Properties

Label 165.2.m.a.31.2
Level $165$
Weight $2$
Character 165.31
Analytic conductor $1.318$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 165.m (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.31753163335\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.13140625.1
Defining polynomial: \(x^{8} - 3 x^{7} + 5 x^{6} - 3 x^{5} + 4 x^{4} + 3 x^{3} + 5 x^{2} + 3 x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 31.2
Root \(0.418926 - 1.28932i\) of defining polynomial
Character \(\chi\) \(=\) 165.31
Dual form 165.2.m.a.16.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.758911 - 2.33569i) q^{2} +(-0.809017 + 0.587785i) q^{3} +(-3.26145 - 2.36959i) q^{4} +(-0.309017 - 0.951057i) q^{5} +(0.758911 + 2.33569i) q^{6} +(-2.65911 - 1.93196i) q^{7} +(-4.03606 + 2.93237i) q^{8} +(0.309017 - 0.951057i) q^{9} +O(q^{10})\) \(q+(0.758911 - 2.33569i) q^{2} +(-0.809017 + 0.587785i) q^{3} +(-3.26145 - 2.36959i) q^{4} +(-0.309017 - 0.951057i) q^{5} +(0.758911 + 2.33569i) q^{6} +(-2.65911 - 1.93196i) q^{7} +(-4.03606 + 2.93237i) q^{8} +(0.309017 - 0.951057i) q^{9} -2.45589 q^{10} +(2.96813 - 1.47994i) q^{11} +4.03138 q^{12} +(-0.0967635 + 0.297808i) q^{13} +(-6.53048 + 4.74467i) q^{14} +(0.809017 + 0.587785i) q^{15} +(1.29455 + 3.98423i) q^{16} +(1.54508 + 4.75528i) q^{17} +(-1.98685 - 1.44353i) q^{18} +(6.03048 - 4.38140i) q^{19} +(-1.24576 + 3.83407i) q^{20} +3.28684 q^{21} +(-1.20413 - 8.05576i) q^{22} +1.07392 q^{23} +(1.54164 - 4.74467i) q^{24} +(-0.809017 + 0.587785i) q^{25} +(0.622150 + 0.452019i) q^{26} +(0.309017 + 0.951057i) q^{27} +(4.09463 + 12.6020i) q^{28} +(4.07459 + 2.96036i) q^{29} +(1.98685 - 1.44353i) q^{30} +(1.06580 - 3.28018i) q^{31} +0.310680 q^{32} +(-1.53138 + 2.94192i) q^{33} +12.2794 q^{34} +(-1.01569 + 3.12597i) q^{35} +(-3.26145 + 2.36959i) q^{36} +(-2.13118 - 1.54839i) q^{37} +(-5.65698 - 17.4104i) q^{38} +(-0.0967635 - 0.297808i) q^{39} +(4.03606 + 2.93237i) q^{40} +(-8.77557 + 6.37583i) q^{41} +(2.49442 - 7.67703i) q^{42} -5.51468 q^{43} +(-13.1873 - 2.20648i) q^{44} -1.00000 q^{45} +(0.815010 - 2.50834i) q^{46} +(9.70674 - 7.05236i) q^{47} +(-3.38919 - 2.46239i) q^{48} +(1.17529 + 3.61718i) q^{49} +(0.758911 + 2.33569i) q^{50} +(-4.04508 - 2.93893i) q^{51} +(1.02127 - 0.741996i) q^{52} +(1.52513 - 4.69387i) q^{53} +2.45589 q^{54} +(-2.32471 - 2.36553i) q^{55} +16.3975 q^{56} +(-2.30344 + 7.08925i) q^{57} +(10.0067 - 7.27031i) q^{58} +(7.41391 + 5.38652i) q^{59} +(-1.24576 - 3.83407i) q^{60} +(2.83811 + 8.73480i) q^{61} +(-6.85264 - 4.97873i) q^{62} +(-2.65911 + 1.93196i) q^{63} +(-2.35333 + 7.24280i) q^{64} +0.313133 q^{65} +(5.70922 + 5.80948i) q^{66} -15.2739 q^{67} +(6.22882 - 19.1704i) q^{68} +(-0.868820 + 0.631235i) q^{69} +(6.53048 + 4.74467i) q^{70} +(0.949335 + 2.92175i) q^{71} +(1.54164 + 4.74467i) q^{72} +(7.00018 + 5.08592i) q^{73} +(-5.23394 + 3.80268i) q^{74} +(0.309017 - 0.951057i) q^{75} -30.0502 q^{76} +(-10.7518 - 1.79898i) q^{77} -0.769020 q^{78} +(1.67316 - 5.14946i) q^{79} +(3.38919 - 2.46239i) q^{80} +(-0.809017 - 0.587785i) q^{81} +(8.23206 + 25.3357i) q^{82} +(5.02011 + 15.4503i) q^{83} +(-10.7199 - 7.78845i) q^{84} +(4.04508 - 2.93893i) q^{85} +(-4.18515 + 12.8806i) q^{86} -5.03647 q^{87} +(-7.63981 + 14.6768i) q^{88} +1.62118 q^{89} +(-0.758911 + 2.33569i) q^{90} +(0.832656 - 0.604960i) q^{91} +(-3.50254 - 2.54475i) q^{92} +(1.06580 + 3.28018i) q^{93} +(-9.10556 - 28.0240i) q^{94} +(-6.03048 - 4.38140i) q^{95} +(-0.251345 + 0.182613i) q^{96} +(0.0692451 - 0.213115i) q^{97} +9.34054 q^{98} +(-0.490303 - 3.28018i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} - 2 q^{4} + 2 q^{5} + q^{7} + 5 q^{8} - 2 q^{9} + O(q^{10}) \) \( 8 q - 2 q^{3} - 2 q^{4} + 2 q^{5} + q^{7} + 5 q^{8} - 2 q^{9} - 10 q^{10} - 3 q^{11} + 18 q^{12} + 6 q^{13} - 10 q^{14} + 2 q^{15} - 20 q^{16} - 10 q^{17} - 5 q^{18} + 6 q^{19} + 7 q^{20} - 4 q^{21} - 25 q^{22} - 10 q^{23} - 20 q^{24} - 2 q^{25} - 8 q^{26} - 2 q^{27} + 31 q^{28} + 5 q^{30} + 3 q^{31} + 60 q^{32} + 2 q^{33} + 50 q^{34} - q^{35} - 2 q^{36} - 19 q^{37} - 28 q^{38} + 6 q^{39} - 5 q^{40} - 25 q^{41} + 15 q^{42} - 4 q^{43} + 7 q^{44} - 8 q^{45} - 6 q^{46} + 15 q^{47} + 5 q^{48} + 21 q^{49} - 10 q^{51} + 6 q^{52} + 7 q^{53} + 10 q^{54} - 7 q^{55} + 20 q^{56} - 9 q^{57} - 2 q^{58} + 35 q^{59} + 7 q^{60} + 21 q^{61} - 19 q^{62} + q^{63} - 77 q^{64} - 6 q^{65} + 25 q^{66} - 26 q^{67} - 35 q^{68} - 5 q^{69} + 10 q^{70} + 25 q^{71} - 20 q^{72} + q^{73} - 29 q^{74} - 2 q^{75} - 14 q^{76} - 61 q^{77} + 12 q^{78} + 30 q^{79} - 5 q^{80} - 2 q^{81} + 57 q^{82} + 11 q^{83} - 34 q^{84} + 10 q^{85} - 34 q^{86} + 10 q^{87} - 85 q^{88} + 32 q^{89} + 37 q^{91} - 10 q^{92} + 3 q^{93} - 39 q^{94} - 6 q^{95} + 10 q^{96} + 5 q^{97} + 50 q^{98} - 3 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/165\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(67\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.758911 2.33569i 0.536631 1.65158i −0.203468 0.979082i \(-0.565221\pi\)
0.740098 0.672499i \(-0.234779\pi\)
\(3\) −0.809017 + 0.587785i −0.467086 + 0.339358i
\(4\) −3.26145 2.36959i −1.63073 1.18479i
\(5\) −0.309017 0.951057i −0.138197 0.425325i
\(6\) 0.758911 + 2.33569i 0.309824 + 0.953540i
\(7\) −2.65911 1.93196i −1.00505 0.730211i −0.0418845 0.999122i \(-0.513336\pi\)
−0.963165 + 0.268911i \(0.913336\pi\)
\(8\) −4.03606 + 2.93237i −1.42696 + 1.03675i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) −2.45589 −0.776620
\(11\) 2.96813 1.47994i 0.894924 0.446218i
\(12\) 4.03138 1.16376
\(13\) −0.0967635 + 0.297808i −0.0268374 + 0.0825970i −0.963578 0.267427i \(-0.913827\pi\)
0.936741 + 0.350024i \(0.113827\pi\)
\(14\) −6.53048 + 4.74467i −1.74534 + 1.26807i
\(15\) 0.809017 + 0.587785i 0.208887 + 0.151765i
\(16\) 1.29455 + 3.98423i 0.323638 + 0.996057i
\(17\) 1.54508 + 4.75528i 0.374738 + 1.15333i 0.943655 + 0.330930i \(0.107363\pi\)
−0.568917 + 0.822395i \(0.692637\pi\)
\(18\) −1.98685 1.44353i −0.468306 0.340244i
\(19\) 6.03048 4.38140i 1.38349 1.00516i 0.386941 0.922104i \(-0.373532\pi\)
0.996545 0.0830568i \(-0.0264683\pi\)
