Properties

Label 164.5.d.f.163.6
Level $164$
Weight $5$
Character 164.163
Analytic conductor $16.953$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [164,5,Mod(163,164)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("164.163"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(164, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 164 = 2^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 164.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,6,0,-162,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.9526739458\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 163.6
Character \(\chi\) \(=\) 164.163
Dual form 164.5.d.f.163.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.64057 - 1.65719i) q^{2} +12.7376 q^{3} +(10.5074 + 12.0662i) q^{4} -20.4399 q^{5} +(-46.3719 - 21.1085i) q^{6} -9.19140 q^{7} +(-18.2571 - 61.3407i) q^{8} +81.2453 q^{9} +(74.4128 + 33.8728i) q^{10} -123.546 q^{11} +(133.839 + 153.694i) q^{12} +161.922i q^{13} +(33.4619 + 15.2319i) q^{14} -260.354 q^{15} +(-35.1871 + 253.570i) q^{16} +238.118i q^{17} +(-295.779 - 134.639i) q^{18} -236.342 q^{19} +(-214.771 - 246.632i) q^{20} -117.076 q^{21} +(449.776 + 204.738i) q^{22} -267.309i q^{23} +(-232.550 - 781.330i) q^{24} -207.211 q^{25} +(268.336 - 589.488i) q^{26} +3.12443 q^{27} +(-96.5781 - 110.905i) q^{28} -419.632i q^{29} +(947.837 + 431.456i) q^{30} +735.805i q^{31} +(548.315 - 864.828i) q^{32} -1573.67 q^{33} +(394.606 - 866.884i) q^{34} +187.871 q^{35} +(853.681 + 980.323i) q^{36} -394.368 q^{37} +(860.420 + 391.664i) q^{38} +2062.49i q^{39} +(373.172 + 1253.80i) q^{40} +(-1675.83 - 131.679i) q^{41} +(426.223 + 194.017i) q^{42} +3179.64i q^{43} +(-1298.15 - 1490.73i) q^{44} -1660.65 q^{45} +(-442.981 + 973.156i) q^{46} -321.858 q^{47} +(-448.198 + 3229.86i) q^{48} -2316.52 q^{49} +(754.364 + 343.387i) q^{50} +3033.04i q^{51} +(-1953.79 + 1701.39i) q^{52} +3568.03i q^{53} +(-11.3747 - 5.17777i) q^{54} +2525.26 q^{55} +(167.808 + 563.807i) q^{56} -3010.42 q^{57} +(-695.410 + 1527.70i) q^{58} -2646.01i q^{59} +(-2735.66 - 3141.49i) q^{60} +2735.55 q^{61} +(1219.37 - 2678.75i) q^{62} -746.758 q^{63} +(-3429.36 + 2239.80i) q^{64} -3309.67i q^{65} +(5729.04 + 2607.87i) q^{66} +3660.04 q^{67} +(-2873.18 + 2502.01i) q^{68} -3404.86i q^{69} +(-683.958 - 311.338i) q^{70} +2837.05 q^{71} +(-1483.30 - 4983.64i) q^{72} -561.944 q^{73} +(1435.72 + 653.542i) q^{74} -2639.36 q^{75} +(-2483.35 - 2851.76i) q^{76} +1135.56 q^{77} +(3417.94 - 7508.64i) q^{78} +2409.86 q^{79} +(719.221 - 5182.95i) q^{80} -6541.07 q^{81} +(5882.77 + 3256.56i) q^{82} -8044.10i q^{83} +(-1230.17 - 1412.66i) q^{84} -4867.10i q^{85} +(5269.27 - 11575.7i) q^{86} -5345.09i q^{87} +(2255.58 + 7578.37i) q^{88} +8336.90i q^{89} +(6045.69 + 2752.00i) q^{90} -1488.29i q^{91} +(3225.41 - 2808.73i) q^{92} +9372.36i q^{93} +(1171.74 + 533.379i) q^{94} +4830.81 q^{95} +(6984.19 - 11015.8i) q^{96} -7959.56i q^{97} +(8433.44 + 3838.91i) q^{98} -10037.