Newspace parameters
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.31753163335\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(8\) over \(\Q(i)\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} - 4 x^{15} + 8 x^{14} + 19 x^{12} - 80 x^{11} + 168 x^{10} + 28 x^{9} + 119 x^{8} - 432 x^{7} + 784 x^{6} + 84 x^{5} + 169 x^{4} - 420 x^{3} + 392 x^{2} - 112 x + 16 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} - 4 x^{15} + 8 x^{14} + 19 x^{12} - 80 x^{11} + 168 x^{10} + 28 x^{9} + 119 x^{8} - 432 x^{7} + 784 x^{6} + 84 x^{5} + 169 x^{4} - 420 x^{3} + 392 x^{2} - 112 x + 16 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 4128071754399 \nu^{15} + 11898447714838 \nu^{14} - 15277599976658 \nu^{13} - 34812594791870 \nu^{12} + \cdots - 80\!\cdots\!20 ) / 27\!\cdots\!44 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 21143084361889 \nu^{15} - 76316193938758 \nu^{14} + 145347779465436 \nu^{13} + 30555199953316 \nu^{12} + \cdots - 19\!\cdots\!44 ) / 54\!\cdots\!88 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 38450704565045 \nu^{15} - 59618622420401 \nu^{14} - 46616013291644 \nu^{13} + 663284102485220 \nu^{12} + \cdots + 14\!\cdots\!96 ) / 54\!\cdots\!88 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 106357174118413 \nu^{15} - 451134746013694 \nu^{14} + 911994273881980 \nu^{13} - 31886019956504 \nu^{12} + \cdots - 12\!\cdots\!60 ) / 10\!\cdots\!76 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 157213841010915 \nu^{15} - 509728662885302 \nu^{14} + 841883624893756 \nu^{13} + 708288711249504 \nu^{12} + \cdots + 16\!\cdots\!72 ) / 10\!\cdots\!76 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 207551406788003 \nu^{15} - 560257236979352 \nu^{14} + 726910331340020 \nu^{13} + \cdots + 29\!\cdots\!80 ) / 10\!\cdots\!76 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 247784897113907 \nu^{15} - 933231595130810 \nu^{14} + \cdots - 40\!\cdots\!32 ) / 10\!\cdots\!76 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 249727967307343 \nu^{15} - 956625700505594 \nu^{14} + \cdots - 14\!\cdots\!96 ) / 10\!\cdots\!76 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 83688943960991 \nu^{15} - 319218427676056 \nu^{14} + 612574342939380 \nu^{13} + 102474554907584 \nu^{12} + \cdots - 12\!\cdots\!88 ) / 27\!\cdots\!44 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 426823538486029 \nu^{15} + \cdots + 58\!\cdots\!96 ) / 10\!\cdots\!76 \)
|
\(\beta_{12}\) | \(=\) |
\( ( 233776061987612 \nu^{15} - 998483250651247 \nu^{14} + \cdots - 28\!\cdots\!44 ) / 54\!\cdots\!88 \)
|
\(\beta_{13}\) | \(=\) |
\( ( - 67717762917308 \nu^{15} + 258235473611088 \nu^{14} - 497634782511666 \nu^{13} - 80312689721047 \nu^{12} + \cdots + 41\!\cdots\!60 ) / 13\!\cdots\!22 \)
|
\(\beta_{14}\) | \(=\) |
\( ( - 626947109265783 \nu^{15} + \cdots + 25\!\cdots\!04 ) / 10\!\cdots\!76 \)
|
\(\beta_{15}\) | \(=\) |