\(20\) −1.24576 + 3.83407i −0.278561 + 0.857324i
\(21\) 3.28684 0.717248
\(22\) −1.20413 8.05576i −0.256721 1.71749i
\(23\) 1.07392 0.223928 0.111964 0.993712i \(-0.464286\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(24\) 1.54164 4.74467i 0.314685 0.968501i
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 0.622150 + 0.452019i 0.122014 + 0.0886482i
\(27\) 0.309017 + 0.951057i 0.0594703 + 0.183031i
\(28\) 4.09463 + 12.6020i 0.773813 + 2.38155i
\(29\) 4.07459 + 2.96036i 0.756632 + 0.549725i 0.897875 0.440250i \(-0.145110\pi\)
−0.141243 + 0.989975i \(0.545110\pi\)
\(30\) 1.98685 1.44353i 0.362748 0.263552i
\(31\) 1.06580 3.28018i 0.191423 0.589138i −0.808577 0.588390i \(-0.799762\pi\)
1.00000 0.000748050i \(-0.000238112\pi\)
\(32\) 0.310680 0.0549210
\(33\) −1.53138 + 2.94192i −0.266579 + 0.512122i
\(34\) 12.2794 2.10591
\(35\) −1.01569 + 3.12597i −0.171683 + 0.528386i
\(36\) −3.26145 + 2.36959i −0.543576 + 0.394931i
\(37\) −2.13118 1.54839i −0.350364 0.254554i 0.398658 0.917100i \(-0.369476\pi\)
−0.749022 + 0.662546i \(0.769476\pi\)
\(38\) −5.65698 17.4104i −0.917683 2.82434i
\(39\) −0.0967635 0.297808i −0.0154946 0.0476874i
\(40\) 4.03606 + 2.93237i 0.638156 + 0.463648i
\(41\) −8.77557 + 6.37583i −1.37051 + 0.995737i −0.372817 + 0.927905i \(0.621608\pi\)
−0.997697 + 0.0678321i \(0.978392\pi\)
\(42\) 2.49442 7.67703i 0.384897 1.18459i
\(43\) −5.51468 −0.840980 −0.420490 0.907297i \(-0.638142\pi\)
−0.420490 + 0.907297i \(0.638142\pi\)
\(44\) −13.1873 2.20648i −1.98805 0.332640i
\(45\) −1.00000 −0.149071
\(46\) 0.815010 2.50834i 0.120167 0.369835i
\(47\) 9.70674 7.05236i 1.41587 1.02869i 0.423438 0.905925i \(-0.360823\pi\)
0.992435 0.122767i \(-0.0391769\pi\)
\(48\) −3.38919 2.46239i −0.489187 0.355415i
\(49\) 1.17529 + 3.61718i 0.167899 + 0.516740i
\(50\) 0.758911 + 2.33569i 0.107326 + 0.330316i
\(51\) −4.04508 2.93893i −0.566425 0.411532i
\(52\) 1.02127 0.741996i 0.141625 0.102896i
\(53\) 1.52513 4.69387i 0.209493 0.644753i −0.790006 0.613099i \(-0.789923\pi\)
0.999499 0.0316539i \(-0.0100774\pi\)
\(54\) 2.45589 0.334204
\(55\) −2.32471 2.36553i −0.313463 0.318968i
\(56\) 16.3975 2.19121
\(57\) −2.30344 + 7.08925i −0.305098 + 0.938994i
\(58\) 10.0067 7.27031i 1.31395 0.954639i
\(59\) 7.41391 + 5.38652i 0.965208 + 0.701265i 0.954354 0.298676i \(-0.0965451\pi\)
0.0108537 + 0.999941i \(0.496545\pi\)
\(60\) −1.24576 3.83407i −0.160828 0.494976i
\(61\) 2.83811 + 8.73480i 0.363382 + 1.11838i 0.950988 + 0.309229i \(0.100071\pi\)
−0.587605 + 0.809148i \(0.699929\pi\)
\(62\) −6.85264 4.97873i −0.870286 0.632300i
\(63\) −2.65911 + 1.93196i −0.335016 + 0.243404i
\(64\) −2.35333 + 7.24280i −0.294166 + 0.905350i
\(65\) 0.313133 0.0388394
\(66\) 5.70922 + 5.80948i 0.702756 + 0.715097i
\(67\) −15.2739 −1.86600 −0.933000 0.359876i \(-0.882819\pi\)
−0.933000 + 0.359876i \(0.882819\pi\)
\(68\) 6.22882 19.1704i 0.755356 2.32475i
\(69\) −0.868820 + 0.631235i −0.104594 + 0.0759917i
\(70\) 6.53048 + 4.74467i 0.780541 + 0.567096i
\(71\) 0.949335 + 2.92175i 0.112665 + 0.346748i 0.991453 0.130465i \(-0.0416470\pi\)
−0.878788 + 0.477213i \(0.841647\pi\)
\(72\) 1.54164 + 4.74467i 0.181684 + 0.559164i
\(73\) 7.00018 + 5.08592i 0.819309 + 0.595262i 0.916514 0.400002i \(-0.130991\pi\)
−0.0972058 + 0.995264i \(0.530991\pi\)
\(74\) −5.23394 + 3.80268i −0.608433 + 0.442052i
\(75\) 0.309017 0.951057i 0.0356822 0.109819i
\(76\) −30.0502 −3.44700
\(77\) −10.7518 1.79898i −1.22528 0.205012i
\(78\) −0.769020 −0.0870744
\(79\) 1.67316 5.14946i 0.188245 0.579360i −0.811744 0.584014i \(-0.801481\pi\)
0.999989 + 0.00465401i \(0.00148142\pi\)
\(80\) 3.38919 2.46239i 0.378922 0.275303i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 8.23206 + 25.3357i 0.909079 + 2.79786i
\(83\) 5.02011 + 15.4503i 0.551029 + 1.69589i 0.706207 + 0.708006i \(0.250405\pi\)
−0.155178 + 0.987887i \(0.549595\pi\)
\(84\) −10.7199 7.78845i −1.16964 0.849790i
\(85\) 4.04508 2.93893i 0.438751 0.318771i
\(86\) −4.18515 + 12.8806i −0.451296 + 1.38895i
\(87\) −5.03647 −0.539966
\(88\) −7.63981 + 14.6768i −0.814406 + 1.56455i
\(89\) 1.62118 0.171845 0.0859223 0.996302i \(-0.472616\pi\)
0.0859223 + 0.996302i \(0.472616\pi\)
\(90\) −0.758911 + 2.33569i −0.0799962 + 0.246203i
\(91\) 0.832656 0.604960i 0.0872861 0.0634171i
\(92\) −3.50254 2.54475i −0.365165 0.265308i
\(93\) 1.06580 + 3.28018i 0.110518 + 0.340139i
\(94\) −9.10556 28.0240i −0.939166 2.89046i
\(95\) −6.03048 4.38140i −0.618714 0.449522i
\(96\) −0.251345 + 0.182613i −0.0256528 + 0.0186379i
\(97\) 0.0692451 0.213115i 0.00703078 0.0216385i −0.947480 0.319816i \(-0.896379\pi\)
0.954510 + 0.298178i \(0.0963788\pi\)
\(98\) 9.34054 0.943537
\(99\) −0.490303 3.28018i −0.0492773 0.329671i
\(100\) 4.03138 0.403138
\(101\) −0.156154 + 0.480593i −0.0155379 + 0.0478208i −0.958525 0.285009i \(-0.908003\pi\)
0.942987 + 0.332830i \(0.108003\pi\)
\(102\) −9.93427 + 7.21767i −0.983639 + 0.714656i
\(103\) 5.17930 + 3.76298i 0.510332 + 0.370778i 0.812949 0.582334i \(-0.197861\pi\)
−0.302618 + 0.953112i \(0.597861\pi\)
\(104\) −0.482738 1.48571i −0.0473363 0.145686i
\(105\) −1.01569 3.12597i −0.0991212 0.305064i
\(106\) −9.80598 7.12446i −0.952441 0.691989i
\(107\) −1.69286 + 1.22993i −0.163655 + 0.118902i −0.666598 0.745417i \(-0.732250\pi\)
0.502943 + 0.864319i \(0.332250\pi\)
\(108\) 1.24576 3.83407i 0.119874 0.368934i
\(109\) −6.69278 −0.641052 −0.320526 0.947240i \(-0.603860\pi\)
−0.320526 + 0.947240i \(0.603860\pi\)
\(110\) −7.28939 + 3.63456i −0.695016 + 0.346542i
\(111\) 2.63428 0.250035
\(112\) 4.25499 13.0955i 0.402059 1.23741i
\(113\) 8.73262 6.34462i 0.821496 0.596852i −0.0956448 0.995416i \(-0.530491\pi\)
0.917141 + 0.398564i \(0.130491\pi\)
\(114\) 14.8102 + 10.7602i 1.38710 + 1.00779i
\(115\) −0.331860 1.02136i −0.0309461 0.0952423i
\(116\) −6.27426 19.3102i −0.582550 1.79290i
\(117\) 0.253330 + 0.184055i 0.0234204 + 0.0170159i
\(118\) 18.2077 13.2287i 1.67616 1.21780i
\(119\) 5.07845 15.6299i 0.465541 1.43279i
\(120\) −4.98884 −0.455417
\(121\) 6.61956 8.78529i 0.601779 0.798663i
\(122\) 22.5556 2.04209
\(123\) 3.35197 10.3163i 0.302237 0.930190i
