Newspace parameters
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(9.73531515095\) |
Analytic rank: | \(1\) |
Dimension: | \(3\) |
Coefficient field: | 3.3.23612.1 |
Defining polynomial: |
\( x^{3} - x^{2} - 20x + 26 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{3} - x^{2} - 20x + 26 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} + \nu - 14 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} - \beta _1 + 14 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−5.26150 | −3.00000 | 19.6833 | −5.00000 | 15.7845 | −10.3207 | −61.4719 | 9.00000 | 26.3075 | |||||||||||||||||||||||||||
1.2 | −2.32906 | −3.00000 | −2.57547 | −5.00000 | 6.98719 | 22.4672 | 24.6309 | 9.00000 | 11.6453 | ||||||||||||||||||||||||||||
1.3 | 3.59056 | −3.00000 | 4.89212 | −5.00000 | −10.7717 | −16.1465 | −11.1590 | 9.00000 | −17.9528 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(1\) |
\(5\) | \(1\) |
\(11\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 165.4.a.d | ✓ | 3 |
3.b | odd | 2 | 1 | 495.4.a.l | 3 | ||
5.b | even | 2 | 1 | 825.4.a.s | 3 | ||
5.c | odd | 4 | 2 | 825.4.c.l | 6 | ||
11.b | odd | 2 | 1 | 1815.4.a.s | 3 | ||
15.d | odd | 2 | 1 | 2475.4.a.s | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
165.4.a.d | ✓ | 3 | 1.a | even | 1 | 1 | trivial |
495.4.a.l | 3 | 3.b | odd | 2 | 1 | ||
825.4.a.s | 3 | 5.b | even | 2 | 1 | ||
825.4.c.l | 6 | 5.c | odd | 4 | 2 | ||
1815.4.a.s | 3 | 11.b | odd | 2 | 1 | ||
2475.4.a.s | 3 | 15.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} + 4T_{2}^{2} - 15T_{2} - 44 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(165))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{3} + 4 T^{2} - 15 T - 44 \)
$3$
\( (T + 3)^{3} \)
$5$
\( (T + 5)^{3} \)
$7$
\( T^{3} + 4 T^{2} - 428 T - 3744 \)
$11$
\( (T - 11)^{3} \)
$13$
\( T^{3} - 3560T - 34144 \)
$17$
\( T^{3} + 218 T^{2} + 9680 T - 235104 \)
$19$
\( T^{3} - 146 T^{2} + 5376 T - 30960 \)
$23$
\( T^{3} + 200 T^{2} - 2672 T + 1664 \)
$29$
\( T^{3} - 68 T^{2} - 54364 T + 3163056 \)
$31$
\( T^{3} + 68 T^{2} - 23232 T - 1812096 \)
$37$
\( T^{3} + 390 T^{2} + 36460 T + 618952 \)
$41$
\( T^{3} + 196 T^{2} - 26076 T - 4364208 \)
$43$
\( T^{3} + 524 T^{2} + \cdots - 31273920 \)
$47$
\( T^{3} + 60 T^{2} - 135920 T - 20966976 \)
$53$
\( T^{3} + 158 T^{2} + \cdots + 39574952 \)
$59$
\( T^{3} + 1044 T^{2} + \cdots - 84227264 \)
$61$
\( T^{3} - 642 T^{2} + \cdots + 22757384 \)
$67$
\( T^{3} + 236 T^{2} + \cdots + 87537664 \)
$71$
\( T^{3} + 544 T^{2} - 129728 T + 6553600 \)
$73$
\( T^{3} - 900 T^{2} - 299576 T - 5609344 \)
$79$
\( T^{3} + 1586 T^{2} + \cdots - 14694992 \)
$83$
\( T^{3} + 1582 T^{2} + \cdots - 924645384 \)
$89$
\( T^{3} + 2122 T^{2} + \cdots + 293444632 \)
$97$
\( T^{3} - 618 T^{2} + \cdots - 223543736 \)
show more
show less