Properties

Label 165.3.l.a.98.2
Level $165$
Weight $3$
Character 165.98
Analytic conductor $4.496$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [165,3,Mod(32,165)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(165, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("165.32");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 165.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.49592436194\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 98.2
Root \(1.58114 - 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 165.98
Dual form 165.3.l.a.32.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.58114 - 1.58114i) q^{2} -3.00000 q^{3} -1.00000i q^{4} +(-4.00000 + 3.00000i) q^{5} +(-4.74342 + 4.74342i) q^{6} +(3.16228 + 3.16228i) q^{7} +(4.74342 + 4.74342i) q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+(1.58114 - 1.58114i) q^{2} -3.00000 q^{3} -1.00000i q^{4} +(-4.00000 + 3.00000i) q^{5} +(-4.74342 + 4.74342i) q^{6} +(3.16228 + 3.16228i) q^{7} +(4.74342 + 4.74342i) q^{8} +9.00000 q^{9} +(-1.58114 + 11.0680i) q^{10} +(6.32456 + 9.00000i) q^{11} +3.00000i q^{12} +(3.16228 - 3.16228i) q^{13} +10.0000 q^{14} +(12.0000 - 9.00000i) q^{15} +19.0000 q^{16} +(-22.1359 + 22.1359i) q^{17} +(14.2302 - 14.2302i) q^{18} -12.6491 q^{19} +(3.00000 + 4.00000i) q^{20} +(-9.48683 - 9.48683i) q^{21} +(24.2302 + 4.23025i) q^{22} +(-7.00000 + 7.00000i) q^{23} +(-14.2302 - 14.2302i) q^{24} +(7.00000 - 24.0000i) q^{25} -10.0000i q^{26} -27.0000 q^{27} +(3.16228 - 3.16228i) q^{28} +18.9737i q^{29} +(4.74342 - 33.2039i) q^{30} +20.0000 q^{31} +(11.0680 - 11.0680i) q^{32} +(-18.9737 - 27.0000i) q^{33} +70.0000i q^{34} +(-22.1359 - 3.16228i) q^{35} -9.00000i q^{36} +(7.00000 - 7.00000i) q^{37} +(-20.0000 + 20.0000i) q^{38} +(-9.48683 + 9.48683i) q^{39} +(-33.2039 - 4.74342i) q^{40} +69.5701 q^{41} -30.0000 q^{42} +(22.1359 - 22.1359i) q^{43} +(9.00000 - 6.32456i) q^{44} +(-36.0000 + 27.0000i) q^{45} +22.1359i q^{46} +(-43.0000 - 43.0000i) q^{47} -57.0000 q^{48} -29.0000i q^{49} +(-26.8794 - 49.0153i) q^{50} +(66.4078 - 66.4078i) q^{51} +(-3.16228 - 3.16228i) q^{52} +(17.0000 - 17.0000i) q^{53} +(-42.6907 + 42.6907i) q^{54} +(-52.2982 - 17.0263i) q^{55} +30.0000i q^{56} +37.9473 q^{57} +(30.0000 + 30.0000i) q^{58} +22.0000 q^{59} +(-9.00000 - 12.0000i) q^{60} +94.8683i q^{61} +(31.6228 - 31.6228i) q^{62} +(28.4605 + 28.4605i) q^{63} +41.0000i q^{64} +(-3.16228 + 22.1359i) q^{65} +(-72.6907 - 12.6907i) q^{66} +(-47.0000 + 47.0000i) q^{67} +(22.1359 + 22.1359i) q^{68} +(21.0000 - 21.0000i) q^{69} +(-40.0000 + 30.0000i) q^{70} -120.000i q^{71} +(42.6907 + 42.6907i) q^{72} +(22.1359 - 22.1359i) q^{73} -22.1359i q^{74} +(-21.0000 + 72.0000i) q^{75} +12.6491i q^{76} +(-8.46050 + 48.4605i) q^{77} +30.0000i q^{78} +6.32456 q^{79} +(-76.0000 + 57.0000i) q^{80} +81.0000 q^{81} +(110.000 - 110.000i) q^{82} +(-60.0833 - 60.0833i) q^{83} +(-9.48683 + 9.48683i) q^{84} +(22.1359 - 154.952i) q^{85} -70.0000i q^{86} -56.9210i q^{87} +(-12.6907 + 72.6907i) q^{88} +100.000 q^{89} +(-14.2302 + 99.6117i) q^{90} +20.0000 q^{91} +(7.00000 + 7.00000i) q^{92} -60.0000 q^{93} -135.978 q^{94} +(50.5964 - 37.9473i) q^{95} +(-33.2039 + 33.2039i) q^{96} +(43.0000 - 43.0000i) q^{97} +(-45.8530 - 45.8530i) q^{98} +(56.9210 + 81.0000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{3} - 16 q^{5} + 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 12 q^{3} - 16 q^{5} + 36 q^{9} + 40 q^{14} + 48 q^{15} + 76 q^{16} + 12 q^{20} + 40 q^{22} - 28 q^{23} + 28 q^{25} - 108 q^{27} + 80 q^{31} + 28 q^{37} - 80 q^{38} - 120 q^{42} + 36 q^{44} - 144 q^{45} - 172 q^{47} - 228 q^{48} + 68 q^{53} - 108 q^{55} + 120 q^{58} + 88 q^{59} - 36 q^{60} - 120 q^{66} - 188 q^{67} + 84 q^{69} - 160 q^{70} - 84 q^{75} + 80 q^{77} - 304 q^{80} + 324 q^{81} + 440 q^{82} + 120 q^{88} + 400 q^{89} + 80 q^{91} + 28 q^{92} - 240 q^{93} + 172 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/165\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(67\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.58114 1.58114i 0.790569 0.790569i −0.191017 0.981587i \(-0.561179\pi\)
0.981587 + 0.191017i \(0.0611786\pi\)
\(3\) −3.00000 −1.00000
\(4\) 1.00000i 0.250000i
\(5\) −4.00000 + 3.00000i −0.800000 + 0.600000i
\(6\) −4.74342 + 4.74342i −0.790569 + 0.790569i
\(7\) 3.16228 + 3.16228i 0.451754 + 0.451754i 0.895936 0.444182i \(-0.146506\pi\)
−0.444182 + 0.895936i \(0.646506\pi\)
\(8\) 4.74342 + 4.74342i 0.592927 + 0.592927i
\(9\) 9.00000 1.00000
\(10\) −1.58114 + 11.0680i −0.158114 + 1.10680i
\(11\) 6.32456 + 9.00000i 0.574960 + 0.818182i
\(12\) 3.00000i 0.250000i
\(13\) 3.16228 3.16228i 0.243252 0.243252i −0.574942 0.818194i \(-0.694975\pi\)
0.818194 + 0.574942i \(0.194975\pi\)
\(14\) 10.0000 0.714286
\(15\) 12.0000 9.00000i 0.800000 0.600000i
\(16\) 19.0000 1.18750
\(17\) −22.1359 + 22.1359i −1.30211 + 1.30211i −0.375150 + 0.926964i \(0.622409\pi\)
−0.926964 + 0.375150i \(0.877591\pi\)
\(18\) 14.2302 14.2302i 0.790569 0.790569i
\(19\) −12.6491 −0.665743 −0.332871 0.942972i \(-0.608017\pi\)
−0.332871 + 0.942972i \(0.608017\pi\)
\(20\) 3.00000 + 4.00000i 0.150000 + 0.200000i
\(21\) −9.48683 9.48683i −0.451754 0.451754i
\(22\) 24.2302 + 4.23025i 1.10137 + 0.192284i
\(23\) −7.00000 + 7.00000i −0.304348 + 0.304348i −0.842712 0.538364i \(-0.819042\pi\)
0.538364 + 0.842712i \(0.319042\pi\)
\(24\) −14.2302 14.2302i −0.592927 0.592927i
\(25\) 7.00000 24.0000i 0.280000 0.960000i
\(26\) 10.0000i 0.384615i
\(27\) −27.0000 −1.00000
\(28\) 3.16228 3.16228i 0.112938 0.112938i