\( ( 627014941431923 \nu^{15} + \cdots - 41\!\cdots\!28 ) / 10\!\cdots\!76 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{13} + 2\beta_{9} + \beta_{3} + \beta_1 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{13} + \beta_{9} + \beta_{5} + 4\beta_{3} - \beta_{2} + \beta _1 - 2 \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{15} + \beta_{14} - \beta_{8} + \beta_{5} + \beta_{3} - 6\beta_{2} - \beta _1 - 15 \)
|
\(\nu^{5}\) | \(=\) |
\( \beta_{15} + \beta_{14} - 8 \beta_{13} + \beta_{12} - \beta_{11} - 10 \beta_{9} - 8 \beta_{8} + \beta_{6} + 2 \beta_{4} - 8 \beta_{3} - 8 \beta_{2} - 21 \beta _1 - 18 \)
|
\(\nu^{6}\) | \(=\) |
\( - 37 \beta_{13} + 4 \beta_{12} - 9 \beta_{11} - \beta_{10} - 52 \beta_{9} - 11 \beta_{8} + \beta_{7} - 11 \beta_{5} + 12 \beta_{4} - 47 \beta_{3} - 47 \beta_1 \)
|
\(\nu^{7}\) | \(=\) |
\( - 11 \beta_{15} - 9 \beta_{14} - 57 \beta_{13} + 15 \beta_{12} - 13 \beta_{11} - 77 \beta_{9} + 4 \beta_{7} - 15 \beta_{6} - 57 \beta_{5} + 26 \beta_{4} - 126 \beta_{3} + 57 \beta_{2} - 57 \beta _1 + 134 \)
|
\(\nu^{8}\) | \(=\) |
\( - 53 \beta_{15} - 53 \beta_{14} - 11 \beta_{11} + 15 \beta_{10} + 92 \beta_{8} + 15 \beta_{7} - 60 \beta_{6} - 92 \beta_{5} + 4 \beta_{4} - 81 \beta_{3} + 236 \beta_{2} + 81 \beta _1 + 567 \)
|
\(\nu^{9}\) | \(=\) |
\( - 62 \beta_{15} - 92 \beta_{14} + 394 \beta_{13} - 154 \beta_{12} + 92 \beta_{11} + 60 \beta_{10} + 554 \beta_{9} + 402 \beta_{8} - 154 \beta_{6} - 216 \beta_{4} + 394 \beta_{3} + 394 \beta_{2} + 807 \beta _1 + 948 \)
|
\(\nu^{10}\) | \(=\) |
\( 60 \beta_{15} - 60 \beta_{14} + 1543 \beta_{13} - 612 \beta_{12} + 496 \beta_{11} + 154 \beta_{10} + 2200 \beta_{9} + 702 \beta_{8} - 154 \beta_{7} + 702 \beta_{5} - 954 \beta_{4} + 2149 \beta_{3} + 2149 \beta_1 \)
|
\(\nu^{11}\) | \(=\) |
\( 702 \beta_{15} + 394 \beta_{14} + 2697 \beta_{13} - 1356 \beta_{12} + 1006 \beta_{11} + 3893 \beta_{9} - 612 \beta_{7} + 1356 \beta_{6} + 2839 \beta_{5} - 2058 \beta_{4} + 5344 \beta_{3} - 2697 \beta_{2} + 2697 \beta _1 - 6590 \)
|
\(\nu^{12}\) | \(=\) |
\( 2227 \beta_{15} + 2227 \beta_{14} + 744 \beta_{11} - 1356 \beta_{10} - 5149 \beta_{8} - 1356 \beta_{7} + 5336 \beta_{6} + 5149 \beta_{5} - 612 \beta_{4} + 4363 \beta_{3} - 10268 \beta_{2} - 4363 \beta _1 - 25195 \)
|
\(\nu^{13}\) | \(=\) |
\( 2437 \beta_{15} + 5149 \beta_{14} - 18424 \beta_{13} + 11019 \beta_{12} - 5149 \beta_{11} - 5336 \beta_{10} - 27114 \beta_{9} - 20058 \beta_{8} + 11019 \beta_{6} + 13456 \beta_{4} - 18424 \beta_{3} + \cdots - 45538 \)
|
\(\nu^{14}\) | \(=\) |
\( - 5336 \beta_{15} + 5336 \beta_{14} - 69179 \beta_{13} + 42920 \beta_{12} - 25741 \beta_{11} - 11019 \beta_{10} - 102334 \beta_{9} - 37029 \beta_{8} + 11019 \beta_{7} - 37029 \beta_{5} + \cdots - 99995 \beta_1 \)
|
\(\nu^{15}\) | \(=\) |
\( - 37029 \beta_{15} - 14991 \beta_{14} - 126005 \beta_{13} + 85363 \beta_{12} - 57911 \beta_{11} - 188245 \beta_{9} + 42920 \beta_{7} - 85363 \beta_{6} - 141543 \beta_{5} + 122392 \beta_{4} + \cdots + 314250 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/165\mathbb{Z}\right)^\times\).
