Properties

Label 165.2
Level 165
Weight 2
Dimension 599
Nonzero newspaces 12
Newforms 25
Sturm bound 3840
Trace bound 1

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newforms: \( 25 \)
Sturm bound: \(3840\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(165))\).

Total New Old
Modular forms 1120 703 417
Cusp forms 801 599 202
Eisenstein series 319 104 215

Trace form

\( 599q + 5q^{2} - 7q^{3} - 11q^{4} - q^{5} - 39q^{6} - 32q^{7} - 31q^{8} - 31q^{9} + O(q^{10}) \) \( 599q + 5q^{2} - 7q^{3} - 11q^{4} - q^{5} - 39q^{6} - 32q^{7} - 31q^{8} - 31q^{9} - 55q^{10} - 5q^{11} - 55q^{12} - 22q^{13} - 36q^{14} - 32q^{15} - 147q^{16} - 46q^{17} - 35q^{18} - 68q^{19} - 41q^{20} - 72q^{21} - 111q^{22} - 16q^{23} - 39q^{24} - 71q^{25} - 62q^{26} + 23q^{27} - 64q^{28} - 6q^{29} - 19q^{30} - 68q^{31} + 33q^{32} + 17q^{33} - 62q^{34} - 32q^{35} - 31q^{36} - 42q^{37} - 32q^{38} - 50q^{39} + 29q^{40} - 98q^{41} - 16q^{42} - 44q^{43} + 13q^{44} - 76q^{45} - 88q^{46} + 12q^{47} + 29q^{48} + 31q^{49} + 55q^{50} - 38q^{51} + 134q^{52} + 54q^{53} + 21q^{54} + 65q^{55} + 200q^{56} + 108q^{57} + 206q^{58} + 128q^{59} + 125q^{60} + 66q^{61} + 136q^{62} + 68q^{63} + 213q^{64} + 78q^{65} + 97q^{66} + 24q^{67} + 90q^{68} + 34q^{69} - 76q^{70} - 32q^{71} + 9q^{72} - 146q^{73} - 86q^{74} - 82q^{75} - 292q^{76} - 92q^{77} - 74q^{78} - 200q^{79} - 177q^{80} - 51q^{81} - 94q^{82} - 200q^{83} - 4q^{84} - 146q^{85} - 140q^{86} - 114q^{87} - 163q^{88} - 58q^{89} + 105q^{90} - 88q^{91} + 28q^{92} - 18q^{93} + 120q^{94} + 22q^{95} + 173q^{96} + 74q^{97} + 157q^{98} + 145q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(165))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
165.2.a \(\chi_{165}(1, \cdot)\) 165.2.a.a 2 1
165.2.a.b 2
165.2.a.c 3
165.2.c \(\chi_{165}(34, \cdot)\) 165.2.c.a 6 1
165.2.c.b 6
165.2.d \(\chi_{165}(164, \cdot)\) 165.2.d.a 2 1
165.2.d.b 2
165.2.d.c 16
165.2.f \(\chi_{165}(131, \cdot)\) 165.2.f.a 8 1
165.2.f.b 8
165.2.j \(\chi_{165}(43, \cdot)\) 165.2.j.a 24 2
165.2.k \(\chi_{165}(23, \cdot)\) 165.2.k.a 4 2
165.2.k.b 4
165.2.k.c 16
165.2.k.d 16
165.2.m \(\chi_{165}(16, \cdot)\) 165.2.m.a 8 4
165.2.m.b 8
165.2.m.c 8
165.2.m.d 8
165.2.p \(\chi_{165}(41, \cdot)\) 165.2.p.a 16 4
165.2.p.b 48
165.2.r \(\chi_{165}(29, \cdot)\) 165.2.r.a 80 4
165.2.s \(\chi_{165}(4, \cdot)\) 165.2.s.a 48 4
165.2.v \(\chi_{165}(38, \cdot)\) 165.2.v.a 160 8
165.2.w \(\chi_{165}(7, \cdot)\) 165.2.w.a 96 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(165))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(165)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 2}\)