\(124\) −11.2487 + 8.17267i −1.01017 + 0.733928i
\(125\) 0.809017 + 0.587785i 0.0723607 + 0.0525731i
\(126\) 2.49442 + 7.67703i 0.222221 + 0.683925i
\(127\) −5.25430 16.1711i −0.466244 1.43495i −0.857411 0.514632i \(-0.827929\pi\)
0.391167 0.920320i \(-0.372071\pi\)
\(128\) 15.6336 + 11.3585i 1.38183 + 1.00396i
\(129\) 4.46147 3.24145i 0.392810 0.285393i
\(130\) 0.237640 0.731382i 0.0208424 0.0641464i
\(131\) −0.0430508 −0.00376136 −0.00188068 0.999998i \(-0.500599\pi\)
−0.00188068 + 0.999998i \(0.500599\pi\)
\(132\) 11.9657 5.96619i 1.04148 0.519291i
\(133\) −24.5004 −2.12445
\(134\) −11.5915 + 35.6750i −1.00135 + 3.08185i
\(135\) 0.809017 0.587785i 0.0696291 0.0505885i
\(136\) −20.1803 14.6618i −1.73044 1.25724i
\(137\) 2.27516 + 7.00222i 0.194380 + 0.598240i 0.999983 + 0.00578480i \(0.00184137\pi\)
−0.805603 + 0.592455i \(0.798159\pi\)
\(138\) 0.815010 + 2.50834i 0.0693783 + 0.213524i
\(139\) −10.7109 7.78189i −0.908483 0.660052i 0.0321478 0.999483i \(-0.489765\pi\)
−0.940631 + 0.339432i \(0.889765\pi\)
\(140\) 10.7199 7.78845i 0.905996 0.658244i
\(141\) −3.70764 + 11.4110i −0.312240 + 0.960976i
\(142\) 7.54476 0.633142
\(143\) 0.153530 + 1.02713i 0.0128388 + 0.0858933i
\(144\) 4.18926 0.349105
\(145\) 1.55635 4.78997i 0.129248 0.397785i
\(146\) 17.1916 12.4905i 1.42279 1.03372i
\(147\) −3.07696 2.23554i −0.253783 0.184384i
\(148\) 3.28170 + 10.1000i 0.269754 + 0.830217i
\(149\) −1.81658 5.59087i −0.148820 0.458022i 0.848662 0.528935i \(-0.177409\pi\)
−0.997482 + 0.0709136i \(0.977409\pi\)
\(150\) −1.98685 1.44353i −0.162226 0.117864i
\(151\) −6.17135 + 4.48375i −0.502217 + 0.364882i −0.809863 0.586619i \(-0.800459\pi\)
0.307646 + 0.951501i \(0.400459\pi\)
\(152\) −11.4915 + 35.3671i −0.932082 + 2.86865i
\(153\) 5.00000 0.404226
\(154\) −12.3615 + 23.7475i −0.996116 + 1.91363i
\(155\) −3.44899 −0.277029
\(156\) −0.390091 + 1.20058i −0.0312322 + 0.0961230i
\(157\) 8.19795 5.95616i 0.654267 0.475353i −0.210455 0.977604i \(-0.567494\pi\)
0.864722 + 0.502250i \(0.167494\pi\)
\(158\) −10.7578 7.81596i −0.855841 0.621805i
\(159\) 1.52513 + 4.69387i 0.120951 + 0.372248i
\(160\) −0.0960054 0.295474i −0.00758989 0.0233593i
\(161\) −2.85567 2.07477i −0.225059 0.163515i
\(162\) −1.98685 + 1.44353i −0.156102 + 0.113415i
\(163\) −1.55407 + 4.78292i −0.121724 + 0.374627i −0.993290 0.115651i \(-0.963105\pi\)
0.871566 + 0.490278i \(0.163105\pi\)
\(164\) 43.7292 3.41468
\(165\) 3.27115 + 0.547326i 0.254659 + 0.0426093i
\(166\) 39.8969 3.09660
\(167\) 1.78953 5.50761i 0.138478 0.426192i −0.857637 0.514256i \(-0.828068\pi\)
0.996115 + 0.0880642i \(0.0280681\pi\)
\(168\) −13.2659 + 9.63822i −1.02348 + 0.743605i
\(169\) 10.4379 + 7.58357i 0.802915 + 0.583352i
\(170\) −3.79455 11.6784i −0.291029 0.895695i
\(171\) −2.30344 7.08925i −0.176148 0.542128i
\(172\) 17.9859 + 13.0675i 1.37141 + 0.996387i
\(173\) −12.9970 + 9.44290i −0.988146 + 0.717930i −0.959514 0.281660i \(-0.909115\pi\)
−0.0286316 + 0.999590i \(0.509115\pi\)
\(174\) −3.82223 + 11.7636i −0.289762 + 0.891797i
\(175\) 3.28684 0.248462
\(176\) 9.73881 + 9.90983i 0.734090 + 0.746982i
\(177\) −9.16409 −0.688815
\(178\) 1.23033 3.78657i 0.0922171 0.283815i
\(179\) 6.71734 4.88043i 0.502078 0.364781i −0.307732 0.951473i \(-0.599570\pi\)
0.809810 + 0.586692i \(0.199570\pi\)
\(180\) 3.26145 + 2.36959i 0.243094 + 0.176618i
\(181\) −1.99756 6.14787i −0.148478 0.456968i 0.848964 0.528451i \(-0.177227\pi\)
−0.997442 + 0.0714830i \(0.977227\pi\)
\(182\) −0.781086 2.40394i −0.0578980 0.178192i
\(183\) −7.43026 5.39840i −0.549261 0.399061i
\(184\) −4.33440 + 3.14913i −0.319536 + 0.232157i
\(185\) −0.814038 + 2.50535i −0.0598493 + 0.184197i
\(186\) 8.47033 0.621074
\(187\) 11.6235 + 11.8277i 0.849997 + 0.864924i
\(188\) −48.3693 −3.52769
\(189\) 1.01569 3.12597i 0.0738806 0.227381i
\(190\) −14.8102 + 10.7602i −1.07444 + 0.780628i
\(191\) −12.4340 9.03384i −0.899694 0.653666i 0.0386935 0.999251i \(-0.487680\pi\)
−0.938387 + 0.345585i \(0.887680\pi\)
\(192\) −2.35333 7.24280i −0.169837 0.522704i
\(193\) 4.86757 + 14.9808i 0.350375 + 1.07834i 0.958643 + 0.284612i \(0.0918648\pi\)
−0.608267 + 0.793732i \(0.708135\pi\)
\(194\) −0.445218 0.323470i −0.0319648 0.0232238i
\(195\) −0.253330 + 0.184055i −0.0181414 + 0.0131805i
\(196\) 4.73805 14.5822i 0.338432 1.04159i
\(197\) 16.3940 1.16802 0.584010 0.811746i \(-0.301483\pi\)
0.584010 + 0.811746i \(0.301483\pi\)
\(198\) −8.03358 1.34417i −0.570922 0.0955261i
\(199\) 6.96500 0.493736 0.246868 0.969049i \(-0.420599\pi\)
0.246868 + 0.969049i \(0.420599\pi\)
\(200\) 1.54164 4.74467i 0.109010 0.335499i
\(201\) 12.3568 8.97776i 0.871583 0.633242i
\(202\) 1.00401 + 0.729455i 0.0706418 + 0.0513242i
\(203\) −5.11549 15.7439i −0.359037 1.10500i
\(204\) 6.22882 + 19.1704i 0.436105 + 1.34219i
\(205\) 8.77557 + 6.37583i 0.612913 + 0.445307i
\(206\) 12.7198 9.24146i 0.886229 0.643883i
\(207\) 0.331860 1.02136i 0.0230658 0.0709894i
\(208\) −1.31180 −0.0909569
\(209\) 11.4150 21.9293i 0.789594 1.51688i
\(210\) −8.07211 −0.557029
\(211\) −6.16585 + 18.9765i −0.424475 + 1.30640i 0.479022 + 0.877803i \(0.340992\pi\)
−0.903496 + 0.428596i \(0.859008\pi\)
\(212\) −16.0967 + 11.6949i −1.10552 + 0.803211i
\(213\) −2.48539 1.80574i −0.170296 0.123727i
\(214\) 1.58801 + 4.88740i 0.108554 + 0.334096i
\(215\) 1.70413 + 5.24477i 0.116221 + 0.357690i
\(216\) −4.03606 2.93237i −0.274619 0.199522i
\(217\) −9.17124 + 6.66330i −0.622585 + 0.452334i
\(218\) −5.07922 + 15.6322i −0.344008 + 1.05875i
\(219\) −8.65269 −0.584695
\(220\) 1.97660 + 13.2237i 0.133262 + 0.891539i
\(221\) −1.56567 −0.105318
\(222\) 1.99919 6.15286i 0.134177 0.412953i
\(223\) 16.2990 11.8419i 1.09146 0.792992i 0.111815 0.993729i \(-0.464334\pi\)
0.979645 + 0.200737i \(0.0643336\pi\)
\(224\) −0.826133 0.600220i −0.0551983 0.0401039i
\(225\) 0.309017 + 0.951057i 0.0206011 + 0.0634038i
\(226\) −8.19177 25.2117i −0.544908 1.67706i
\(227\) −0.431964 0.313840i −0.0286705 0.0208303i 0.573358 0.819305i \(-0.305641\pi\)
−0.602028 + 0.798475i \(0.705641\pi\)
\(228\) 24.3111 17.6631i 1.61004 1.16977i