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 6 q^{2} - 162 q^{4} - 8 q^{5} + 162 q^{8} + 1728 q^{9} - 272 q^{10} - 2842 q^{16} - 298 q^{18} - 584 q^{20} + 280 q^{21} + 4264 q^{25} + 66 q^{32} + 3512 q^{33} - 11338 q^{36} + 5720 q^{37} - 4648 q^{40}+ \cdots + 2902 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/164\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(129\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.64057 1.65719i −0.910142 0.414297i
\(3\) 12.7376 1.41528 0.707642 0.706571i \(-0.249759\pi\)
0.707642 + 0.706571i \(0.249759\pi\)
\(4\) 10.5074 + 12.0662i 0.656715 + 0.754138i
\(5\) −20.4399 −0.817596 −0.408798 0.912625i \(-0.634052\pi\)
−0.408798 + 0.912625i \(0.634052\pi\)
\(6\) −46.3719 21.1085i −1.28811 0.586348i
\(7\) −9.19140 −0.187580 −0.0937898 0.995592i \(-0.529898\pi\)
−0.0937898 + 0.995592i \(0.529898\pi\)
\(8\) −18.2571 61.3407i −0.285266 0.958448i
\(9\) 81.2453 1.00303
\(10\) 74.4128 + 33.8728i 0.744128 + 0.338728i
\(11\) −123.546 −1.02104 −0.510519 0.859867i \(-0.670547\pi\)
−0.510519 + 0.859867i \(0.670547\pi\)
\(12\) 133.839 + 153.694i 0.929439 + 1.06732i
\(13\) 161.922i 0.958119i 0.877782 + 0.479060i \(0.159022\pi\)
−0.877782 + 0.479060i \(0.840978\pi\)
\(14\) 33.4619 + 15.2319i 0.170724 + 0.0777137i
\(15\) −260.354 −1.15713
\(16\) −35.1871 + 253.570i −0.137450 + 0.990509i
\(17\) 238.118i 0.823937i 0.911198 + 0.411969i \(0.135159\pi\)
−0.911198 + 0.411969i \(0.864841\pi\)
\(18\) −295.779 134.639i −0.912898 0.415552i
\(19\) −236.342 −0.654688 −0.327344 0.944905i \(-0.606154\pi\)
−0.327344 + 0.944905i \(0.606154\pi\)
\(20\) −214.771 246.632i −0.536928 0.616581i
\(21\) −117.076 −0.265478
\(22\) 449.776 + 204.738i 0.929289 + 0.423013i
\(23\) 267.309i 0.505310i −0.967556 0.252655i \(-0.918696\pi\)
0.967556 0.252655i \(-0.0813037\pi\)
\(24\) −232.550 781.330i −0.403733 1.35648i
\(25\) −207.211 −0.331537
\(26\) 268.336 589.488i 0.396946 0.872024i
\(27\) 3.12443 0.00428591
\(28\) −96.5781 110.905i −0.123186 0.141461i
\(29\) 419.632i 0.498968i −0.968379 0.249484i \(-0.919739\pi\)
0.968379 0.249484i \(-0.0802610\pi\)
\(30\) 947.837 + 431.456i 1.05315 + 0.479396i
\(31\) 735.805i 0.765666i 0.923817 + 0.382833i \(0.125052\pi\)
−0.923817 + 0.382833i \(0.874948\pi\)
\(32\) 548.315 864.828i 0.535464 0.844558i
\(33\) −1573.67 −1.44506
\(34\) 394.606 866.884i 0.341355 0.749900i
\(35\) 187.871 0.153364
\(36\) 853.681 + 980.323i 0.658704 + 0.756422i
\(37\) −394.368 −0.288070 −0.144035 0.989573i \(-0.546008\pi\)
−0.144035 + 0.989573i \(0.546008\pi\)
\(38\) 860.420 + 391.664i 0.595859 + 0.271235i
\(39\) 2062.49i 1.35601i
\(40\) 373.172 + 1253.80i 0.233233 + 0.783623i
