Newspace parameters
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(9.73531515095\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −3.00000 | −8.00000 | −5.00000 | 0 | 2.00000 | 0 | 9.00000 | 0 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(1\) |
\(5\) | \(1\) |
\(11\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 165.4.a.a | ✓ | 1 |
3.b | odd | 2 | 1 | 495.4.a.c | 1 | ||
5.b | even | 2 | 1 | 825.4.a.e | 1 | ||
5.c | odd | 4 | 2 | 825.4.c.g | 2 | ||
11.b | odd | 2 | 1 | 1815.4.a.f | 1 | ||
15.d | odd | 2 | 1 | 2475.4.a.f | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
165.4.a.a | ✓ | 1 | 1.a | even | 1 | 1 | trivial |
495.4.a.c | 1 | 3.b | odd | 2 | 1 | ||
825.4.a.e | 1 | 5.b | even | 2 | 1 | ||
825.4.c.g | 2 | 5.c | odd | 4 | 2 | ||
1815.4.a.f | 1 | 11.b | odd | 2 | 1 | ||
2475.4.a.f | 1 | 15.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(165))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T \)
$3$
\( T + 3 \)
$5$
\( T + 5 \)
$7$
\( T - 2 \)
$11$
\( T + 11 \)
$13$
\( T + 22 \)
$17$
\( T - 72 \)
$19$
\( T - 122 \)
$23$
\( T - 72 \)
$29$
\( T - 96 \)
$31$
\( T + 112 \)
$37$
\( T - 266 \)
$41$
\( T + 96 \)
$43$
\( T + 382 \)
$47$
\( T - 360 \)
$53$
\( T - 318 \)
$59$
\( T - 660 \)
$61$
\( T + 430 \)
$67$
\( T - 380 \)
$71$
\( T - 168 \)
$73$
\( T - 218 \)
$79$
\( T + 706 \)
$83$
\( T - 1068 \)
$89$
\( T + 6 \)
$97$
\( T - 686 \)
show more
show less