\(229\) −6.85803 + 21.1068i −0.453191 + 1.39478i 0.420054 + 0.907499i \(0.362011\pi\)
−0.873245 + 0.487281i \(0.837989\pi\)
\(230\) −2.63743 −0.173907
\(231\) 9.75577 4.86432i 0.641882 0.320049i
\(232\) −25.1261 −1.64961
\(233\) −1.41087 + 4.34221i −0.0924291 + 0.284467i −0.986575 0.163308i \(-0.947784\pi\)
0.894146 + 0.447775i \(0.147784\pi\)
\(234\) 0.622150 0.452019i 0.0406712 0.0295494i
\(235\) −9.70674 7.05236i −0.633198 0.460045i
\(236\) −11.4163 35.1358i −0.743138 2.28714i
\(237\) 1.67316 + 5.14946i 0.108684 + 0.334493i
\(238\) −32.6524 23.7233i −2.11654 1.53776i
\(239\) 4.74126 3.44473i 0.306687 0.222821i −0.423787 0.905762i \(-0.639299\pi\)
0.730474 + 0.682941i \(0.239299\pi\)
\(240\) −1.29455 + 3.98423i −0.0835631 + 0.257181i
\(241\) 9.96074 0.641628 0.320814 0.947142i \(-0.396044\pi\)
0.320814 + 0.947142i \(0.396044\pi\)
\(242\) −15.4960 22.1285i −0.996123 1.42247i
\(243\) 1.00000 0.0641500
\(244\) 11.4415 35.2133i 0.732466 2.25430i
\(245\) 3.07696 2.23554i 0.196580 0.142823i
\(246\) −21.5518 15.6583i −1.37409 0.998337i
\(247\) 0.721283 + 2.21988i 0.0458941 + 0.141248i
\(248\) 5.31709 + 16.3643i 0.337635 + 1.03913i
\(249\) −13.1428 9.54882i −0.832892 0.605132i
\(250\) 1.98685 1.44353i 0.125660 0.0912971i
\(251\) −5.21584 + 16.0527i −0.329221 + 1.01324i 0.640279 + 0.768143i \(0.278819\pi\)
−0.969499 + 0.245094i \(0.921181\pi\)
\(252\) 13.2505 0.834704
\(253\) 3.18753 1.58934i 0.200399 0.0999207i
\(254\) −41.7581 −2.62014
\(255\) −1.54508 + 4.75528i −0.0967570 + 0.297787i
\(256\) 26.0723 18.9426i 1.62952 1.18391i
\(257\) −9.01534 6.55003i −0.562362 0.408580i 0.269961 0.962871i \(-0.412989\pi\)
−0.832323 + 0.554292i \(0.812989\pi\)
\(258\) −4.18515 12.8806i −0.260556 0.801909i
\(259\) 2.67561 + 8.23470i 0.166255 + 0.511679i
\(260\) −1.02127 0.741996i −0.0633365 0.0460167i
\(261\) 4.07459 2.96036i 0.252211 0.183242i
\(262\) −0.0326717 + 0.100553i −0.00201846 + 0.00621220i
\(263\) −26.8726 −1.65704 −0.828519 0.559961i \(-0.810816\pi\)
−0.828519 + 0.559961i \(0.810816\pi\)
\(264\) −2.44604 16.3643i −0.150544 1.00715i
\(265\) −4.93543 −0.303181
\(266\) −18.5936 + 57.2252i −1.14005 + 3.50870i
\(267\) −1.31156 + 0.952905i −0.0802662 + 0.0583168i
\(268\) 49.8150 + 36.1927i 3.04294 + 2.21082i
\(269\) −3.10961 9.57038i −0.189596 0.583516i 0.810401 0.585875i \(-0.199249\pi\)
−0.999997 + 0.00235886i \(0.999249\pi\)
\(270\) −0.758911 2.33569i −0.0461858 0.142145i
\(271\) −8.53037 6.19767i −0.518183 0.376482i 0.297736 0.954648i \(-0.403768\pi\)
−0.815919 + 0.578166i \(0.803768\pi\)
\(272\) −16.9459 + 12.3119i −1.02750 + 0.746521i
\(273\) −0.318046 + 0.978846i −0.0192490 + 0.0592425i
\(274\) 18.0816 1.09235
\(275\) −1.53138 + 2.94192i −0.0923457 + 0.177404i
\(276\) 4.32938 0.260598
\(277\) −5.54302 + 17.0597i −0.333048 + 1.02502i 0.634628 + 0.772818i \(0.281153\pi\)
−0.967676 + 0.252198i \(0.918847\pi\)
\(278\) −26.3047 + 19.1114i −1.57765 + 1.14623i
\(279\) −2.79029 2.02726i −0.167050 0.121369i
\(280\) −5.06711 15.5950i −0.302818 0.931978i
\(281\) 2.29013 + 7.04830i 0.136618 + 0.420467i 0.995838 0.0911392i \(-0.0290508\pi\)
−0.859220 + 0.511606i \(0.829051\pi\)
\(282\) 23.8387 + 17.3198i 1.41957 + 1.03138i
\(283\) −4.35804 + 3.16630i −0.259059 + 0.188217i −0.709732 0.704472i \(-0.751184\pi\)
0.450673 + 0.892689i \(0.351184\pi\)
\(284\) 3.82713 11.7787i 0.227098 0.698937i
\(285\) 7.45408 0.441541
\(286\) 2.51558 + 0.420905i 0.148749 + 0.0248886i
\(287\) 35.6530 2.10453
\(288\) 0.0960054 0.295474i 0.00565717 0.0174110i
\(289\) −6.47214 + 4.70228i −0.380714 + 0.276605i
\(290\) −10.0067 7.27031i −0.587615 0.426927i
\(291\) 0.0692451 + 0.213115i 0.00405922 + 0.0124930i
\(292\) −10.7792 33.1750i −0.630806 1.94142i
\(293\) 1.40774 + 1.02278i 0.0822409 + 0.0597515i 0.628146 0.778096i \(-0.283814\pi\)
−0.545905 + 0.837847i \(0.683814\pi\)
\(294\) −7.55666 + 5.49023i −0.440713 + 0.320197i
\(295\) 2.83186 8.71557i 0.164877 0.507440i
\(296\) 13.1420 0.763864
\(297\) 2.32471 + 2.36553i 0.134893 + 0.137262i
\(298\) −14.4371 −0.836321
\(299\) −0.103916 + 0.319822i −0.00600964 + 0.0184958i
\(300\) −3.26145 + 2.36959i −0.188300 + 0.136808i
\(301\) 14.6641 + 10.6541i 0.845227 + 0.614093i
\(302\) 5.78913 + 17.8171i 0.333127 + 1.02526i
\(303\) −0.156154 0.480593i −0.00897082 0.0276094i
\(304\) 25.2633 + 18.3548i 1.44895 + 1.05272i
\(305\) 7.43026 5.39840i 0.425456 0.309112i
\(306\) 3.79455 11.6784i 0.216920 0.667612i
\(307\) 21.3566 1.21889 0.609444 0.792829i \(-0.291393\pi\)
0.609444 + 0.792829i \(0.291393\pi\)
\(308\) 30.8035 + 31.3445i 1.75519 + 1.78602i
\(309\) −6.40197 −0.364195
\(310\) −2.61747 + 8.05576i −0.148663 + 0.457536i
\(311\) −26.5435 + 19.2850i −1.50514 + 1.09355i −0.536870 + 0.843665i \(0.680393\pi\)
−0.968275 + 0.249886i \(0.919607\pi\)
\(312\) 1.26382 + 0.918222i 0.0715499 + 0.0519841i
\(313\) −1.06874 3.28925i −0.0604089 0.185919i 0.916298 0.400497i \(-0.131163\pi\)
−0.976707 + 0.214578i \(0.931163\pi\)
\(314\) −7.69021 23.6680i −0.433984 1.33566i
\(315\) 2.65911 + 1.93196i 0.149824 + 0.108853i
\(316\) −17.6590 + 12.8300i −0.993398 + 0.721746i
\(317\) −0.888626 + 2.73491i −0.0499102 + 0.153608i −0.972905 0.231204i \(-0.925734\pi\)
0.922995 + 0.384812i \(0.125734\pi\)
\(318\) 12.1209 0.679704
\(319\) 16.4751 + 2.75659i 0.922426 + 0.154340i
\(320\) 7.61553 0.425721
\(321\) 0.646615 1.99008i 0.0360905 0.111075i
\(322\) −7.01321 + 5.09540i −0.390831 + 0.283955i
\(323\) 30.1524 + 21.9070i 1.67772 + 1.21894i
\(324\) 1.24576 + 3.83407i 0.0692092 + 0.213004i
\(325\) −0.0967635 0.297808i −0.00536748 0.0165194i
\(326\) 9.99201 + 7.25962i 0.553406 + 0.402073i
\(327\) 5.41457 3.93392i 0.299427 0.217546i
\(328\) 16.7224 51.4664i 0.923342 2.84176i
\(329\) −39.4362 −2.17419
\(330\) 3.76090 7.22502i 0.207030 0.397724i
\(331\) −14.1221 −0.776219 −0.388109 0.921613i \(-0.626872\pi\)
−0.388109 + 0.921613i \(0.626872\pi\)
\(332\) 20.2380 62.2861i 1.11070 3.41839i
\(333\) −2.13118 + 1.54839i −0.116788 + 0.0848514i
\(334\) −11.5060 8.35958i −0.629579 0.457416i
\(335\) 4.71989 + 14.5263i 0.257875 + 0.793657i
\(336\) 4.25499 + 13.0955i 0.232129 + 0.714419i