\(n\) | \(46\) | \(56\) | \(67\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(\beta_{9}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 |
|
−1.86535 | − | 1.86535i | 1.54580 | − | 0.781338i | 4.95908i | 0.0840146 | + | 2.23449i | −4.34094 | − | 1.42600i | 2.42600 | − | 2.42600i | 5.51973 | − | 5.51973i | 1.77902 | − | 2.41559i | 4.01139 | − | 4.32483i | ||||||||||||||||||||||||||||||||||||||||||||||||||
23.2 | −1.63522 | − | 1.63522i | −1.37033 | + | 1.05933i | 3.34791i | 1.69456 | − | 1.45893i | 3.97305 | + | 0.508557i | 0.491443 | − | 0.491443i | 2.20413 | − | 2.20413i | 0.755630 | − | 2.90328i | −5.15665 | − | 0.385296i | |||||||||||||||||||||||||||||||||||||||||||||||||||
23.3 | −1.05652 | − | 1.05652i | −1.71860 | − | 0.215468i | 0.232479i | −0.158945 | + | 2.23041i | 1.58809 | + | 2.04338i | −1.04338 | + | 1.04338i | −1.86743 | + | 1.86743i | 2.90715 | + | 0.740604i | 2.52441 | − | 2.18855i | |||||||||||||||||||||||||||||||||||||||||||||||||||
23.4 | −0.416745 | − | 0.416745i | 0.554354 | − | 1.64094i | − | 1.65265i | −2.22420 | + | 0.230100i | −0.914879 | + | 0.452830i | 0.547170 | − | 0.547170i | −1.52222 | + | 1.52222i | −2.38538 | − | 1.81933i | 1.02282 | + | 0.831030i | ||||||||||||||||||||||||||||||||||||||||||||||||||
23.5 | −0.178913 | − | 0.178913i | 0.720382 | + | 1.57513i | − | 1.93598i | 0.754048 | − | 2.10509i | 0.152926 | − | 0.410697i | 1.41070 | − | 1.41070i | −0.704196 | + | 0.704196i | −1.96210 | + | 2.26940i | −0.511536 | + | 0.241719i | ||||||||||||||||||||||||||||||||||||||||||||||||||
23.6 | 0.688858 | + | 0.688858i | −1.67171 | − | 0.453204i | − | 1.05095i | −2.14206 | − | 0.641537i | −0.839376 | − | 1.46376i | 2.46376 | − | 2.46376i | 2.10167 | − | 2.10167i | 2.58921 | + | 1.51525i | −1.03365 | − | 1.91750i | ||||||||||||||||||||||||||||||||||||||||||||||||||
23.7 | 1.14633 | + | 1.14633i | −0.582649 | + | 1.63111i | 0.628149i | −0.515221 | + | 2.17590i | −2.53770 | + | 1.20188i | −0.201884 | + | 0.201884i | 1.57260 | − | 1.57260i | −2.32104 | − | 1.90073i | −3.08492 | + | 1.90369i | |||||||||||||||||||||||||||||||||||||||||||||||||||
23.8 | 1.31757 | + | 1.31757i | 1.52275 | + | 0.825374i | 1.47196i | −1.49219 | − | 1.66534i | 0.918834 | + | 3.09381i | −2.09381 | + | 2.09381i | 0.695724 | − | 0.695724i | 1.63751 | + | 2.51367i | 0.228136 | − | 4.16026i | |||||||||||||||||||||||||||||||||||||||||||||||||||
