Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [165,3,Mod(109,165)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(165, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("165.109");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.49592436194\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
109.1 | −3.63542 | − | 1.73205i | 9.21627 | 2.02329 | + | 4.57234i | 6.29673i | 4.25629 | −18.9633 | −3.00000 | −7.35550 | − | 16.6224i | |||||||||||||
109.2 | −3.63542 | 1.73205i | 9.21627 | 2.02329 | − | 4.57234i | − | 6.29673i | 4.25629 | −18.9633 | −3.00000 | −7.35550 | + | 16.6224i | |||||||||||||
109.3 | −3.46254 | − | 1.73205i | 7.98919 | −3.32476 | − | 3.73443i | 5.99730i | −5.79297 | −13.8127 | −3.00000 | 11.5121 | + | 12.9306i | |||||||||||||
109.4 | −3.46254 | 1.73205i | 7.98919 | −3.32476 | + | 3.73443i | − | 5.99730i | −5.79297 | −13.8127 | −3.00000 | 11.5121 | − | 12.9306i | |||||||||||||
109.5 | −2.63268 | − | 1.73205i | 2.93098 | 4.42289 | − | 2.33196i | 4.55993i | −0.961295 | 2.81437 | −3.00000 | −11.6440 | + | 6.13929i | |||||||||||||
109.6 | −2.63268 | 1.73205i | 2.93098 | 4.42289 | + | 2.33196i | − | 4.55993i | −0.961295 | 2.81437 | −3.00000 | −11.6440 | − | 6.13929i | |||||||||||||
109.7 | −1.49337 | − | 1.73205i | −1.76983 | −1.35352 | − | 4.81331i | 2.58660i | 8.34829 | 8.61652 | −3.00000 | 2.02132 | + | 7.18807i | |||||||||||||
109.8 | −1.49337 | 1.73205i | −1.76983 | −1.35352 | + | 4.81331i | − | 2.58660i | 8.34829 | 8.61652 | −3.00000 | 2.02132 | − | 7.18807i | |||||||||||||
109.9 | −1.26695 | − | 1.73205i | −2.39485 | −4.75221 | + | 1.55451i | 2.19442i | 1.85326 | 8.10193 | −3.00000 | 6.02080 | − | 1.96948i | |||||||||||||
109.10 | −1.26695 | 1.73205i | −2.39485 | −4.75221 | − | 1.55451i | − | 2.19442i | 1.85326 | 8.10193 | −3.00000 | 6.02080 | + | 1.96948i | |||||||||||||
109.11 | −0.168030 | − | 1.73205i | −3.97177 | 3.98431 | + | 3.02080i | 0.291037i | −10.1130 | 1.33950 | −3.00000 | −0.669486 | − | 0.507586i | |||||||||||||
109.12 | −0.168030 | 1.73205i | −3.97177 | 3.98431 | − | 3.02080i | − | 0.291037i | −10.1130 | 1.33950 | −3.00000 | −0.669486 | + | 0.507586i | |||||||||||||
109.13 | 0.168030 | − | 1.73205i | −3.97177 | 3.98431 | + | 3.02080i | − | 0.291037i | 10.1130 | −1.33950 | −3.00000 | 0.669486 | + | 0.507586i | ||||||||||||
109.14 | 0.168030 | 1.73205i | −3.97177 | 3.98431 | − | 3.02080i | 0.291037i | 10.1130 | −1.33950 | −3.00000 | 0.669486 | − | 0.507586i | ||||||||||||||
109.15 | 1.26695 | − | 1.73205i | −2.39485 | −4.75221 | + | 1.55451i | − | 2.19442i | −1.85326 | −8.10193 | −3.00000 | −6.02080 | + | 1.96948i | ||||||||||||
109.16 | 1.26695 | 1.73205i | −2.39485 | −4.75221 | − | 1.55451i | 2.19442i | −1.85326 | −8.10193 | −3.00000 | −6.02080 | − | 1.96948i | ||||||||||||||
109.17 | 1.49337 | − | 1.73205i | −1.76983 | −1.35352 | − | 4.81331i | − | 2.58660i | −8.34829 | −8.61652 | −3.00000 | −2.02132 | − | 7.18807i | ||||||||||||
109.18 | 1.49337 | 1.73205i | −1.76983 | −1.35352 | + | 4.81331i | 2.58660i | −8.34829 | −8.61652 | −3.00000 | −2.02132 | + | 7.18807i | ||||||||||||||
109.19 | 2.63268 | − | 1.73205i | 2.93098 | 4.42289 | − | 2.33196i | − | 4.55993i | 0.961295 | −2.81437 | −3.00000 | 11.6440 | − | 6.13929i | ||||||||||||
109.20 | 2.63268 | 1.73205i | 2.93098 | 4.42289 | + | 2.33196i | 4.55993i | 0.961295 | −2.81437 | −3.00000 | 11.6440 | + | 6.13929i | ||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
55.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 165.3.h.a | ✓ | 24 |
3.b | odd | 2 | 1 | 495.3.h.h | 24 | ||
5.b | even | 2 | 1 | inner | 165.3.h.a | ✓ | 24 |
5.c | odd | 4 | 2 | 825.3.b.e | 24 | ||
11.b | odd | 2 | 1 | inner | 165.3.h.a | ✓ | 24 |
15.d | odd | 2 | 1 | 495.3.h.h | 24 | ||
33.d | even | 2 | 1 | 495.3.h.h | 24 | ||
55.d | odd | 2 | 1 | inner | 165.3.h.a | ✓ | 24 |
55.e | even | 4 | 2 | 825.3.b.e | 24 | ||
165.d | even | 2 | 1 | 495.3.h.h | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
165.3.h.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
165.3.h.a | ✓ | 24 | 5.b | even | 2 | 1 | inner |
165.3.h.a | ✓ | 24 | 11.b | odd | 2 | 1 | inner |
165.3.h.a | ✓ | 24 | 55.d | odd | 2 | 1 | inner |
495.3.h.h | 24 | 3.b | odd | 2 | 1 | ||
495.3.h.h | 24 | 15.d | odd | 2 | 1 | ||
495.3.h.h | 24 | 33.d | even | 2 | 1 | ||
495.3.h.h | 24 | 165.d | even | 2 | 1 | ||
825.3.b.e | 24 | 5.c | odd | 4 | 2 | ||
825.3.b.e | 24 | 55.e | even | 4 | 2 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(165, [\chi])\).