\(337\) −12.9030 9.37457i −0.702870 0.510665i 0.177995 0.984031i \(-0.443039\pi\)
−0.880866 + 0.473366i \(0.843039\pi\)
\(338\) 25.6343 18.6244i 1.39432 1.01303i
\(339\) −3.33556 + 10.2658i −0.181163 + 0.557562i
\(340\) −20.1569 −1.09316
\(341\) −1.69105 11.3133i −0.0915755 0.612650i
\(342\) −18.3064 −0.989895
\(343\) −3.24683 + 9.99271i −0.175312 + 0.539555i
\(344\) 22.2575 16.1711i 1.20005 0.871885i
\(345\) 0.868820 + 0.631235i 0.0467757 + 0.0339845i
\(346\) 12.1921 + 37.5233i 0.655449 + 2.01727i
\(347\) 9.17166 + 28.2275i 0.492360 + 1.51533i 0.821030 + 0.570884i \(0.193400\pi\)
−0.328670 + 0.944445i \(0.606600\pi\)
\(348\) 16.4262 + 11.9343i 0.880537 + 0.639748i
\(349\) −25.6408 + 18.6291i −1.37252 + 0.997194i −0.374984 + 0.927031i \(0.622352\pi\)
−0.997536 + 0.0701620i \(0.977648\pi\)
\(350\) 2.49442 7.67703i 0.133332 0.410355i
\(351\) −0.313133 −0.0167138
\(352\) 0.922138 0.459787i 0.0491501 0.0245067i
\(353\) 1.20189 0.0639703 0.0319852 0.999488i \(-0.489817\pi\)
0.0319852 + 0.999488i \(0.489817\pi\)
\(354\) −6.95473 + 21.4044i −0.369640 + 1.13763i
\(355\) 2.48539 1.80574i 0.131911 0.0958388i
\(356\) −5.28740 3.84152i −0.280232 0.203600i
\(357\) 5.07845 + 15.6299i 0.268780 + 0.827220i
\(358\) −6.30130 19.3934i −0.333034 1.02497i
\(359\) 9.43239 + 6.85304i 0.497823 + 0.361689i 0.808185 0.588929i \(-0.200450\pi\)
−0.310362 + 0.950618i \(0.600450\pi\)
\(360\) 4.03606 2.93237i 0.212719 0.154549i
\(361\) 11.2987 34.7737i 0.594667 1.83020i
\(362\) −15.8755 −0.834396
\(363\) −0.191475 + 10.9983i −0.0100498 + 0.577263i
\(364\) −4.14918 −0.217476
\(365\) 2.67383 8.22920i 0.139955 0.430736i
\(366\) −18.2479 + 13.2579i −0.953832 + 0.693000i
\(367\) −12.9330 9.39636i −0.675096 0.490486i 0.196631 0.980478i \(-0.437000\pi\)
−0.871727 + 0.489991i \(0.837000\pi\)
\(368\) 1.39025 + 4.27874i 0.0724717 + 0.223045i
\(369\) 3.35197 + 10.3163i 0.174497 + 0.537045i
\(370\) 5.23394 + 3.80268i 0.272099 + 0.197692i
\(371\) −13.1239 + 9.53504i −0.681357 + 0.495035i
\(372\) 4.29663 13.2237i 0.222770 0.685615i
\(373\) 0.321975 0.0166712 0.00833561 0.999965i \(-0.497347\pi\)
0.00833561 + 0.999965i \(0.497347\pi\)
\(374\) 36.4469 18.1728i 1.88463 0.939693i
\(375\) −1.00000 −0.0516398
\(376\) −18.4968 + 56.9274i −0.953902 + 2.93581i
\(377\) −1.27589 + 0.926988i −0.0657117 + 0.0477423i
\(378\) −6.53048 4.74467i −0.335891 0.244039i
\(379\) 3.52819 + 10.8586i 0.181231 + 0.557771i 0.999863 0.0165471i \(-0.00526734\pi\)
−0.818632 + 0.574318i \(0.805267\pi\)
\(380\) 9.28603 + 28.5795i 0.476363 + 1.46610i
\(381\) 13.7559 + 9.99428i 0.704738 + 0.512022i
\(382\) −30.5365 + 22.1861i −1.56239 + 1.13514i
\(383\) 8.76597 26.9789i 0.447920 1.37856i −0.431329 0.902195i \(-0.641955\pi\)
0.879249 0.476362i \(-0.158045\pi\)
\(384\) −19.3242 −0.986136
\(385\) 1.61155 + 10.7814i 0.0821321 + 0.549473i
\(386\) 38.6846 1.96899
\(387\) −1.70413 + 5.24477i −0.0866257 + 0.266607i
\(388\) −0.730833 + 0.530981i −0.0371024 + 0.0269565i
\(389\) −12.2810 8.92269i −0.622673 0.452398i 0.231181 0.972911i \(-0.425741\pi\)
−0.853854 + 0.520513i \(0.825741\pi\)
\(390\) 0.237640 + 0.731382i 0.0120334 + 0.0370349i
\(391\) 1.65930 + 5.10680i 0.0839143 + 0.258262i
\(392\) −15.3504 11.1528i −0.775315 0.563299i
\(393\) 0.0348288 0.0253046i 0.00175688 0.00127645i
\(394\) 12.4415 38.2911i 0.626796 1.92908i
\(395\) −5.41446 −0.272431
\(396\) −6.17357 + 11.8600i −0.310234 + 0.595987i
\(397\) 5.22461 0.262216 0.131108 0.991368i \(-0.458147\pi\)
0.131108 + 0.991368i \(0.458147\pi\)
\(398\) 5.28581 16.2681i 0.264954 0.815444i
\(399\) 19.8212 14.4010i 0.992302 0.720950i
\(400\) −3.38919 2.46239i −0.169459 0.123119i
\(401\) 4.32644 + 13.3154i 0.216052 + 0.664941i 0.999077 + 0.0429502i \(0.0136757\pi\)
−0.783025 + 0.621990i \(0.786324\pi\)
\(402\) −11.5915 35.6750i −0.578132 1.77931i
\(403\) 0.873733 + 0.634804i 0.0435238 + 0.0316219i
\(404\) 1.64810 1.19741i 0.0819959 0.0595735i
\(405\) −0.309017 + 0.951057i −0.0153552 + 0.0472584i
\(406\) −40.6549 −2.01767
\(407\) −8.61714 1.44181i −0.427136 0.0714680i
\(408\) 24.9442 1.23492
\(409\) 10.2937 31.6809i 0.508993 1.56652i −0.284960 0.958539i \(-0.591980\pi\)
0.793953 0.607979i \(-0.208020\pi\)
\(410\) 21.5518 15.6583i 1.06437 0.773309i
\(411\) −5.95645 4.32761i −0.293810 0.213465i
\(412\) −7.97535 24.5456i −0.392917 1.20927i
\(413\) −9.30787 28.6467i −0.458011 1.40961i
\(414\) −2.13372 1.55024i −0.104867 0.0761902i
\(415\) 13.1428 9.54882i 0.645156 0.468733i
\(416\) −0.0300625 + 0.0925229i −0.00147394 + 0.00453631i
\(417\) 13.2393 0.648334
\(418\) −42.5569 43.3043i −2.08153 2.11808i
\(419\) −5.28460 −0.258170 −0.129085 0.991634i \(-0.541204\pi\)
−0.129085 + 0.991634i \(0.541204\pi\)
\(420\) −4.09463 + 12.6020i −0.199798 + 0.614914i
\(421\) 24.9023 18.0926i 1.21367 0.881780i 0.218107 0.975925i \(-0.430012\pi\)
0.995558 + 0.0941452i \(0.0300118\pi\)
\(422\) 39.6439 + 28.8030i 1.92984 + 1.40211i
\(423\) −3.70764 11.4110i −0.180272 0.554820i
\(424\) 7.60864 + 23.4170i 0.369508 + 1.13723i
\(425\) −4.04508 2.93893i −0.196215 0.142559i
\(426\) −6.10384 + 4.43470i −0.295732 + 0.214862i
\(427\) 9.32841 28.7099i 0.451433 1.38937i
\(428\) 8.43562 0.407751
\(429\) −0.727943 0.740727i −0.0351454 0.0357626i
\(430\) 13.5434 0.653122
\(431\) 3.81656 11.7462i 0.183837 0.565793i −0.816089 0.577926i \(-0.803862\pi\)
0.999926 + 0.0121333i \(0.00386225\pi\)
\(432\) −3.38919 + 2.46239i −0.163062 + 0.118472i
\(433\) −1.14304 0.830465i −0.0549308 0.0399096i 0.559981 0.828505i \(-0.310808\pi\)
−0.614912 + 0.788596i \(0.710808\pi\)
\(434\) 8.60323 + 26.4780i 0.412968 + 1.27098i
\(435\) 1.55635 + 4.78997i 0.0746215 + 0.229661i
\(436\) 21.8282 + 15.8591i 1.04538 + 0.759514i
\(437\) 6.47625 4.70527i 0.309801 0.225084i
\(438\) −6.56662 + 20.2100i −0.313765 + 0.965670i
\(439\) −7.58532 −0.362028 −0.181014 0.983481i \(-0.557938\pi\)
−0.181014 + 0.983481i \(0.557938\pi\)
\(440\) 16.3192 + 2.73052i 0.777990 + 0.130173i
\(441\) 3.80333 0.181111
\(442\) −1.18820 + 3.65691i −0.0565170 + 0.173941i
\(443\) −8.95274 + 6.50455i −0.425358 + 0.309040i −0.779790 0.626041i \(-0.784674\pi\)
0.354432 + 0.935082i \(0.384674\pi\)