122.1 | −1.86535 | + | 1.86535i | 1.54580 | + | 0.781338i | − | 4.95908i | 0.0840146 | − | 2.23449i | −4.34094 | + | 1.42600i | 2.42600 | + | 2.42600i | 5.51973 | + | 5.51973i | 1.77902 | + | 2.41559i | 4.01139 | + | 4.32483i | ||||||||||||||||||||||||||||||||||||||||||||||||||
122.2 | −1.63522 | + | 1.63522i | −1.37033 | − | 1.05933i | − | 3.34791i | 1.69456 | + | 1.45893i | 3.97305 | − | 0.508557i | 0.491443 | + | 0.491443i | 2.20413 | + | 2.20413i | 0.755630 | + | 2.90328i | −5.15665 | + | 0.385296i | ||||||||||||||||||||||||||||||||||||||||||||||||||
122.3 | −1.05652 | + | 1.05652i | −1.71860 | + | 0.215468i | − | 0.232479i | −0.158945 | − | 2.23041i | 1.58809 | − | 2.04338i | −1.04338 | − | 1.04338i | −1.86743 | − | 1.86743i | 2.90715 | − | 0.740604i | 2.52441 | + | 2.18855i | ||||||||||||||||||||||||||||||||||||||||||||||||||
122.4 | −0.416745 | + | 0.416745i | 0.554354 | + | 1.64094i | 1.65265i | −2.22420 | − | 0.230100i | −0.914879 | − | 0.452830i | 0.547170 | + | 0.547170i | −1.52222 | − | 1.52222i | −2.38538 | + | 1.81933i | 1.02282 | − | 0.831030i | |||||||||||||||||||||||||||||||||||||||||||||||||||
122.5 | −0.178913 | + | 0.178913i | 0.720382 | − | 1.57513i | 1.93598i | 0.754048 | + | 2.10509i | 0.152926 | + | 0.410697i | 1.41070 | + | 1.41070i | −0.704196 | − | 0.704196i | −1.96210 | − | 2.26940i | −0.511536 | − | 0.241719i | |||||||||||||||||||||||||||||||||||||||||||||||||||
122.6 | 0.688858 | − | 0.688858i | −1.67171 | + | 0.453204i | 1.05095i | −2.14206 | + | 0.641537i | −0.839376 | + | 1.46376i | 2.46376 | + | 2.46376i | 2.10167 | + | 2.10167i | 2.58921 | − | 1.51525i | −1.03365 | + | 1.91750i | |||||||||||||||||||||||||||||||||||||||||||||||||||
122.7 | 1.14633 | − | 1.14633i | −0.582649 | − | 1.63111i | − | 0.628149i | −0.515221 | − | 2.17590i | −2.53770 | − | 1.20188i | −0.201884 | − | 0.201884i | 1.57260 | + | 1.57260i | −2.32104 | + | 1.90073i | −3.08492 | − | 1.90369i | ||||||||||||||||||||||||||||||||||||||||||||||||||
122.8 | 1.31757 | − | 1.31757i | 1.52275 | − | 0.825374i | − | 1.47196i | −1.49219 | + | 1.66534i | 0.918834 | − | 3.09381i | −2.09381 | − | 2.09381i | 0.695724 | + | 0.695724i | 1.63751 | − | 2.51367i | 0.228136 | + | 4.16026i | ||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
15.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 165.2.k.c | ✓ | 16 |
3.b | odd | 2 | 1 | 165.2.k.d | yes | 16 | |
5.b | even | 2 | 1 | 825.2.k.j | 16 | ||
