Defining parameters
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(165))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28 | 7 | 21 |
Cusp forms | 21 | 7 | 14 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(11\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(3\) |
Plus space | \(+\) | \(2\) | ||
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(165))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | 11 | |||||||
165.2.a.a | $2$ | $1.318$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(-2\) | \(-2\) | \(-4\) | $+$ | $+$ | $+$ | \(q+(-1+\beta )q^{2}-q^{3}+(1-2\beta )q^{4}-q^{5}+\cdots\) | |
165.2.a.b | $2$ | $1.318$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(-2\) | \(4\) | $-$ | $+$ | $+$ | \(q+\beta q^{2}+q^{3}+q^{4}-q^{5}+\beta q^{6}+2q^{7}+\cdots\) | |
165.2.a.c | $3$ | $1.318$ | 3.3.148.1 | None | \(-1\) | \(3\) | \(3\) | \(0\) | $-$ | $-$ | $-$ | \(q-\beta _{1}q^{2}+q^{3}+(1+\beta _{1}+\beta _{2})q^{4}+q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(165))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(165)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 2}\)