\(444\) −8.59160 6.24216i −0.407739 0.296240i
\(445\) −0.500972 1.54183i −0.0237483 0.0730899i
\(446\) −15.2895 47.0562i −0.723979 2.22818i
\(447\) 4.75587 + 3.45534i 0.224945 + 0.163432i
\(448\) 20.2505 14.7129i 0.956748 0.695118i
\(449\) 1.95563 6.01882i 0.0922920 0.284045i −0.894247 0.447575i \(-0.852288\pi\)
0.986538 + 0.163529i \(0.0522878\pi\)
\(450\) 2.45589 0.115772
\(451\) −16.6112 + 31.9116i −0.782190 + 1.50266i
\(452\) −43.5152 −2.04678
\(453\) 2.35725 7.25486i 0.110753 0.340863i
\(454\) −1.06085 + 0.770756i −0.0497884 + 0.0361734i
\(455\) −0.832656 0.604960i −0.0390355 0.0283610i
\(456\) −11.4915 35.3671i −0.538138 1.65622i
\(457\) −0.0585832 0.180300i −0.00274040 0.00843410i 0.949677 0.313231i \(-0.101411\pi\)
−0.952417 + 0.304797i \(0.901411\pi\)
\(458\) 44.0944 + 32.0364i 2.06039 + 1.49696i
\(459\) −4.04508 + 2.93893i −0.188808 + 0.137177i
\(460\) −1.33785 + 4.11749i −0.0623777 + 0.191979i
\(461\) −26.6198 −1.23981 −0.619904 0.784678i \(-0.712828\pi\)
−0.619904 + 0.784678i \(0.712828\pi\)
\(462\) −3.95778 26.4780i −0.184133 1.23187i
\(463\) 20.9935 0.975652 0.487826 0.872941i \(-0.337790\pi\)
0.487826 + 0.872941i \(0.337790\pi\)
\(464\) −6.51998 + 20.0664i −0.302682 + 0.931561i
\(465\) 2.79029 2.02726i 0.129397 0.0940122i
\(466\) 9.07131 + 6.59070i 0.420221 + 0.305308i
\(467\) 2.44120 + 7.51324i 0.112965 + 0.347671i 0.991517 0.129976i \(-0.0414899\pi\)
−0.878552 + 0.477647i \(0.841490\pi\)
\(468\) −0.390091 1.20058i −0.0180319 0.0554966i
\(469\) 40.6149 + 29.5085i 1.87542 + 1.36257i
\(470\) −23.8387 + 17.3198i −1.09960 + 0.798903i
\(471\) −3.13134 + 9.63727i −0.144284 + 0.444062i
\(472\) −45.7182 −2.10435
\(473\) −16.3683 + 8.16138i −0.752614 + 0.375261i
\(474\) 13.2973 0.610766
\(475\) −2.30344 + 7.08925i −0.105689 + 0.325277i
\(476\) −53.5994 + 38.9423i −2.45673 + 1.78492i
\(477\) −3.99285 2.90097i −0.182820 0.132826i
\(478\) −4.44762 13.6884i −0.203429 0.626091i
\(479\) 12.3523 + 38.0164i 0.564389 + 1.73701i 0.669758 + 0.742579i \(0.266398\pi\)
−0.105369 + 0.994433i \(0.533602\pi\)
\(480\) 0.251345 + 0.182613i 0.0114723 + 0.00833511i
\(481\) 0.667344 0.484854i 0.0304282 0.0221074i
\(482\) 7.55931 23.2652i 0.344317 1.05970i
\(483\) 3.52981 0.160612
\(484\) −42.4069 + 12.9672i −1.92759 + 0.589419i
\(485\) −0.224082 −0.0101750
\(486\) 0.758911 2.33569i 0.0344249 0.105949i
\(487\) 8.03804 5.83998i 0.364238 0.264635i −0.390579 0.920569i \(-0.627725\pi\)
0.754818 + 0.655935i \(0.227725\pi\)
\(488\) −37.0684 26.9318i −1.67801 1.21914i
\(489\) −1.55407 4.78292i −0.0702773 0.216291i
\(490\) −2.88639 8.88338i −0.130394 0.401310i
\(491\) −4.02364 2.92335i −0.181584 0.131929i 0.493280 0.869871i \(-0.335798\pi\)
−0.674864 + 0.737942i \(0.735798\pi\)
\(492\) −35.3777 + 25.7034i −1.59495 + 1.15880i
\(493\) −7.78177 + 23.9498i −0.350473 + 1.07865i
\(494\) 5.73234 0.257910
\(495\) −2.96813 + 1.47994i −0.133407 + 0.0665183i
\(496\) 14.4487 0.648767
\(497\) 3.12031 9.60333i 0.139965 0.430768i
\(498\) −32.2773 + 23.4508i −1.44638 + 1.05086i
\(499\) −35.4153 25.7307i −1.58541 1.15186i −0.910149 0.414281i \(-0.864033\pi\)
−0.675256 0.737584i \(-0.735967\pi\)
\(500\) −1.24576 3.83407i −0.0557123 0.171465i
\(501\) 1.78953 + 5.50761i 0.0799504 + 0.246062i
\(502\) 33.5357 + 24.3651i 1.49677 + 1.08747i
\(503\) −5.08254 + 3.69268i −0.226619 + 0.164648i −0.695301 0.718718i \(-0.744729\pi\)
0.468682 + 0.883367i \(0.344729\pi\)
\(504\) 5.06711 15.5950i 0.225707 0.694655i
\(505\) 0.505326 0.0224867
\(506\) −1.29314 8.65125i −0.0574870 0.384595i
\(507\) −12.9019 −0.572996
\(508\) −21.1821 + 65.1918i −0.939803 + 2.89242i
\(509\) −20.0945 + 14.5995i −0.890671 + 0.647111i −0.936053 0.351859i \(-0.885550\pi\)
0.0453816 + 0.998970i \(0.485550\pi\)
\(510\) 9.93427 + 7.21767i 0.439897 + 0.319604i
\(511\) −8.78845 27.0481i −0.388778 1.19654i
\(512\) −12.5144 38.5155i −0.553066 1.70216i
\(513\) 6.03048 + 4.38140i 0.266252 + 0.193443i
\(514\) −22.1407 + 16.0861i −0.976583 + 0.709529i
\(515\) 1.97832 6.08863i 0.0871751 0.268297i
\(516\) −22.2318 −0.978699
\(517\) 18.3738 35.2977i 0.808078 1.55239i
\(518\) 21.2642 0.934296
\(519\) 4.96442 15.2789i 0.217914 0.670670i
\(520\) −1.26382 + 0.918222i −0.0554223 + 0.0402667i
\(521\) 5.62161 + 4.08434i 0.246287 + 0.178938i 0.704080 0.710121i \(-0.251360\pi\)
−0.457792 + 0.889059i \(0.651360\pi\)
\(522\) −3.82223 11.7636i −0.167294 0.514879i
\(523\) −8.26650 25.4417i −0.361469 1.11249i −0.952163 0.305591i \(-0.901146\pi\)
0.590694 0.806896i \(-0.298854\pi\)
\(524\) 0.140408 + 0.102013i 0.00613376 + 0.00445644i
\(525\) −2.65911 + 1.93196i −0.116053 + 0.0843175i
\(526\) −20.3939 + 62.7661i −0.889218 + 2.73673i
\(527\) 17.2449 0.751202
\(528\) −13.7037 2.29290i −0.596378 0.0997854i
\(529\) −21.8467 −0.949856
\(530\) −3.74555 + 11.5276i −0.162696 + 0.500728i
\(531\) 7.41391 5.38652i 0.321736 0.233755i
\(532\) 79.9069 + 58.0557i 3.46440 + 2.51704i
\(533\) −1.04961 3.23038i −0.0454638 0.139923i
\(534\) 1.23033 + 3.78657i 0.0532416 + 0.163861i
\(535\) 1.69286 + 1.22993i 0.0731887 + 0.0531747i
\(536\) 61.6462 44.7886i 2.66271 1.93457i
\(537\) −2.56580 + 7.89671i −0.110722 + 0.340768i
\(538\) −24.7133 −1.06547
\(539\) 8.84162 + 8.99689i 0.380836 + 0.387524i
\(540\) −4.03138 −0.173483
\(541\) 4.48336 13.7984i 0.192755 0.593237i −0.807241 0.590222i \(-0.799040\pi\)
0.999995 0.00301536i \(-0.000959822\pi\)
\(542\) −20.9496 + 15.2208i −0.899863 + 0.653789i
\(543\) 5.22969 + 3.79959i 0.224428 + 0.163056i
\(544\) 0.480027 + 1.47737i 0.0205810 + 0.0633418i
\(545\) 2.06818 + 6.36521i 0.0885912 + 0.272656i
\(546\) 2.04491 + 1.48571i 0.0875141 + 0.0635827i
\(547\) 21.6287 15.7142i 0.924777 0.671890i −0.0199316 0.999801i \(-0.506345\pi\)
0.944708 + 0.327912i \(0.106345\pi\)
\(548\) 9.17203 28.2286i 0.391810 1.20587i
\(549\) 9.18431 0.391977
\(550\) 5.70922 + 5.80948i 0.243442 + 0.247717i
\(551\) 37.5422 1.59935
\(552\) 1.65559 5.09540i 0.0704668 0.216875i
\(553\) −14.3977 + 10.4605i −0.612251 + 0.444826i
\(554\) 35.6394 + 25.8935i 1.51417 + 1.10011i
\(555\) −0.814038 2.50535i −0.0345540 0.106346i
\(556\) 16.4931 + 50.7606i 0.699464 + 2.15273i