\(29\) 18.9737i 0.654264i 0.944979 + 0.327132i \(0.106082\pi\)
−0.944979 + 0.327132i \(0.893918\pi\)
\(30\) 4.74342 33.2039i 0.158114 1.10680i
\(31\) 20.0000 0.645161 0.322581 0.946542i \(-0.395450\pi\)
0.322581 + 0.946542i \(0.395450\pi\)
\(32\) 11.0680 11.0680i 0.345874 0.345874i
\(33\) −18.9737 27.0000i −0.574960 0.818182i
\(34\) 70.0000i 2.05882i
\(35\) −22.1359 3.16228i −0.632456 0.0903508i
\(36\) 9.00000i 0.250000i
\(37\) 7.00000 7.00000i 0.189189 0.189189i −0.606156 0.795346i \(-0.707289\pi\)
0.795346 + 0.606156i \(0.207289\pi\)
\(38\) −20.0000 + 20.0000i −0.526316 + 0.526316i
\(39\) −9.48683 + 9.48683i −0.243252 + 0.243252i
\(40\) −33.2039 4.74342i −0.830098 0.118585i
\(41\) 69.5701 1.69683 0.848416 0.529330i \(-0.177557\pi\)
0.848416 + 0.529330i \(0.177557\pi\)
\(42\) −30.0000 −0.714286
\(43\) 22.1359 22.1359i 0.514789 0.514789i −0.401201 0.915990i \(-0.631407\pi\)
0.915990 + 0.401201i \(0.131407\pi\)
\(44\) 9.00000 6.32456i 0.204545 0.143740i
\(45\) −36.0000 + 27.0000i −0.800000 + 0.600000i
\(46\) 22.1359i 0.481216i
\(47\) −43.0000 43.0000i −0.914894 0.914894i 0.0817585 0.996652i \(-0.473946\pi\)
−0.996652 + 0.0817585i \(0.973946\pi\)
\(48\) −57.0000 −1.18750
\(49\) 29.0000i 0.591837i
\(50\) −26.8794 49.0153i −0.537587 0.980306i
\(51\) 66.4078 66.4078i 1.30211 1.30211i
\(52\) −3.16228 3.16228i −0.0608130 0.0608130i
\(53\) 17.0000 17.0000i 0.320755 0.320755i −0.528302 0.849057i \(-0.677171\pi\)
0.849057 + 0.528302i \(0.177171\pi\)
\(54\) −42.6907 + 42.6907i −0.790569 + 0.790569i
\(55\) −52.2982 17.0263i −0.950877 0.309570i
\(56\) 30.0000i 0.535714i
\(57\) 37.9473 0.665743
\(58\) 30.0000 + 30.0000i 0.517241 + 0.517241i
\(59\) 22.0000 0.372881 0.186441 0.982466i \(-0.440305\pi\)
0.186441 + 0.982466i \(0.440305\pi\)
\(60\) −9.00000 12.0000i −0.150000 0.200000i
\(61\) 94.8683i 1.55522i 0.628748 + 0.777609i \(0.283568\pi\)
−0.628748 + 0.777609i \(0.716432\pi\)
\(62\) 31.6228 31.6228i 0.510045 0.510045i
\(63\) 28.4605 + 28.4605i 0.451754 + 0.451754i
\(64\) 41.0000i 0.640625i
\(65\) −3.16228 + 22.1359i −0.0486504 + 0.340553i
\(66\) −72.6907 12.6907i −1.10137 0.192284i
\(67\) −47.0000 + 47.0000i −0.701493 + 0.701493i −0.964731 0.263238i \(-0.915209\pi\)
0.263238 + 0.964731i \(0.415209\pi\)
\(68\) 22.1359 + 22.1359i 0.325529 + 0.325529i
\(69\) 21.0000 21.0000i 0.304348 0.304348i
\(70\) −40.0000 + 30.0000i −0.571429 + 0.428571i
\(71\) 120.000i 1.69014i −0.534655 0.845070i \(-0.679558\pi\)
0.534655 0.845070i \(-0.320442\pi\)
\(72\) 42.6907 + 42.6907i 0.592927 + 0.592927i
\(73\) 22.1359 22.1359i 0.303232 0.303232i −0.539045 0.842277i \(-0.681215\pi\)
0.842277 + 0.539045i \(0.181215\pi\)
\(74\) 22.1359i 0.299134i
\(75\) −21.0000 + 72.0000i −0.280000 + 0.960000i
\(76\) 12.6491i 0.166436i
\(77\) −8.46050 + 48.4605i −0.109877 + 0.629357i
\(78\) 30.0000i 0.384615i
\(79\) 6.32456 0.0800577 0.0400288 0.999199i \(-0.487255\pi\)
0.0400288 + 0.999199i \(0.487255\pi\)
\(80\) −76.0000 + 57.0000i −0.950000 + 0.712500i
\(81\) 81.0000 1.00000
\(82\) 110.000 110.000i 1.34146 1.34146i
\(83\) −60.0833 60.0833i −0.723895 0.723895i 0.245501 0.969396i \(-0.421047\pi\)
−0.969396 + 0.245501i \(0.921047\pi\)
\(84\) −9.48683 + 9.48683i −0.112938 + 0.112938i
\(85\) 22.1359 154.952i 0.260423 1.82296i
\(86\) 70.0000i 0.813953i
\(87\) 56.9210i 0.654264i
\(88\) −12.6907 + 72.6907i −0.144213 + 0.826031i
\(89\) 100.000 1.12360 0.561798 0.827275i \(-0.310110\pi\)
0.561798 + 0.827275i \(0.310110\pi\)
\(90\) −14.2302 + 99.6117i −0.158114 + 1.10680i
\(91\) 20.0000 0.219780
\(92\) 7.00000 + 7.00000i 0.0760870 + 0.0760870i
\(93\) −60.0000 −0.645161
\(94\) −135.978 −1.44657
\(95\) 50.5964 37.9473i 0.532594 0.399446i
\(96\) −33.2039 + 33.2039i −0.345874 + 0.345874i
\(97\) 43.0000 43.0000i 0.443299 0.443299i −0.449820 0.893119i \(-0.648512\pi\)
0.893119 + 0.449820i \(0.148512\pi\)
\(98\) −45.8530 45.8530i −0.467888 0.467888i
\(99\) 56.9210 + 81.0000i 0.574960 + 0.818182i
\(100\) −24.0000 7.00000i −0.240000 0.0700000i
\(101\) −139.140 −1.37763 −0.688813 0.724939i \(-0.741868\pi\)
−0.688813 + 0.724939i \(0.741868\pi\)
\(102\) 210.000i 2.05882i
\(103\) 7.00000 + 7.00000i 0.0679612 + 0.0679612i 0.740270 0.672309i \(-0.234697\pi\)
−0.672309 + 0.740270i \(0.734697\pi\)
\(104\) 30.0000 0.288462
\(105\) 66.4078 + 9.48683i 0.632456 + 0.0903508i
\(106\) 53.7587i 0.507158i
\(107\) −41.1096 + 41.1096i −0.384202 + 0.384202i −0.872613 0.488411i \(-0.837577\pi\)
0.488411 + 0.872613i \(0.337577\pi\)
\(108\) 27.0000i 0.250000i
\(109\) 215.035 1.97280 0.986399 0.164371i \(-0.0525595\pi\)
0.986399 + 0.164371i \(0.0525595\pi\)
\(110\) −109.612 + 55.7698i −0.996470 + 0.506998i
\(111\) −21.0000 + 21.0000i −0.189189 + 0.189189i
\(112\) 60.0833 + 60.0833i 0.536458 + 0.536458i
\(113\) 53.0000 53.0000i 0.469027 0.469027i −0.432573 0.901599i \(-0.642394\pi\)
0.901599 + 0.432573i \(0.142394\pi\)
\(114\) 60.0000 60.0000i 0.526316 0.526316i
\(115\) 7.00000 49.0000i 0.0608696 0.426087i
\(116\) 18.9737 0.163566
\(117\) 28.4605 28.4605i 0.243252 0.243252i
\(118\) 34.7851 34.7851i 0.294789 0.294789i
\(119\) −140.000 −1.17647
\(120\) 99.6117 + 14.2302i 0.830098 + 0.118585i
\(121\) −41.0000 + 113.842i −0.338843 + 0.940843i
\(122\) 150.000 + 150.000i 1.22951 + 1.22951i
\(123\) −208.710 −1.69683
\(124\) 20.0000i 0.161290i
\(125\) 44.0000 + 117.000i 0.352000 + 0.936000i
\(126\) 90.0000 0.714286
\(127\) 41.1096 + 41.1096i 0.323698 + 0.323698i 0.850184 0.526486i \(-0.176491\pi\)
−0.526486 + 0.850184i \(0.676491\pi\)
\(128\) 109.099 + 109.099i 0.852333 + 0.852333i