5.c | odd | 4 | 1 | 165.2.k.d | yes | 16 | |
5.c | odd | 4 | 1 | 825.2.k.i | 16 | ||
15.d | odd | 2 | 1 | 825.2.k.i | 16 | ||
15.e | even | 4 | 1 | inner | 165.2.k.c | ✓ | 16 |
15.e | even | 4 | 1 | 825.2.k.j | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
165.2.k.c | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
165.2.k.c | ✓ | 16 | 15.e | even | 4 | 1 | inner |
165.2.k.d | yes | 16 | 3.b | odd | 2 | 1 | |
165.2.k.d | yes | 16 | 5.c | odd | 4 | 1 | |
825.2.k.i | 16 | 5.c | odd | 4 | 1 | ||
825.2.k.i | 16 | 15.d | odd | 2 | 1 | ||
825.2.k.j | 16 | 5.b | even | 2 | 1 | ||
825.2.k.j | 16 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{16} + 4 T_{2}^{15} + 8 T_{2}^{14} + 19 T_{2}^{12} + 80 T_{2}^{11} + 168 T_{2}^{10} - 28 T_{2}^{9} + 119 T_{2}^{8} + 432 T_{2}^{7} + 784 T_{2}^{6} - 84 T_{2}^{5} + 169 T_{2}^{4} + 420 T_{2}^{3} + 392 T_{2}^{2} + 112 T_{2} + 16 \)
acting on \(S_{2}^{\mathrm{new}}(165, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} + 4 T^{15} + 8 T^{14} + 19 T^{12} + \cdots + 16 \)
$3$
\( T^{16} + 2 T^{15} - T^{14} + 2 T^{13} + \cdots + 6561 \)
$5$
\( T^{16} + 8 T^{15} + 41 T^{14} + \cdots + 390625 \)
$7$
\( T^{16} - 8 T^{15} + 32 T^{14} - 56 T^{13} + \cdots + 256 \)
$11$
\( (T^{2} + 1)^{8} \)
$13$
\( T^{16} - 40 T^{13} + 1304 T^{12} + \cdots + 9216 \)
$17$
\( T^{16} - 8 T^{15} + 32 T^{14} + 88 T^{13} + \cdots + 256 \)
$19$
\( T^{16} + 228 T^{14} + \cdots + 35426304 \)
$23$
\( T^{16} - 14 T^{15} + \cdots + 1615396864 \)
$29$
\( (T^{8} + 8 T^{7} - 70 T^{6} - 504 T^{5} + \cdots - 3392)^{2} \)
$31$
\( (T^{8} - 4 T^{7} - 111 T^{6} + \cdots + 218512)^{2} \)
$37$
\( T^{16} + 6 T^{15} + \cdots + 214369000000 \)
$41$
\( T^{16} + 380 T^{14} + \cdots + 514444693504 \)
$43$
\( T^{16} - 16 T^{15} + \cdots + 1923348736 \)
$47$
\( T^{16} - 48 T^{15} + \cdots + 171409248256 \)
$53$
\( T^{16} + 4 T^{15} + 8 T^{14} + \cdots + 51609856 \)
$59$
\( (T^{8} + 34 T^{7} + 313 T^{6} + \cdots + 1225520)^{2} \)
$61$
\( (T^{8} + 4 T^{7} - 188 T^{6} + \cdots - 441344)^{2} \)
$67$
\( T^{16} - 6 T^{15} + \cdots + 3634642944 \)
$71$
\( T^{16} + 702 T^{14} + \cdots + 210027890944 \)
$73$
\( T^{16} - 736 T^{13} + \cdots + 15170339487744 \)
$79$
\( T^{16} + 764 T^{14} + \cdots + 14903526400 \)
$83$
\( T^{16} + 8 T^{15} + \cdots + 4917936384 \)
$89$
\( (T^{8} - 16 T^{7} - 179 T^{6} + \cdots + 112304)^{2} \)
$97$
\( T^{16} + \cdots + 629744570362944 \)
show more
show less