Properties

Label 165.4
Level 165
Weight 4
Dimension 1892
Nonzero newspaces 12
Newform subspaces 26
Sturm bound 7680
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 26 \)
Sturm bound: \(7680\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(165))\).

Total New Old
Modular forms 3040 1996 1044
Cusp forms 2720 1892 828
Eisenstein series 320 104 216

Trace form

\( 1892 q - 8 q^{2} + 2 q^{3} + 28 q^{4} - 12 q^{5} - 130 q^{6} - 20 q^{7} + 232 q^{8} + 186 q^{9} + 352 q^{10} + 256 q^{11} + 84 q^{12} - 268 q^{13} - 1308 q^{14} - 673 q^{15} - 2188 q^{16} - 680 q^{17} + 118 q^{18}+ \cdots - 10558 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(165))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
165.4.a \(\chi_{165}(1, \cdot)\) 165.4.a.a 1 1
165.4.a.b 1
165.4.a.c 2
165.4.a.d 3
165.4.a.e 3
165.4.a.f 3
165.4.a.g 3
165.4.a.h 4
165.4.c \(\chi_{165}(34, \cdot)\) 165.4.c.a 14 1
165.4.c.b 14
165.4.d \(\chi_{165}(164, \cdot)\) 165.4.d.a 2 1
165.4.d.b 2
165.4.d.c 64
165.4.f \(\chi_{165}(131, \cdot)\) 165.4.f.a 48 1
165.4.j \(\chi_{165}(43, \cdot)\) 165.4.j.a 72 2
165.4.k \(\chi_{165}(23, \cdot)\) 165.4.k.a 60 2
165.4.k.b 60
165.4.m \(\chi_{165}(16, \cdot)\) 165.4.m.a 24 4
165.4.m.b 24
165.4.m.c 24
165.4.m.d 24
165.4.p \(\chi_{165}(41, \cdot)\) 165.4.p.a 192 4
165.4.r \(\chi_{165}(29, \cdot)\) 165.4.r.a 272 4
165.4.s \(\chi_{165}(4, \cdot)\) 165.4.s.a 144 4
165.4.v \(\chi_{165}(38, \cdot)\) 165.4.v.a 544 8
165.4.w \(\chi_{165}(7, \cdot)\) 165.4.w.a 288 8

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(165))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(165)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(165))\)\(^{\oplus 1}\)