\(129\) −66.4078 + 66.4078i −0.514789 + 0.514789i
\(130\) 30.0000 + 40.0000i 0.230769 + 0.307692i
\(131\) 126.491 0.965581 0.482790 0.875736i \(-0.339623\pi\)
0.482790 + 0.875736i \(0.339623\pi\)
\(132\) −27.0000 + 18.9737i −0.204545 + 0.143740i
\(133\) −40.0000 40.0000i −0.300752 0.300752i
\(134\) 148.627i 1.10916i
\(135\) 108.000 81.0000i 0.800000 0.600000i
\(136\) −210.000 −1.54412
\(137\) 83.0000 + 83.0000i 0.605839 + 0.605839i 0.941856 0.336017i \(-0.109080\pi\)
−0.336017 + 0.941856i \(0.609080\pi\)
\(138\) 66.4078i 0.481216i
\(139\) −12.6491 −0.0910008 −0.0455004 0.998964i \(-0.514488\pi\)
−0.0455004 + 0.998964i \(0.514488\pi\)
\(140\) −3.16228 + 22.1359i −0.0225877 + 0.158114i
\(141\) 129.000 + 129.000i 0.914894 + 0.914894i
\(142\) −189.737 189.737i −1.33617 1.33617i
\(143\) 48.4605 + 8.46050i 0.338885 + 0.0591643i
\(144\) 171.000 1.18750
\(145\) −56.9210 75.8947i −0.392559 0.523411i
\(146\) 70.0000i 0.479452i
\(147\) 87.0000i 0.591837i
\(148\) −7.00000 7.00000i −0.0472973 0.0472973i
\(149\) 94.8683i 0.636700i 0.947973 + 0.318350i \(0.103129\pi\)
−0.947973 + 0.318350i \(0.896871\pi\)
\(150\) 80.6381 + 147.046i 0.537587 + 0.980306i
\(151\) 113.842i 0.753921i 0.926229 + 0.376960i \(0.123031\pi\)
−0.926229 + 0.376960i \(0.876969\pi\)
\(152\) −60.0000 60.0000i −0.394737 0.394737i
\(153\) −199.223 + 199.223i −1.30211 + 1.30211i
\(154\) 63.2456 + 90.0000i 0.410685 + 0.584416i
\(155\) −80.0000 + 60.0000i −0.516129 + 0.387097i
\(156\) 9.48683 + 9.48683i 0.0608130 + 0.0608130i
\(157\) 67.0000 67.0000i 0.426752 0.426752i −0.460769 0.887520i \(-0.652426\pi\)
0.887520 + 0.460769i \(0.152426\pi\)
\(158\) 10.0000 10.0000i 0.0632911 0.0632911i
\(159\) −51.0000 + 51.0000i −0.320755 + 0.320755i
\(160\) −11.0680 + 77.4758i −0.0691748 + 0.484224i
\(161\) −44.2719 −0.274981
\(162\) 128.072 128.072i 0.790569 0.790569i
\(163\) −137.000 137.000i −0.840491 0.840491i 0.148432 0.988923i \(-0.452577\pi\)
−0.988923 + 0.148432i \(0.952577\pi\)
\(164\) 69.5701i 0.424208i
\(165\) 156.895 + 51.0790i 0.950877 + 0.309570i
\(166\) −190.000 −1.14458
\(167\) 205.548 205.548i 1.23083 1.23083i 0.267180 0.963647i \(-0.413908\pi\)
0.963647 0.267180i \(-0.0860918\pi\)
\(168\) 90.0000i 0.535714i
\(169\) 149.000i 0.881657i
\(170\) −210.000 280.000i −1.23529 1.64706i
\(171\) −113.842 −0.665743
\(172\) −22.1359 22.1359i −0.128697 0.128697i
\(173\) 34.7851 + 34.7851i 0.201070 + 0.201070i 0.800458 0.599389i \(-0.204590\pi\)
−0.599389 + 0.800458i \(0.704590\pi\)
\(174\) −90.0000 90.0000i −0.517241 0.517241i
\(175\) 98.0306 53.7587i 0.560175 0.307193i
\(176\) 120.167 + 171.000i 0.682764 + 0.971591i
\(177\) −66.0000 −0.372881
\(178\) 158.114 158.114i 0.888280 0.888280i
\(179\) −320.000 −1.78771 −0.893855 0.448357i \(-0.852009\pi\)
−0.893855 + 0.448357i \(0.852009\pi\)
\(180\) 27.0000 + 36.0000i 0.150000 + 0.200000i
\(181\) 80.0000 0.441989 0.220994 0.975275i \(-0.429070\pi\)
0.220994 + 0.975275i \(0.429070\pi\)
\(182\) 31.6228 31.6228i 0.173752 0.173752i
\(183\) 284.605i 1.55522i
\(184\) −66.4078 −0.360912
\(185\) −7.00000 + 49.0000i −0.0378378 + 0.264865i
\(186\) −94.8683 + 94.8683i −0.510045 + 0.510045i
\(187\) −339.223 59.2235i −1.81403 0.316703i
\(188\) −43.0000 + 43.0000i −0.228723 + 0.228723i
\(189\) −85.3815 85.3815i −0.451754 0.451754i
\(190\) 20.0000 140.000i 0.105263 0.736842i
\(191\) 258.000i 1.35079i −0.737458 0.675393i \(-0.763974\pi\)
0.737458 0.675393i \(-0.236026\pi\)
\(192\) 123.000i 0.640625i
\(193\) 79.0569 79.0569i 0.409621 0.409621i −0.471985 0.881607i \(-0.656462\pi\)
0.881607 + 0.471985i \(0.156462\pi\)
\(194\) 135.978i 0.700917i
\(195\) 9.48683 66.4078i 0.0486504 0.340553i
\(196\) −29.0000 −0.147959
\(197\) −230.846 + 230.846i −1.17181 + 1.17181i −0.190030 + 0.981778i \(0.560859\pi\)
−0.981778 + 0.190030i \(0.939141\pi\)
\(198\) 218.072 + 38.0722i 1.10137 + 0.192284i
\(199\) 120.000i 0.603015i −0.953464 0.301508i \(-0.902510\pi\)
0.953464 0.301508i \(-0.0974898\pi\)
\(200\) 147.046 80.6381i 0.735230 0.403190i
\(201\) 141.000 141.000i 0.701493 0.701493i
\(202\) −220.000 + 220.000i −1.08911 + 1.08911i
\(203\) −60.0000 + 60.0000i −0.295567 + 0.295567i
\(204\) −66.4078 66.4078i −0.325529 0.325529i
\(205\) −278.280 + 208.710i −1.35747 + 1.01810i
\(206\) 22.1359 0.107456
\(207\) −63.0000 + 63.0000i −0.304348 + 0.304348i
\(208\) 60.0833 60.0833i 0.288862 0.288862i
\(209\) −80.0000 113.842i −0.382775 0.544699i
\(210\) 120.000 90.0000i 0.571429 0.428571i
\(211\) 246.658i 1.16899i −0.811396 0.584497i \(-0.801292\pi\)
0.811396 0.584497i \(-0.198708\pi\)
\(212\) −17.0000 17.0000i −0.0801887 0.0801887i
\(213\) 360.000i 1.69014i
\(214\) 130.000i 0.607477i
\(215\) −22.1359 + 154.952i −0.102958 + 0.720705i
\(216\) −128.072 128.072i −0.592927 0.592927i
\(217\) 63.2456 + 63.2456i 0.291454 + 0.291454i
\(218\) 340.000 340.000i 1.55963 1.55963i
\(219\) −66.4078 + 66.4078i −0.303232 + 0.303232i
\(220\) −17.0263 + 52.2982i −0.0773924 + 0.237719i
\(221\) 140.000i 0.633484i
\(222\) 66.4078i 0.299134i
\(223\) 73.0000 + 73.0000i 0.327354 + 0.327354i 0.851580 0.524225i \(-0.175645\pi\)
−0.524225 + 0.851580i \(0.675645\pi\)
\(224\) 70.0000 0.312500
\(225\) 63.0000 216.000i 0.280000 0.960000i
\(226\) 167.601i 0.741596i
\(227\) −154.952 + 154.952i −0.682606 + 0.682606i −0.960587 0.277981i \(-0.910335\pi\)
0.277981 + 0.960587i \(0.410335\pi\)
\(228\) 37.9473i 0.166436i
\(229\) 180.000i 0.786026i −0.919533 0.393013i \(-0.871433\pi\)
0.919533 0.393013i \(-0.128567\pi\)
\(230\) −66.4078 88.5438i −0.288730 0.384973i
\(231\) 25.3815 145.381i 0.109877 0.629357i
