( T^{3} - 548 T^{2} + 57584 T - 1206720 \)
$61$
\( T^{3} - 414 T^{2} + \cdots + 342344792 \)
$67$
\( T^{3} + 428 T^{2} - 206752 T - 8135552 \)
$71$
\( T^{3} + 912 T^{2} + 97888 T - 2867712 \)
$73$
\( T^{3} - 618 T^{2} + \cdots + 26458592 \)
$79$
\( T^{3} + 542 T^{2} + \cdots - 88503440 \)
$83$
\( T^{3} - 1091340 T - 434328048 \)
$89$
\( T^{3} - 790 T^{2} + \cdots + 1941629400 \)
$97$
\( T^{3} - 2074 T^{2} + \cdots + 98075336 \)
show more
show less