Defining parameters
| Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 165.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(96\) | ||
| Trace bound: | \(4\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(165))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 76 | 20 | 56 |
| Cusp forms | 68 | 20 | 48 |
| Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(5\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(11\) | \(1\) | \(10\) | \(10\) | \(1\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(8\) | \(3\) | \(5\) | \(7\) | \(3\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(10\) | \(3\) | \(7\) | \(9\) | \(3\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(9\) | \(3\) | \(6\) | \(8\) | \(3\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(10\) | \(2\) | \(8\) | \(9\) | \(2\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(9\) | \(4\) | \(5\) | \(8\) | \(4\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(11\) | \(4\) | \(7\) | \(10\) | \(4\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(8\) | \(0\) | \(8\) | \(7\) | \(0\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(40\) | \(12\) | \(28\) | \(36\) | \(12\) | \(24\) | \(4\) | \(0\) | \(4\) | |||||
| Minus space | \(-\) | \(36\) | \(8\) | \(28\) | \(32\) | \(8\) | \(24\) | \(4\) | \(0\) | \(4\) | |||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(165))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(165))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(165)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 2}\)