\(232\) −90.0000 + 90.0000i −0.387931 + 0.387931i
\(233\) −3.16228 3.16228i −0.0135720 0.0135720i 0.700288 0.713860i \(-0.253055\pi\)
−0.713860 + 0.700288i \(0.753055\pi\)
\(234\) 90.0000i 0.384615i
\(235\) 301.000 + 43.0000i 1.28085 + 0.182979i
\(236\) 22.0000i 0.0932203i
\(237\) −18.9737 −0.0800577
\(238\) −221.359 + 221.359i −0.930082 + 0.930082i
\(239\) 379.473i 1.58775i −0.608078 0.793877i \(-0.708059\pi\)
0.608078 0.793877i \(-0.291941\pi\)
\(240\) 228.000 171.000i 0.950000 0.712500i
\(241\) 151.789i 0.629831i −0.949120 0.314916i \(-0.898024\pi\)
0.949120 0.314916i \(-0.101976\pi\)
\(242\) 115.173 + 244.827i 0.475923 + 1.01168i
\(243\) −243.000 −1.00000
\(244\) 94.8683 0.388805
\(245\) 87.0000 + 116.000i 0.355102 + 0.473469i
\(246\) −330.000 + 330.000i −1.34146 + 1.34146i
\(247\) −40.0000 + 40.0000i −0.161943 + 0.161943i
\(248\) 94.8683 + 94.8683i 0.382534 + 0.382534i
\(249\) 180.250 + 180.250i 0.723895 + 0.723895i
\(250\) 254.563 + 115.423i 1.01825 + 0.461693i
\(251\) 60.0000i 0.239044i −0.992832 0.119522i \(-0.961864\pi\)
0.992832 0.119522i \(-0.0381362\pi\)
\(252\) 28.4605 28.4605i 0.112938 0.112938i
\(253\) −107.272 18.7281i −0.424000 0.0740242i
\(254\) 130.000 0.511811
\(255\) −66.4078 + 464.855i −0.260423 + 1.82296i
\(256\) 181.000 0.707031
\(257\) 23.0000 + 23.0000i 0.0894942 + 0.0894942i 0.750437 0.660942i \(-0.229843\pi\)
−0.660942 + 0.750437i \(0.729843\pi\)
\(258\) 210.000i 0.813953i
\(259\) 44.2719 0.170934
\(260\) 22.1359 + 3.16228i 0.0851382 + 0.0121626i
\(261\) 170.763i 0.654264i
\(262\) 200.000 200.000i 0.763359 0.763359i
\(263\) 167.601 + 167.601i 0.637265 + 0.637265i 0.949880 0.312615i \(-0.101205\pi\)
−0.312615 + 0.949880i \(0.601205\pi\)
\(264\) 38.0722 218.072i 0.144213 0.826031i
\(265\) −17.0000 + 119.000i −0.0641509 + 0.449057i
\(266\) −126.491 −0.475530
\(267\) −300.000 −1.12360
\(268\) 47.0000 + 47.0000i 0.175373 + 0.175373i
\(269\) −182.000 −0.676580 −0.338290 0.941042i \(-0.609848\pi\)
−0.338290 + 0.941042i \(0.609848\pi\)
\(270\) 42.6907 298.835i 0.158114 1.10680i
\(271\) 265.631i 0.980189i 0.871669 + 0.490095i \(0.163038\pi\)
−0.871669 + 0.490095i \(0.836962\pi\)
\(272\) −420.583 + 420.583i −1.54626 + 1.54626i
\(273\) −60.0000 −0.219780
\(274\) 262.469 0.957916
\(275\) 260.272 88.7893i 0.946443 0.322870i
\(276\) −21.0000 21.0000i −0.0760870 0.0760870i
\(277\) 154.952 + 154.952i 0.559392 + 0.559392i 0.929134 0.369742i \(-0.120554\pi\)
−0.369742 + 0.929134i \(0.620554\pi\)
\(278\) −20.0000 + 20.0000i −0.0719424 + 0.0719424i
\(279\) 180.000 0.645161
\(280\) −90.0000 120.000i −0.321429 0.428571i
\(281\) 335.201 1.19289 0.596444 0.802655i \(-0.296580\pi\)
0.596444 + 0.802655i \(0.296580\pi\)
\(282\) 407.934 1.44657
\(283\) −281.443 + 281.443i −0.994497 + 0.994497i −0.999985 0.00548773i \(-0.998253\pi\)
0.00548773 + 0.999985i \(0.498253\pi\)
\(284\) −120.000 −0.422535
\(285\) −151.789 + 113.842i −0.532594 + 0.399446i
\(286\) 90.0000 63.2456i 0.314685 0.221138i
\(287\) 220.000 + 220.000i 0.766551 + 0.766551i
\(288\) 99.6117 99.6117i 0.345874 0.345874i
\(289\) 691.000i 2.39100i
\(290\) −210.000 30.0000i −0.724138 0.103448i
\(291\) −129.000 + 129.000i −0.443299 + 0.443299i
\(292\) −22.1359 22.1359i −0.0758080 0.0758080i
\(293\) −230.846 230.846i −0.787871 0.787871i 0.193274 0.981145i \(-0.438089\pi\)
−0.981145 + 0.193274i \(0.938089\pi\)
\(294\) 137.559 + 137.559i 0.467888 + 0.467888i
\(295\) −88.0000 + 66.0000i −0.298305 + 0.223729i
\(296\) 66.4078 0.224351
\(297\) −170.763 243.000i −0.574960 0.818182i
\(298\) 150.000 + 150.000i 0.503356 + 0.503356i
\(299\) 44.2719i 0.148067i
\(300\) 72.0000 + 21.0000i 0.240000 + 0.0700000i
\(301\) 140.000 0.465116
\(302\) 180.000 + 180.000i 0.596026 + 0.596026i
\(303\) 417.421 1.37763
\(304\) −240.333 −0.790569
\(305\) −284.605 379.473i −0.933131 1.24417i
\(306\) 630.000i 2.05882i
\(307\) 154.952 + 154.952i 0.504728 + 0.504728i 0.912904 0.408175i \(-0.133835\pi\)
−0.408175 + 0.912904i \(0.633835\pi\)
\(308\) 48.4605 + 8.46050i 0.157339 + 0.0274692i
\(309\) −21.0000 21.0000i −0.0679612 0.0679612i
\(310\) −31.6228 + 221.359i −0.102009 + 0.714063i
\(311\) 240.000i 0.771704i 0.922561 + 0.385852i \(0.126092\pi\)
−0.922561 + 0.385852i \(0.873908\pi\)
\(312\) −90.0000 −0.288462
\(313\) 127.000 + 127.000i 0.405751 + 0.405751i 0.880254 0.474503i \(-0.157372\pi\)
−0.474503 + 0.880254i \(0.657372\pi\)
\(314\) 211.873i 0.674754i
\(315\) −199.223 28.4605i −0.632456 0.0903508i
\(316\) 6.32456i 0.0200144i
\(317\) −127.000 127.000i −0.400631 0.400631i 0.477824 0.878455i \(-0.341426\pi\)
−0.878455 + 0.477824i \(0.841426\pi\)
\(318\) 161.276i 0.507158i
\(319\) −170.763 + 120.000i −0.535307 + 0.376176i
\(320\) −123.000 164.000i −0.384375 0.512500i
\(321\) 123.329 123.329i 0.384202 0.384202i
\(322\) −70.0000 + 70.0000i −0.217391 + 0.217391i
\(323\) 280.000 280.000i 0.866873 0.866873i
\(324\) 81.0000i 0.250000i
\(325\) −53.7587 98.0306i −0.165411 0.301633i
\(326\) −433.232 −1.32893
\(327\) −645.105 −1.97280
\(328\) 330.000 + 330.000i 1.00610 + 1.00610i
\(329\) 271.956i 0.826614i
\(330\) 328.835 167.309i 0.996470 0.506998i
\(331\) 200.000 0.604230 0.302115 0.953272i \(-0.402307\pi\)
0.302115 + 0.953272i \(0.402307\pi\)
\(332\) −60.0833 + 60.0833i −0.180974 + 0.180974i
\(333\) 63.0000 63.0000i 0.189189 0.189189i
\(334\) 650.000i 1.94611i
\(335\) 47.0000 329.000i 0.140299 0.982090i
\(336\) −180.250 180.250i −0.536458 0.536458i
\(337\) 363.662 + 363.662i 1.07912 + 1.07912i 0.996589 + 0.0825267i \(0.0262990\pi\)
0.0825267 + 0.996589i \(0.473701\pi\)
