Properties

Label 165.2
Level 165
Weight 2
Dimension 599
Nonzero newspaces 12
Newform subspaces 25
Sturm bound 3840
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 25 \)
Sturm bound: \(3840\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(165))\).

Total New Old
Modular forms 1120 703 417
Cusp forms 801 599 202
Eisenstein series 319 104 215

Trace form

\( 599 q + 5 q^{2} - 7 q^{3} - 11 q^{4} - q^{5} - 39 q^{6} - 32 q^{7} - 31 q^{8} - 31 q^{9} - 55 q^{10} - 5 q^{11} - 55 q^{12} - 22 q^{13} - 36 q^{14} - 32 q^{15} - 147 q^{16} - 46 q^{17} - 35 q^{18} - 68 q^{19}+ \cdots + 145 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(165))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
165.2.a \(\chi_{165}(1, \cdot)\) 165.2.a.a 2 1
165.2.a.b 2
165.2.a.c 3
165.2.c \(\chi_{165}(34, \cdot)\) 165.2.c.a 6 1
165.2.c.b 6
165.2.d \(\chi_{165}(164, \cdot)\) 165.2.d.a 2 1
165.2.d.b 2
165.2.d.c 16
165.2.f \(\chi_{165}(131, \cdot)\) 165.2.f.a 8 1
165.2.f.b 8
165.2.j \(\chi_{165}(43, \cdot)\) 165.2.j.a 24 2
165.2.k \(\chi_{165}(23, \cdot)\) 165.2.k.a 4 2
165.2.k.b 4
165.2.k.c 16
165.2.k.d 16
165.2.m \(\chi_{165}(16, \cdot)\) 165.2.m.a 8 4
165.2.m.b 8
165.2.m.c 8
165.2.m.d 8
165.2.p \(\chi_{165}(41, \cdot)\) 165.2.p.a 16 4
165.2.p.b 48
165.2.r \(\chi_{165}(29, \cdot)\) 165.2.r.a 80 4
165.2.s \(\chi_{165}(4, \cdot)\) 165.2.s.a 48 4
165.2.v \(\chi_{165}(38, \cdot)\) 165.2.v.a 160 8
165.2.w \(\chi_{165}(7, \cdot)\) 165.2.w.a 96 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(165))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(165)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 2}\)