\(557\) −13.9510 10.1360i −0.591125 0.429477i 0.251593 0.967833i \(-0.419046\pi\)
−0.842718 + 0.538356i \(0.819046\pi\)
\(558\) −6.85264 + 4.97873i −0.290095 + 0.210767i
\(559\) 0.533620 1.64231i 0.0225697 0.0694624i
\(560\) −13.7694 −0.581865
\(561\) −16.3558 2.73663i −0.690541 0.115541i
\(562\) 18.2006 0.767748
\(563\) −0.257075 + 0.791197i −0.0108344 + 0.0333450i −0.956328 0.292297i \(-0.905580\pi\)
0.945493 + 0.325642i \(0.105580\pi\)
\(564\) 39.1316 28.4307i 1.64774 1.19715i
\(565\) −8.73262 6.34462i −0.367384 0.266920i
\(566\) 4.08813 + 12.5820i 0.171837 + 0.528860i
\(567\) 1.01569 + 3.12597i 0.0426550 + 0.131278i
\(568\) −12.3992 9.00855i −0.520259 0.377991i
\(569\) −9.38141 + 6.81599i −0.393289 + 0.285741i −0.766802 0.641884i \(-0.778153\pi\)
0.373513 + 0.927625i \(0.378153\pi\)
\(570\) 5.65698 17.4104i 0.236945 0.729241i
\(571\) 21.8414 0.914034 0.457017 0.889458i \(-0.348918\pi\)
0.457017 + 0.889458i \(0.348918\pi\)
\(572\) 1.93315 3.71376i 0.0808292 0.155280i
\(573\) 15.3693 0.642061
\(574\) 27.0575 83.2744i 1.12936 3.47580i
\(575\) −0.868820 + 0.631235i −0.0362323 + 0.0263243i
\(576\) 6.16110 + 4.47630i 0.256712 + 0.186512i
\(577\) 3.01164 + 9.26888i 0.125376 + 0.385868i 0.993969 0.109657i \(-0.0349754\pi\)
−0.868593 + 0.495526i \(0.834975\pi\)
\(578\) 6.07129 + 18.6855i 0.252532 + 0.777214i
\(579\) −12.7435 9.25867i −0.529600 0.384777i
\(580\) −16.4262 + 11.9343i −0.682061 + 0.495547i
\(581\) 16.5003 50.7827i 0.684548 2.10682i
\(582\) 0.550320 0.0228115
\(583\) −2.41986 16.1891i −0.100220 0.670485i
\(584\) −43.1669 −1.78626
\(585\) 0.0967635 0.297808i 0.00400068 0.0123128i
\(586\) 3.45724 2.51183i 0.142817 0.103763i
\(587\) −18.5622 13.4862i −0.766143 0.556635i 0.134645 0.990894i \(-0.457010\pi\)
−0.900788 + 0.434258i \(0.857010\pi\)
\(588\) 4.73805 + 14.5822i 0.195394 + 0.601361i
\(589\) −7.94453 24.4507i −0.327349 1.00748i
\(590\) −18.2077 13.2287i −0.749600 0.544616i
\(591\) −13.2630 + 9.63612i −0.545566 + 0.396377i
\(592\) 3.41022 10.4956i 0.140159 0.431366i
\(593\) 28.7819 1.18193 0.590965 0.806697i \(-0.298747\pi\)
0.590965 + 0.806697i \(0.298747\pi\)
\(594\) 7.28939 3.63456i 0.299087 0.149128i
\(595\) −16.4342 −0.673737
\(596\) −7.32333 + 22.5389i −0.299975 + 0.923229i
\(597\) −5.63480 + 4.09392i −0.230617 + 0.167553i
\(598\) 0.668140 + 0.485432i 0.0273223 + 0.0198508i
\(599\) −9.02179 27.7662i −0.368620 1.13450i −0.947683 0.319214i \(-0.896581\pi\)
0.579062 0.815283i \(-0.303419\pi\)
\(600\) 1.54164 + 4.74467i 0.0629370 + 0.193700i
\(601\) 5.40494 + 3.92692i 0.220472 + 0.160182i 0.692539 0.721380i \(-0.256492\pi\)
−0.472067 + 0.881563i \(0.656492\pi\)
\(602\) 36.0135 26.1653i 1.46780 1.06642i
\(603\) −4.71989 + 14.5263i −0.192209 + 0.591557i
\(604\) 30.7522 1.25129
\(605\) −10.4009 3.58078i −0.422855 0.145579i
\(606\) −1.24102 −0.0504131
\(607\) −13.1674 + 40.5252i −0.534450 + 1.64487i 0.210384 + 0.977619i \(0.432529\pi\)
−0.744834 + 0.667250i \(0.767471\pi\)
\(608\) 1.87355 1.36121i 0.0759824 0.0552044i
\(609\) 13.3925 + 9.73024i 0.542693 + 0.394289i
\(610\) −6.97007 21.4517i −0.282210 0.868553i
\(611\) 1.16099 + 3.57315i 0.0469685 + 0.144554i
\(612\) −16.3073 11.8479i −0.659182 0.478924i
\(613\) 4.71783 3.42771i 0.190552 0.138444i −0.488419 0.872609i \(-0.662426\pi\)
0.678971 + 0.734165i \(0.262426\pi\)
\(614\) 16.2078 49.8824i 0.654093 2.01309i
\(615\) −10.8472 −0.437401
\(616\) 48.6699 24.2673i 1.96097 0.977758i
\(617\) −33.6386 −1.35424 −0.677119 0.735874i \(-0.736772\pi\)
−0.677119 + 0.735874i \(0.736772\pi\)
\(618\) −4.85852 + 14.9530i −0.195438 + 0.601498i
\(619\) −34.4331 + 25.0171i −1.38398 + 1.00552i −0.387488 + 0.921875i \(0.626657\pi\)
−0.996495 + 0.0836477i \(0.973343\pi\)
\(620\) 11.2487 + 8.17267i 0.451760 + 0.328223i
\(621\) 0.331860 + 1.02136i 0.0133171 + 0.0409857i
\(622\) 24.8996 + 76.6329i 0.998381 + 3.07270i
\(623\) −4.31089 3.13205i −0.172712 0.125483i
\(624\) 1.06127 0.771056i 0.0424847 0.0308669i
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) −8.49374 −0.339478
\(627\) 3.65476 + 24.4507i 0.145957 + 0.976468i
\(628\) −40.8509 −1.63013
\(629\) 4.07019 12.5268i 0.162289 0.499475i
\(630\) 6.53048 4.74467i 0.260180 0.189032i
\(631\) 7.20016 + 5.23122i 0.286634 + 0.208252i 0.721806 0.692096i \(-0.243312\pi\)
−0.435172 + 0.900347i \(0.643312\pi\)
\(632\) 8.34713 + 25.6898i 0.332031 + 1.02189i
\(633\) −6.16585 18.9765i −0.245071 0.754250i
\(634\) 5.71351 + 4.15111i 0.226912 + 0.164862i
\(635\) −13.7559 + 9.99428i −0.545888 + 0.396611i
\(636\) 6.14839 18.9228i 0.243799 0.750337i
\(637\) −1.19095 −0.0471871
\(638\) 18.9416 36.3886i 0.749906 1.44064i
\(639\) 3.07211 0.121531
\(640\) 5.97152 18.3785i 0.236045 0.726472i
\(641\) 4.99007 3.62549i 0.197096 0.143198i −0.484860 0.874592i \(-0.661130\pi\)
0.681956 + 0.731393i \(0.261130\pi\)
\(642\) −4.15747 3.02058i −0.164082 0.119213i
\(643\) 1.34526 + 4.14029i 0.0530519 + 0.163277i 0.974072 0.226238i \(-0.0726427\pi\)
−0.921020 + 0.389515i \(0.872643\pi\)
\(644\) 4.39731 + 13.5335i 0.173278 + 0.533296i
\(645\) −4.46147 3.24145i −0.175670 0.127632i
\(646\) 74.0508 53.8011i 2.91349 2.11677i
\(647\) 4.16967 12.8329i 0.163927 0.504514i −0.835029 0.550206i \(-0.814549\pi\)
0.998956 + 0.0456916i \(0.0145492\pi\)
\(648\) 4.98884 0.195980
\(649\) 29.9771 + 5.01575i 1.17671 + 0.196885i
\(650\) −0.769020 −0.0301635
\(651\) 3.50310 10.7814i 0.137297 0.422558i
\(652\) 16.4021 11.9168i 0.642354 0.466697i
\(653\) −22.2060 16.1336i −0.868988 0.631357i 0.0613270 0.998118i \(-0.480467\pi\)
−0.930315 + 0.366761i \(0.880467\pi\)
\(654\) −5.07922 15.6322i −0.198613 0.611269i
\(655\) 0.0133034 + 0.0409437i 0.000519808 + 0.00159980i
\(656\) −36.7632 26.7100i −1.43536 1.04285i
\(657\) 7.00018 5.08592i 0.273103 0.198421i
\(658\) −29.9285 + 92.1105i −1.16674 + 3.59084i
\(659\) −18.7768 −0.731441 −0.365721 0.930725i \(-0.619177\pi\)
−0.365721 + 0.930725i \(0.619177\pi\)
\(660\) −9.37178 9.53635i −0.364796 0.371202i
\(661\) −21.6525 −0.842184 −0.421092 0.907018i \(-0.638353\pi\)
−0.421092 + 0.907018i \(0.638353\pi\)
\(662\) −10.7174 + 32.9847i −0.416543 + 1.28199i