\(338\) 235.590 + 235.590i 0.697011 + 0.697011i
\(339\) −159.000 + 159.000i −0.469027 + 0.469027i
\(340\) −154.952 22.1359i −0.455740 0.0651057i
\(341\) 126.491 + 180.000i 0.370942 + 0.527859i
\(342\) −180.000 + 180.000i −0.526316 + 0.526316i
\(343\) 246.658 246.658i 0.719119 0.719119i
\(344\) 210.000 0.610465
\(345\) −21.0000 + 147.000i −0.0608696 + 0.426087i
\(346\) 110.000 0.317919
\(347\) 91.7061 91.7061i 0.264283 0.264283i −0.562509 0.826791i \(-0.690164\pi\)
0.826791 + 0.562509i \(0.190164\pi\)
\(348\) −56.9210 −0.163566
\(349\) 252.982 0.724877 0.362439 0.932008i \(-0.381944\pi\)
0.362439 + 0.932008i \(0.381944\pi\)
\(350\) 70.0000 240.000i 0.200000 0.685714i
\(351\) −85.3815 + 85.3815i −0.243252 + 0.243252i
\(352\) 169.612 + 29.6117i 0.481852 + 0.0841243i
\(353\) −313.000 + 313.000i −0.886686 + 0.886686i −0.994203 0.107518i \(-0.965710\pi\)
0.107518 + 0.994203i \(0.465710\pi\)
\(354\) −104.355 + 104.355i −0.294789 + 0.294789i
\(355\) 360.000 + 480.000i 1.01408 + 1.35211i
\(356\) 100.000i 0.280899i
\(357\) 420.000 1.17647
\(358\) −505.964 + 505.964i −1.41331 + 1.41331i
\(359\) 75.8947i 0.211406i 0.994398 + 0.105703i \(0.0337092\pi\)
−0.994398 + 0.105703i \(0.966291\pi\)
\(360\) −298.835 42.6907i −0.830098 0.118585i
\(361\) −201.000 −0.556787
\(362\) 126.491 126.491i 0.349423 0.349423i
\(363\) 123.000 341.526i 0.338843 0.940843i
\(364\) 20.0000i 0.0549451i
\(365\) −22.1359 + 154.952i −0.0606464 + 0.424525i
\(366\) −450.000 450.000i −1.22951 1.22951i
\(367\) 97.0000 97.0000i 0.264305 0.264305i −0.562495 0.826800i \(-0.690159\pi\)
0.826800 + 0.562495i \(0.190159\pi\)
\(368\) −133.000 + 133.000i −0.361413 + 0.361413i
\(369\) 626.131 1.69683
\(370\) 66.4078 + 88.5438i 0.179481 + 0.239307i
\(371\) 107.517 0.289804
\(372\) 60.0000i 0.161290i
\(373\) 230.846 230.846i 0.618891 0.618891i −0.326356 0.945247i \(-0.605821\pi\)
0.945247 + 0.326356i \(0.105821\pi\)
\(374\) −630.000 + 442.719i −1.68449 + 1.18374i
\(375\) −132.000 351.000i −0.352000 0.936000i
\(376\) 407.934i 1.08493i
\(377\) 60.0000 + 60.0000i 0.159151 + 0.159151i
\(378\) −270.000 −0.714286
\(379\) 60.0000i 0.158311i 0.996862 + 0.0791557i \(0.0252224\pi\)
−0.996862 + 0.0791557i \(0.974778\pi\)
\(380\) −37.9473 50.5964i −0.0998614 0.133149i
\(381\) −123.329 123.329i −0.323698 0.323698i
\(382\) −407.934 407.934i −1.06789 1.06789i
\(383\) 413.000 413.000i 1.07833 1.07833i 0.0816695 0.996659i \(-0.473975\pi\)
0.996659 0.0816695i \(-0.0260252\pi\)
\(384\) −327.296 327.296i −0.852333 0.852333i
\(385\) −111.540 219.223i −0.289713 0.569412i
\(386\) 250.000i 0.647668i
\(387\) 199.223 199.223i 0.514789 0.514789i
\(388\) −43.0000 43.0000i −0.110825 0.110825i
\(389\) 298.000 0.766067 0.383033 0.923734i \(-0.374879\pi\)
0.383033 + 0.923734i \(0.374879\pi\)
\(390\) −90.0000 120.000i −0.230769 0.307692i
\(391\) 309.903i 0.792591i
\(392\) 137.559 137.559i 0.350916 0.350916i
\(393\) −379.473 −0.965581
\(394\) 730.000i 1.85279i
\(395\) −25.2982 + 18.9737i −0.0640461 + 0.0480346i
\(396\) 81.0000 56.9210i 0.204545 0.143740i
\(397\) 73.0000 73.0000i 0.183879 0.183879i −0.609165 0.793044i \(-0.708495\pi\)
0.793044 + 0.609165i \(0.208495\pi\)
\(398\) −189.737 189.737i −0.476725 0.476725i
\(399\) 120.000 + 120.000i 0.300752 + 0.300752i
\(400\) 133.000 456.000i 0.332500 1.14000i
\(401\) 258.000i 0.643392i −0.946843 0.321696i \(-0.895747\pi\)
0.946843 0.321696i \(-0.104253\pi\)
\(402\) 445.881i 1.10916i
\(403\) 63.2456 63.2456i 0.156937 0.156937i
\(404\) 139.140i 0.344406i
\(405\) −324.000 + 243.000i −0.800000 + 0.600000i
\(406\) 189.737i 0.467332i
\(407\) 107.272 + 18.7281i 0.263567 + 0.0460150i
\(408\) 630.000 1.54412
\(409\) −638.780 −1.56181 −0.780905 0.624650i \(-0.785242\pi\)
−0.780905 + 0.624650i \(0.785242\pi\)
\(410\) −110.000 + 770.000i −0.268293 + 1.87805i
\(411\) −249.000 249.000i −0.605839 0.605839i
\(412\) 7.00000 7.00000i 0.0169903 0.0169903i
\(413\) 69.5701 + 69.5701i 0.168451 + 0.168451i
\(414\) 199.223i 0.481216i
\(415\) 420.583 + 60.0833i 1.01345 + 0.144779i
\(416\) 70.0000i 0.168269i
\(417\) 37.9473 0.0910008
\(418\) −306.491 53.5089i −0.733232 0.128012i
\(419\) −200.000 −0.477327 −0.238663 0.971102i \(-0.576709\pi\)
−0.238663 + 0.971102i \(0.576709\pi\)
\(420\) 9.48683 66.4078i 0.0225877 0.158114i
\(421\) −400.000 −0.950119 −0.475059 0.879954i \(-0.657573\pi\)
−0.475059 + 0.879954i \(0.657573\pi\)
\(422\) −390.000 390.000i −0.924171 0.924171i
\(423\) −387.000 387.000i −0.914894 0.914894i
\(424\) 161.276 0.380368
\(425\) 376.311 + 686.214i 0.885438 + 1.61462i
\(426\) 569.210 + 569.210i 1.33617 + 1.33617i
\(427\) −300.000 + 300.000i −0.702576 + 0.702576i
\(428\) 41.1096 + 41.1096i 0.0960505 + 0.0960505i
\(429\) −145.381 25.3815i −0.338885 0.0591643i
\(430\) 210.000 + 280.000i 0.488372 + 0.651163i
\(431\) −158.114 −0.366854 −0.183427 0.983033i \(-0.558719\pi\)
−0.183427 + 0.983033i \(0.558719\pi\)
\(432\) −513.000 −1.18750
\(433\) 193.000 + 193.000i 0.445727 + 0.445727i 0.893931 0.448204i \(-0.147936\pi\)
−0.448204 + 0.893931i \(0.647936\pi\)
\(434\) 200.000 0.460829
\(435\) 170.763 + 227.684i 0.392559 + 0.523411i
\(436\) 215.035i 0.493199i
\(437\) 88.5438 88.5438i 0.202617 0.202617i
\(438\) 210.000i 0.479452i
\(439\) −373.149 −0.849997 −0.424999 0.905194i \(-0.639725\pi\)
−0.424999 + 0.905194i \(0.639725\pi\)
\(440\) −167.309 328.835i −0.380248 0.747353i
\(441\) 261.000i 0.591837i
\(442\) 221.359 + 221.359i 0.500813 + 0.500813i
\(443\) −463.000 + 463.000i −1.04515 + 1.04515i −0.0462152 + 0.998932i \(0.514716\pi\)
−0.998932 + 0.0462152i \(0.985284\pi\)
\(444\) 21.0000 + 21.0000i 0.0472973 + 0.0472973i
\(445\) −400.000 + 300.000i −0.898876 + 0.674157i
\(446\) 230.846 0.517593
\(447\) 284.605i 0.636700i
\(448\) −129.653 + 129.653i −0.289405 + 0.289405i
\(449\) −260.000 −0.579065 −0.289532 0.957168i \(-0.593500\pi\)
−0.289532 + 0.957168i \(0.593500\pi\)
\(450\) −241.914 441.138i −0.537587 0.980306i
\(451\) 440.000 + 626.131i 0.975610 + 1.38832i
\(452\) −53.0000 53.0000i −0.117257 0.117257i
\(453\) 341.526i 0.753921i
\(454\) 490.000i 1.07930i
\(455\) −80.0000 + 60.0000i −0.175824 + 0.131868i
\(456\) 180.000 + 180.000i 0.394737 + 0.394737i
\(457\) −91.7061 91.7061i −0.200670 0.200670i 0.599617 0.800287i \(-0.295320\pi\)
−0.800287 + 0.599617i \(0.795320\pi\)
\(458\) −284.605 284.605i −0.621408 0.621408i
\(459\) 597.670 597.670i 1.30211 1.30211i
\(460\) −49.0000 7.00000i −0.106522 0.0152174i
\(461\) 202.386 0.439015 0.219507 0.975611i \(-0.429555\pi\)
0.219507 + 0.975611i \(0.429555\pi\)
\(462\) −189.737 270.000i −0.410685 0.584416i
\(463\) −527.000 527.000i −1.13823 1.13823i −0.988768 0.149461i \(-0.952246\pi\)
−0.149461 0.988768i \(-0.547754\pi\)
\(464\) 360.500i 0.776939i
\(465\) 240.000 180.000i 0.516129 0.387097i
\(466\) −10.0000 −0.0214592
\(467\) 347.000 + 347.000i 0.743041 + 0.743041i 0.973162 0.230121i \(-0.0739123\pi\)
−0.230121 + 0.973162i \(0.573912\pi\)
\(468\) −28.4605 28.4605i −0.0608130 0.0608130i
\(469\) −297.254 −0.633804
\(470\) 543.912 407.934i 1.15726 0.867944i
\(471\) −201.000 + 201.000i −0.426752 + 0.426752i
\(472\) 104.355 + 104.355i 0.221091 + 0.221091i
\(473\) 339.223 + 59.2235i 0.717174 + 0.125208i
\(474\) −30.0000 + 30.0000i −0.0632911 + 0.0632911i
\(475\) −88.5438 + 303.579i −0.186408 + 0.639113i
\(476\) 140.000i 0.294118i
\(477\) 153.000 153.000i 0.320755 0.320755i
\(478\) −600.000 600.000i −1.25523 1.25523i
\(479\) 37.9473i 0.0792220i 0.999215 + 0.0396110i \(0.0126119\pi\)
−0.999215 + 0.0396110i \(0.987388\pi\)
\(480\) 33.2039 232.427i 0.0691748 0.484224i
\(481\) 44.2719i 0.0920413i
\(482\) −240.000 240.000i −0.497925 0.497925i
\(483\) 132.816 0.274981
\(484\) 113.842 + 41.0000i 0.235211 + 0.0847107i
\(485\) −43.0000 + 301.000i −0.0886598 + 0.620619i
\(486\) −384.217 + 384.217i −0.790569 + 0.790569i
\(487\) −257.000 + 257.000i −0.527721 + 0.527721i −0.919892 0.392171i \(-0.871724\pi\)
0.392171 + 0.919892i \(0.371724\pi\)
\(488\) −450.000 + 450.000i −0.922131 + 0.922131i
\(489\) 411.000 + 411.000i 0.840491 + 0.840491i
\(490\) 320.971 + 45.8530i 0.655043 + 0.0935776i
\(491\) −101.193 −0.206095 −0.103048 0.994676i \(-0.532859\pi\)
−0.103048 + 0.994676i \(0.532859\pi\)
\(492\) 208.710i 0.424208i
\(493\) −420.000 420.000i −0.851927 0.851927i
\(494\) 126.491i 0.256055i
\(495\) −470.684 153.237i −0.950877 0.309570i
\(496\) 380.000 0.766129
\(497\) 379.473 379.473i 0.763528 0.763528i
\(498\) 570.000 1.14458
\(499\) 540.000i 1.08216i −0.840970 0.541082i \(-0.818015\pi\)
0.840970 0.541082i \(-0.181985\pi\)
\(500\) 117.000 44.0000i 0.234000 0.0880000i
\(501\) −616.644 + 616.644i −1.23083 + 1.23083i
\(502\) −94.8683 94.8683i −0.188981 0.188981i
\(503\) 338.364 + 338.364i 0.672691 + 0.672691i 0.958336 0.285644i \(-0.0922076\pi\)
−0.285644 + 0.958336i \(0.592208\pi\)
\(504\) 270.000i 0.535714i
\(505\) 556.561 417.421i 1.10210 0.826576i
\(506\) −199.223 + 140.000i −0.393722 + 0.276680i
\(507\) 447.000i 0.881657i
\(508\) 41.1096 41.1096i 0.0809244 0.0809244i
\(509\) 742.000 1.45776 0.728880 0.684641i \(-0.240041\pi\)
0.728880 + 0.684641i \(0.240041\pi\)
\(510\) 630.000 + 840.000i 1.23529 + 1.64706i
\(511\) 140.000 0.273973
\(512\) −150.208 + 150.208i −0.293375 + 0.293375i
\(513\) 341.526 0.665743
\(514\) 72.7324 0.141503
\(515\) −49.0000 7.00000i −0.0951456 0.0135922i
\(516\) 66.4078 + 66.4078i 0.128697 + 0.128697i
\(517\) 115.044 658.956i 0.222522 1.27458i
\(518\) 70.0000 70.0000i 0.135135 0.135135i
\(519\) −104.355 104.355i −0.201070 0.201070i
\(520\) −120.000 + 90.0000i −0.230769 + 0.173077i
\(521\) 942.000i 1.80806i −0.427468 0.904031i \(-0.640594\pi\)
0.427468 0.904031i \(-0.359406\pi\)
\(522\) 270.000 + 270.000i 0.517241 + 0.517241i
\(523\) 79.0569 79.0569i 0.151161 0.151161i −0.627476 0.778636i \(-0.715912\pi\)
0.778636 + 0.627476i \(0.215912\pi\)
\(524\) 126.491i 0.241395i
\(525\) −294.092 + 161.276i −0.560175 + 0.307193i
\(526\) 530.000 1.00760
\(527\) −442.719 + 442.719i −0.840074 + 0.840074i
\(528\) −360.500 513.000i −0.682764 0.971591i
\(529\) 431.000i 0.814745i
\(530\) 161.276 + 215.035i 0.304295 + 0.405726i
\(531\) 198.000 0.372881
\(532\) −40.0000 + 40.0000i −0.0751880 + 0.0751880i
\(533\) 220.000 220.000i 0.412758 0.412758i
\(534\) −474.342 + 474.342i −0.888280 + 0.888280i
\(535\) 41.1096 287.767i 0.0768404 0.537883i
\(536\) −445.881 −0.831868
\(537\) 960.000 1.78771
\(538\) −287.767 + 287.767i −0.534883 + 0.534883i
\(539\) 261.000 183.412i 0.484230 0.340282i
\(540\) −81.0000 108.000i −0.150000 0.200000i
\(541\) 436.394i 0.806644i −0.915058 0.403322i \(-0.867855\pi\)
0.915058 0.403322i \(-0.132145\pi\)
\(542\) 420.000 + 420.000i 0.774908 + 0.774908i
\(543\) −240.000 −0.441989
\(544\) 490.000i 0.900735i
\(545\) −860.140 + 645.105i −1.57824 + 1.18368i
\(546\) −94.8683 + 94.8683i −0.173752 + 0.173752i
\(547\) −528.100 528.100i −0.965449 0.965449i 0.0339741 0.999423i \(-0.489184\pi\)
−0.999423 + 0.0339741i \(0.989184\pi\)
\(548\) 83.0000 83.0000i 0.151460 0.151460i
\(549\) 853.815i 1.55522i
\(550\) 271.138 551.914i 0.492978 1.00348i
\(551\) 240.000i 0.435572i
\(552\) 199.223 0.360912
\(553\) 20.0000 + 20.0000i 0.0361664 + 0.0361664i