\(663\) 1.26665 0.920276i 0.0491927 0.0357406i
\(664\) −65.5674 47.6375i −2.54451 1.84869i
\(665\) 7.57103 + 23.3012i 0.293592 + 0.903583i
\(666\) 1.99919 + 6.15286i 0.0774669 + 0.238419i
\(667\) 4.37578 + 3.17919i 0.169431 + 0.123099i
\(668\) −18.8872 + 13.7224i −0.730769 + 0.530935i
\(669\) −6.22565 + 19.1606i −0.240698 + 0.740791i
\(670\) 37.5109 1.44917
\(671\) 21.3508 + 21.7258i 0.824240 + 0.838714i
\(672\) 1.02116 0.0393919
\(673\) 7.20076 22.1617i 0.277569 0.854269i −0.710959 0.703233i \(-0.751739\pi\)
0.988528 0.151036i \(-0.0482609\pi\)
\(674\) −31.6883 + 23.0229i −1.22059 + 0.886808i
\(675\) −0.809017 0.587785i −0.0311391 0.0226239i
\(676\) −16.0728 49.4670i −0.618184 1.90258i
\(677\) 10.2843 + 31.6519i 0.395259 + 1.21648i 0.928760 + 0.370683i \(0.120876\pi\)
−0.533501 + 0.845800i \(0.679124\pi\)
\(678\) 21.4463 + 15.5817i 0.823641 + 0.598410i
\(679\) −0.595859 + 0.432917i −0.0228670 + 0.0166138i
\(680\) −7.70818 + 23.7233i −0.295595 + 0.909749i
\(681\) 0.533937 0.0204605
\(682\) −27.7077 4.63603i −1.06098 0.177523i
\(683\) 16.9244 0.647593 0.323796 0.946127i \(-0.395041\pi\)
0.323796 + 0.946127i \(0.395041\pi\)
\(684\) −9.28603 + 28.5795i −0.355060 + 1.09276i
\(685\) 5.95645 4.32761i 0.227584 0.165350i
\(686\) 20.8758 + 15.1671i 0.797041 + 0.579084i
\(687\) −6.85803 21.1068i −0.261650 0.805276i
\(688\) −7.13905 21.9717i −0.272174 0.837664i
\(689\) 1.25029 + 0.908392i 0.0476324 + 0.0346070i
\(690\) 2.13372 1.55024i 0.0812295 0.0590167i
\(691\) −14.9668 + 46.0630i −0.569363 + 1.75232i 0.0852532 + 0.996359i \(0.472830\pi\)
−0.654617 + 0.755961i \(0.727170\pi\)
\(692\) 64.7650 2.46200
\(693\) −5.03340 + 9.66962i −0.191203 + 0.367318i
\(694\) 72.8910 2.76690
\(695\) −4.09118 + 12.5914i −0.155187 + 0.477618i
\(696\) 20.3275 14.7688i 0.770511 0.559809i
\(697\) −43.8779 31.8791i −1.66199 1.20751i
\(698\) 24.0527 + 74.0267i 0.910409 + 2.80195i
\(699\) −1.41087 4.34221i −0.0533640 0.164237i
\(700\) −10.7199 7.78845i −0.405174 0.294376i
\(701\) 36.7424 26.6949i 1.38774 1.00825i 0.391634 0.920121i \(-0.371910\pi\)
0.996109 0.0881330i \(-0.0280900\pi\)
\(702\) −0.237640 + 0.731382i −0.00896916 + 0.0276042i
\(703\) −19.6361 −0.740591
\(704\) 3.73392 + 24.9803i 0.140727 + 0.941482i
\(705\) 11.9982 0.451878
\(706\) 0.912130 2.80725i 0.0343285 0.105652i
\(707\) 1.34372 0.976267i 0.0505357 0.0367163i
\(708\) 29.8883 + 21.7151i 1.12327 + 0.816103i
\(709\) −0.545405 1.67858i −0.0204831 0.0630406i 0.940292 0.340368i \(-0.110551\pi\)
−0.960776 + 0.277327i \(0.910551\pi\)
\(710\) −2.33146 7.17549i −0.0874981 0.269291i
\(711\) −4.38039 3.18254i −0.164278 0.119355i
\(712\) −6.54317 + 4.75389i −0.245216 + 0.178160i
\(713\) 1.14458 3.52266i 0.0428649 0.131925i
\(714\) 40.3606 1.51046
\(715\) 0.929420 0.463418i 0.0347583 0.0173309i
\(716\) −33.4729 −1.25094
\(717\) −1.81100 + 5.57369i −0.0676331 + 0.208153i
\(718\) 23.1649 16.8303i 0.864506 0.628100i
\(719\) 2.66974 + 1.93968i 0.0995645 + 0.0723379i 0.636454 0.771315i \(-0.280401\pi\)
−0.536889 + 0.843653i \(0.680401\pi\)
\(720\) −1.29455 3.98423i −0.0482452 0.148483i
\(721\) −6.50241 20.0124i −0.242163 0.745300i
\(722\) −72.6459 52.7803i −2.70360 1.96428i
\(723\) −8.05841 + 5.85477i −0.299695 + 0.217741i
\(724\) −8.05294 + 24.7844i −0.299285 + 0.921105i
\(725\) −5.03647 −0.187050
\(726\) 25.5434 + 8.79398i 0.948003 + 0.326375i
\(727\) 11.7838 0.437037 0.218519 0.975833i \(-0.429878\pi\)
0.218519 + 0.975833i \(0.429878\pi\)
\(728\) −1.58668 + 4.88331i −0.0588064 + 0.180987i
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) −17.1916 12.4905i −0.636291 0.462293i
\(731\) −8.52064 26.2238i −0.315147 0.969924i
\(732\) 11.4415 + 35.2133i 0.422890 + 1.30152i
\(733\) −4.63654 3.36865i −0.171255 0.124424i 0.498856 0.866685i \(-0.333754\pi\)
−0.670111 + 0.742261i \(0.733754\pi\)
\(734\) −31.7619 + 23.0764i −1.17235 + 0.851765i
\(735\) −1.17529 + 3.61718i −0.0433513 + 0.133422i
\(736\) 0.333646 0.0122983
\(737\) −45.3348 + 22.6044i −1.66993 + 0.832643i
\(738\) 26.6395 0.980614
\(739\) −6.50638 + 20.0246i −0.239341 + 0.736616i 0.757175 + 0.653212i \(0.226579\pi\)
−0.996516 + 0.0834038i \(0.973421\pi\)
\(740\) 8.59160 6.24216i 0.315833 0.229466i
\(741\) −1.88834 1.37196i −0.0693700 0.0504003i
\(742\) 12.3110 + 37.8895i 0.451952 + 1.39097i
\(743\) 4.05686 + 12.4857i 0.148832 + 0.458058i 0.997484 0.0708942i \(-0.0225853\pi\)
−0.848652 + 0.528952i \(0.822585\pi\)
\(744\) −13.9203 10.1137i −0.510343 0.370786i
\(745\) −4.75587 + 3.45534i −0.174242 + 0.126594i
\(746\) 0.244350 0.752032i 0.00894629 0.0275339i
\(747\) 16.2454 0.594389
\(748\) −9.88299 66.1183i −0.361358 2.41753i
\(749\) 6.87768 0.251305
\(750\) −0.758911 + 2.33569i −0.0277115 + 0.0852872i
\(751\) −20.7311 + 15.0621i −0.756490 + 0.549622i −0.897832 0.440339i \(-0.854858\pi\)
0.141342 + 0.989961i \(0.454858\pi\)
\(752\) 40.6641 + 29.5442i 1.48287 + 1.07737i
\(753\) −5.21584 16.0527i −0.190076 0.584993i
\(754\) 1.19687 + 3.68358i 0.0435874 + 0.134148i
\(755\) 6.17135 + 4.48375i 0.224598 + 0.163180i
\(756\) −10.7199 + 7.78845i −0.389878 + 0.283263i
\(757\) 9.64039 29.6701i 0.350386 1.07838i −0.608251 0.793745i \(-0.708129\pi\)
0.958637 0.284632i \(-0.0918715\pi\)
\(758\) 28.0400 1.01846
\(759\) −1.64458 + 3.15939i −0.0596945 + 0.114678i
\(760\) 37.1872 1.34892
\(761\) 3.51539 10.8193i 0.127433 0.392198i −0.866904 0.498476i \(-0.833893\pi\)
0.994336 + 0.106278i \(0.0338932\pi\)
\(762\) 33.7830 24.5448i 1.22383 0.889165i
\(763\) 17.7968 + 12.9302i 0.644289 + 0.468103i
\(764\) 19.1465 + 58.9269i 0.692697 + 2.13190i
\(765\) −1.54508 4.75528i −0.0558627 0.171928i
\(766\) −56.3617 40.9491i −2.03643 1.47955i
\(767\) −2.32154 + 1.68670i −0.0838260 + 0.0609032i
\(768\) −9.95872 + 30.6498i −0.359354 + 1.10598i
\(769\) 10.3938 0.374811 0.187405 0.982283i \(-0.439992\pi\)
0.187405 + 0.982283i \(0.439992\pi\)
\(770\) 26.4051 + 4.41808i 0.951574 + 0.159217i
\(771\) 11.1436 0.401326
\(772\) 19.6230 60.3935i 0.706248 2.17361i
\(773\) −11.3544 + 8.24944i −0.408389 + 0.296712i −0.772949 0.634468i \(-0.781219\pi\)
0.364560 + 0.931180i \(0.381219\pi\)