\(554\) 490.000 0.884477
\(555\) 21.0000 147.000i 0.0378378 0.264865i
\(556\) 12.6491i 0.0227502i
\(557\) 641.942 641.942i 1.15250 1.15250i 0.166450 0.986050i \(-0.446770\pi\)
0.986050 0.166450i \(-0.0532304\pi\)
\(558\) 284.605 284.605i 0.510045 0.510045i
\(559\) 140.000i 0.250447i
\(560\) −420.583 60.0833i −0.751041 0.107292i
\(561\) 1017.67 + 177.670i 1.81403 + 0.316703i
\(562\) 530.000 530.000i 0.943060 0.943060i
\(563\) −117.004 117.004i −0.207823 0.207823i 0.595519 0.803341i \(-0.296947\pi\)
−0.803341 + 0.595519i \(0.796947\pi\)
\(564\) 129.000 129.000i 0.228723 0.228723i
\(565\) −53.0000 + 371.000i −0.0938053 + 0.656637i
\(566\) 890.000i 1.57244i
\(567\) 256.144 + 256.144i 0.451754 + 0.451754i
\(568\) 569.210 569.210i 1.00213 1.00213i
\(569\) 607.157i 1.06706i 0.845781 + 0.533530i \(0.179135\pi\)
−0.845781 + 0.533530i \(0.820865\pi\)
\(570\) −60.0000 + 420.000i −0.105263 + 0.736842i
\(571\) 512.289i 0.897179i 0.893738 + 0.448589i \(0.148073\pi\)
−0.893738 + 0.448589i \(0.851927\pi\)
\(572\) 8.46050 48.4605i 0.0147911 0.0847212i
\(573\) 774.000i 1.35079i
\(574\) 695.701 1.21202
\(575\) 119.000 + 217.000i 0.206957 + 0.377391i
\(576\) 369.000i 0.640625i
\(577\) 43.0000 43.0000i 0.0745234 0.0745234i −0.668863 0.743386i \(-0.733219\pi\)
0.743386 + 0.668863i \(0.233219\pi\)
\(578\) −1092.57 1092.57i −1.89025 1.89025i
\(579\) −237.171 + 237.171i −0.409621 + 0.409621i
\(580\) −75.8947 + 56.9210i −0.130853 + 0.0981397i
\(581\) 380.000i 0.654045i
\(582\) 407.934i 0.700917i
\(583\) 260.517 + 45.4826i 0.446857 + 0.0780147i
\(584\) 210.000 0.359589
\(585\) −28.4605 + 199.223i −0.0486504 + 0.340553i
\(586\) −730.000 −1.24573
\(587\) −553.000 553.000i −0.942078 0.942078i 0.0563336 0.998412i \(-0.482059\pi\)
−0.998412 + 0.0563336i \(0.982059\pi\)
\(588\) 87.0000 0.147959
\(589\) −252.982 −0.429511
\(590\) −34.7851 + 243.495i −0.0589577 + 0.412704i
\(591\) 692.539 692.539i 1.17181 1.17181i
\(592\) 133.000 133.000i 0.224662 0.224662i
\(593\) −363.662 363.662i −0.613258 0.613258i 0.330536 0.943794i \(-0.392771\pi\)
−0.943794 + 0.330536i \(0.892771\pi\)
\(594\) −654.217 114.217i −1.10137 0.192284i
\(595\) 560.000 420.000i 0.941176 0.705882i
\(596\) 94.8683 0.159175
\(597\) 360.000i 0.603015i
\(598\) 70.0000 + 70.0000i 0.117057 + 0.117057i
\(599\) −860.000 −1.43573 −0.717863 0.696184i \(-0.754880\pi\)
−0.717863 + 0.696184i \(0.754880\pi\)
\(600\) −441.138 + 241.914i −0.735230 + 0.403190i
\(601\) 75.8947i 0.126281i 0.998005 + 0.0631403i \(0.0201116\pi\)
−0.998005 + 0.0631403i \(0.979888\pi\)
\(602\) 221.359 221.359i 0.367707 0.367707i
\(603\) −423.000 + 423.000i −0.701493 + 0.701493i
\(604\) 113.842 0.188480
\(605\) −177.526 578.368i −0.293431 0.955980i
\(606\) 660.000 660.000i 1.08911 1.08911i
\(607\) 325.715 + 325.715i 0.536597 + 0.536597i 0.922528 0.385930i \(-0.126120\pi\)
−0.385930 + 0.922528i \(0.626120\pi\)
\(608\) −140.000 + 140.000i −0.230263 + 0.230263i
\(609\) 180.000 180.000i 0.295567 0.295567i
\(610\) −1050.00 150.000i −1.72131 0.245902i
\(611\) −271.956 −0.445100
\(612\) 199.223 + 199.223i 0.325529 + 0.325529i
\(613\) −110.680 + 110.680i −0.180554 + 0.180554i −0.791597 0.611043i \(-0.790750\pi\)
0.611043 + 0.791597i \(0.290750\pi\)
\(614\) 490.000 0.798046
\(615\) 834.841 626.131i 1.35747 1.01810i
\(616\) −270.000 + 189.737i −0.438312 + 0.308014i
\(617\) −757.000 757.000i −1.22690 1.22690i −0.965129 0.261776i \(-0.915692\pi\)
−0.261776 0.965129i \(-0.584308\pi\)
\(618\) −66.4078 −0.107456
\(619\) 162.000i 0.261712i 0.991401 + 0.130856i \(0.0417726\pi\)
−0.991401 + 0.130856i \(0.958227\pi\)
\(620\) 60.0000 + 80.0000i 0.0967742 + 0.129032i
\(621\) 189.000 189.000i 0.304348 0.304348i
\(622\) 379.473 + 379.473i 0.610086 + 0.610086i
\(623\) 316.228 + 316.228i 0.507589 + 0.507589i
\(624\) −180.250 + 180.250i −0.288862 + 0.288862i
\(625\) −527.000 336.000i −0.843200 0.537600i
\(626\) 401.609 0.641548
\(627\) 240.000 + 341.526i 0.382775 + 0.544699i
\(628\) −67.0000 67.0000i −0.106688 0.106688i
\(629\) 309.903i 0.492692i
\(630\) −360.000 + 270.000i −0.571429 + 0.428571i
\(631\) 158.000 0.250396 0.125198 0.992132i \(-0.460043\pi\)
0.125198 + 0.992132i \(0.460043\pi\)
\(632\) 30.0000 + 30.0000i 0.0474684 + 0.0474684i
\(633\) 739.973i 1.16899i
\(634\) −401.609 −0.633453
\(635\) −287.767 41.1096i −0.453177 0.0647395i
\(636\) 51.0000 + 51.0000i 0.0801887 + 0.0801887i
\(637\) −91.7061 91.7061i −0.143966 0.143966i
\(638\) −80.2633 + 459.737i −0.125805 + 0.720590i
\(639\) 1080.00i 1.69014i
\(640\) −763.690 109.099i −1.19327 0.170467i
\(641\) 942.000i 1.46958i 0.678295 + 0.734789i \(0.262719\pi\)
−0.678295 + 0.734789i \(0.737281\pi\)
\(642\) 390.000i 0.607477i
\(643\) 757.000 + 757.000i 1.17729 + 1.17729i 0.980431 + 0.196863i \(0.0630754\pi\)
0.196863 + 0.980431i \(0.436925\pi\)
\(644\) 44.2719i 0.0687452i
\(645\) 66.4078 464.855i 0.102958 0.720705i
\(646\) 885.438i 1.37065i
\(647\) 257.000 + 257.000i 0.397218 + 0.397218i 0.877251 0.480033i \(-0.159375\pi\)
−0.480033 + 0.877251i \(0.659375\pi\)
\(648\) 384.217 + 384.217i 0.592927 + 0.592927i
\(649\) 139.140 + 198.000i 0.214392 + 0.305085i
\(650\) −240.000 70.0000i −0.369231 0.107692i
\(651\) −189.737 189.737i −0.291454 0.291454i
\(652\) −137.000 + 137.000i −0.210123 + 0.210123i
\(653\) 263.000 263.000i 0.402757 0.402757i −0.476447 0.879203i \(-0.658076\pi\)
0.879203 + 0.476447i \(0.158076\pi\)
\(654\) −1020.00 + 1020.00i −1.55963 + 1.55963i
\(655\) −505.964 + 379.473i −0.772465 + 0.579349i
\(656\) 1321.83 2.01499
\(657\) 199.223 199.223i 0.303232 0.303232i
\(658\) −430.000 430.000i −0.653495 0.653495i
\(659\) 398.447i 0.604624i −0.953209 0.302312i \(-0.902242\pi\)
0.953209 0.302312i \(-0.0977584\pi\)
\(660\) 51.0790 156.895i 0.0773924 0.237719i
\(661\) −1078.00 −1.63086 −0.815431 0.578854i \(-0.803500\pi\)
−0.815431 + 0.578854i \(0.803500\pi\)
\(662\) 316.228 316.228i 0.477685 0.477685i
\(663\) 420.000i 0.633484i
\(664\) 570.000i 0.858434i
\(665\) 280.000 + 40.0000i 0.421053 + 0.0601504i
\(666\) 199.223i 0.299134i
\(667\) −132.816 132.816i −0.199124 0.199124i
\(668\) −205.548 205.548i −0.307707 0.307707i
\(669\) −219.000 219.000i −0.327354 0.327354i
\(670\) −445.881 594.508i −0.665494 0.887326i
\(671\) −853.815 + 600.000i −1.27245 + 0.894188i
\(672\) −210.000 −0.312500
\(673\) −357.337 + 357.337i −0.530962 + 0.530962i −0.920859 0.389897i \(-0.872511\pi\)
0.389897 + 0.920859i \(0.372511\pi\)
\(674\) 1150.00 1.70623
\(675\) −189.000 + 648.000i −0.280000 + 0.960000i
\(676\) 149.000 0.220414
\(677\) 110.680 110.680i 0.163486 0.163486i −0.620623 0.784109i \(-0.713120\pi\)
0.784109 + 0.620623i \(0.213120\pi\)
\(678\) 502.802i 0.741596i
\(679\) 271.956 0.400524
\(680\) 840.000 630.000i 1.23529 0.926471i
\(681\) 464.855 464.855i 0.682606 0.682606i
\(682\) 484.605 + 84.6050i 0.710565 + 0.124054i
\(683\) −397.000 + 397.000i −0.581259 + 0.581259i −0.935249 0.353990i \(-0.884825\pi\)
0.353990 + 0.935249i \(0.384825\pi\)
\(684\) 113.842i 0.166436i
\(685\) −581.000 83.0000i −0.848175 0.121168i
\(686\) 780.000i 1.13703i
\(687\) 540.000i 0.786026i
\(688\) 420.583 420.583i 0.611312 0.611312i
\(689\) 107.517i 0.156049i
\(690\) 199.223 + 265.631i 0.288730 + 0.384973i
\(691\) 362.000 0.523878 0.261939 0.965084i \(-0.415638\pi\)
0.261939 + 0.965084i \(0.415638\pi\)
\(692\) 34.7851 34.7851i 0.0502674 0.0502674i
\(693\) −76.1445 + 436.144i −0.109877 + 0.629357i
\(694\) 290.000i 0.417867i
\(695\) 50.5964 37.9473i 0.0728006 0.0546005i
\(696\) 270.000 270.000i 0.387931 0.387931i
\(697\) −1540.00 + 1540.00i −2.20947 + 2.20947i
\(698\) 400.000 400.000i 0.573066 0.573066i
\(699\) 9.48683 + 9.48683i 0.0135720 + 0.0135720i
\(700\) −53.7587 98.0306i −0.0767982 0.140044i
\(701\) −25.2982 −0.0360888 −0.0180444 0.999837i \(-0.505744\pi\)
−0.0180444 + 0.999837i \(0.505744\pi\)
\(702\) 270.000i 0.384615i
\(703\) −88.5438 + 88.5438i −0.125951 + 0.125951i
\(704\) −369.000 + 259.307i −0.524148 + 0.368333i
\(705\) −903.000 129.000i −1.28085 0.182979i
\(706\) 989.793i 1.40197i
\(707\) −440.000 440.000i −0.622348 0.622348i
\(708\) 66.0000i 0.0932203i
\(709\) 1038.00i 1.46403i 0.681286 + 0.732017i \(0.261421\pi\)
−0.681286 + 0.732017i \(0.738579\pi\)
\(710\) 1328.16 + 189.737i 1.87064 + 0.267235i
\(711\) 56.9210 0.0800577
\(712\) 474.342 + 474.342i 0.666210 + 0.666210i
\(713\) −140.000 + 140.000i −0.196353 + 0.196353i
\(714\) 664.078 664.078i 0.930082 0.930082i
\(715\) −219.223 + 111.540i −0.306606 + 0.155999i
\(716\) 320.000i 0.446927i
\(717\) 1138.42i 1.58775i
\(718\) 120.000 + 120.000i 0.167131 + 0.167131i
\(719\) 940.000 1.30737 0.653686 0.756766i \(-0.273222\pi\)
0.653686 + 0.756766i \(0.273222\pi\)
\(720\) −684.000 + 513.000i −0.950000 + 0.712500i
\(721\) 44.2719i 0.0614034i
\(722\) −317.809 + 317.809i −0.440179 + 0.440179i
\(723\) 455.368i 0.629831i
\(724\) 80.0000i 0.110497i
\(725\) 455.368 + 132.816i 0.628094 + 0.183194i
\(726\) −345.520 734.480i −0.475923 1.01168i
\(727\) 517.000 517.000i 0.711142 0.711142i −0.255632 0.966774i \(-0.582284\pi\)
0.966774 + 0.255632i \(0.0822837\pi\)
\(728\) 94.8683 + 94.8683i 0.130314 + 0.130314i
\(729\) 729.000 1.00000
\(730\) 210.000 + 280.000i 0.287671 + 0.383562i
\(731\) 980.000i 1.34063i
\(732\) −284.605 −0.388805
\(733\) 629.293 629.293i 0.858517 0.858517i −0.132646 0.991163i \(-0.542347\pi\)
0.991163 + 0.132646i \(0.0423474\pi\)
\(734\) 306.741i 0.417903i
\(735\) −261.000 348.000i −0.355102 0.473469i
\(736\) 154.952i 0.210532i
\(737\) −720.254 125.746i −0.977278 0.170619i
\(738\) 990.000 990.000i 1.34146 1.34146i
\(739\) −885.438 −1.19816 −0.599078 0.800690i \(-0.704466\pi\)
−0.599078 + 0.800690i \(0.704466\pi\)
\(740\) 49.0000 + 7.00000i 0.0662162 + 0.00945946i
\(741\) 120.000 120.000i 0.161943 0.161943i
\(742\) 170.000 170.000i 0.229111 0.229111i
\(743\) −41.1096 41.1096i −0.0553292 0.0553292i 0.678901 0.734230i \(-0.262457\pi\)
−0.734230 + 0.678901i \(0.762457\pi\)
\(744\) −284.605 284.605i −0.382534 0.382534i
\(745\) −284.605 379.473i −0.382020 0.509360i
\(746\) 730.000i 0.978552i
\(747\) −540.749 540.749i −0.723895 0.723895i
\(748\) −59.2235 + 339.223i −0.0791758 + 0.453507i
\(749\) −260.000 −0.347130
\(750\) −763.690 346.269i −1.01825 0.461693i
\(751\) −922.000 −1.22770 −0.613848 0.789424i \(-0.710379\pi\)
−0.613848 + 0.789424i \(0.710379\pi\)
\(752\) −817.000 817.000i −1.08644 1.08644i
\(753\) 180.000i 0.239044i
\(754\) 189.737 0.251640
\(755\) −341.526 455.368i −0.452352 0.603136i
\(756\) −85.3815 + 85.3815i −0.112938 + 0.112938i
\(757\) 607.000 607.000i 0.801849 0.801849i −0.181535 0.983384i \(-0.558107\pi\)
0.983384 + 0.181535i \(0.0581066\pi\)
\(758\) 94.8683 + 94.8683i 0.125156 + 0.125156i
\(759\) 321.816 + 56.1843i 0.424000 + 0.0740242i
\(760\) 420.000 + 60.0000i 0.552632 + 0.0789474i
\(761\) −1144.74 −1.50426 −0.752132 0.659013i \(-0.770974\pi\)
−0.752132 + 0.659013i \(0.770974\pi\)
\(762\) −390.000 −0.511811
\(763\) 680.000 + 680.000i 0.891219 + 0.891219i
\(764\) −258.000 −0.337696
\(765\) 199.223 1394.56i 0.260423 1.82296i
\(766\) 1306.02i 1.70499i
\(767\) 69.5701 69.5701i 0.0907042 0.0907042i
\(768\) −543.000 −0.707031