\(41\) −1675.83 131.679i −0.996927 0.0783334i
\(42\) 426.223 + 194.017i 0.241623 + 0.109987i
\(43\) 3179.64i 1.71966i 0.510584 + 0.859828i \(0.329429\pi\)
−0.510584 + 0.859828i \(0.670571\pi\)
\(44\) −1298.15 1490.73i −0.670531 0.770004i
\(45\) −1660.65 −0.820072
\(46\) −442.981 + 973.156i −0.209349 + 0.459903i
\(47\) −321.858 −0.145703 −0.0728514 0.997343i \(-0.523210\pi\)
−0.0728514 + 0.997343i \(0.523210\pi\)
\(48\) −448.198 + 3229.86i −0.194530 + 1.40185i
\(49\) −2316.52 −0.964814
\(50\) 754.364 + 343.387i 0.301746 + 0.137355i
\(51\) 3033.04i 1.16610i
\(52\) −1953.79 + 1701.39i −0.722555 + 0.629212i
\(53\) 3568.03i 1.27021i 0.772425 + 0.635106i \(0.219044\pi\)
−0.772425 + 0.635106i \(0.780956\pi\)
\(54\) −11.3747 5.17777i −0.00390079 0.00177564i
\(55\) 2525.26 0.834796
\(56\) 167.808 + 563.807i 0.0535102 + 0.179785i
\(57\) −3010.42 −0.926569
\(58\) −695.410 + 1527.70i −0.206721 + 0.454132i
\(59\) 2646.01i 0.760130i −0.924960 0.380065i \(-0.875902\pi\)
0.924960 0.380065i \(-0.124098\pi\)
\(60\) −2735.66 3141.49i −0.759905 0.872636i
\(61\) 2735.55 0.735166 0.367583 0.929991i \(-0.380185\pi\)
0.367583 + 0.929991i \(0.380185\pi\)
\(62\) 1219.37 2678.75i 0.317214 0.696865i
\(63\) −746.758 −0.188148
\(64\) −3429.36 + 2239.80i −0.837246 + 0.546826i
\(65\) 3309.67i 0.783354i
\(66\) 5729.04 + 2607.87i 1.31521 + 0.598684i
\(67\) 3660.04 0.815334 0.407667 0.913131i \(-0.366342\pi\)
0.407667 + 0.913131i \(0.366342\pi\)
\(68\) −2873.18 + 2502.01i −0.621363 + 0.541092i
\(69\) 3404.86i 0.715157i
\(70\) −683.958 311.338i −0.139583 0.0635384i
\(71\) 2837.05 0.562795 0.281398 0.959591i \(-0.409202\pi\)
0.281398 + 0.959591i \(0.409202\pi\)
\(72\) −1483.30 4983.64i −0.286130 0.961351i
\(73\) −561.944 −0.105450 −0.0527251 0.998609i \(-0.516791\pi\)
−0.0527251 + 0.998609i \(0.516791\pi\)
\(74\) 1435.72 + 653.542i 0.262184 + 0.119347i
\(75\) −2639.36 −0.469219
\(76\) −2483.35 2851.76i −0.429944 0.493725i
\(77\) 1135.56 0.191526
\(78\) 3417.94 7508.64i 0.561792 1.23416i
\(79\) 2409.86 0.386134 0.193067 0.981186i \(-0.438157\pi\)
0.193067 + 0.981186i \(0.438157\pi\)
\(80\) 719.221 5182.95i 0.112378 0.809836i
\(81\) −6541.07 −0.996963
\(82\) 5882.77 + 3256.56i 0.874892 + 0.484319i
\(83\) 8044.10i 1.16767i −0.811871 0.583836i \(-0.801551\pi\)
0.811871 0.583836i \(-0.198449\pi\)
\(84\) −1230.17 1412.66i −0.174344 0.200207i
\(85\) 4867.10i 0.673648i
\(86\) 5269.27 11575.7i 0.712449 1.56513i
\(87\) 5345.09i 0.706181i
\(88\) 2255.58 + 7578.37i 0.291268 + 0.978612i
\(89\) 8336.90i 1.05251i 0.850328 + 0.526253i \(0.176403\pi\)
−0.850328 + 0.526253i \(0.823597\pi\)
\(90\) 6045.69 + 2752.00i 0.746381 + 0.339754i
\(91\) 1488.29i 0.179724i
\(92\) 3225.41 2808.73i 0.381074 0.331845i
\(93\) 9372.36i 1.08364i
\(94\) 1171.74 + 533.379i 0.132610 + 0.0603643i
\(95\) 4830.81 0.535270
\(96\) 6984.19 11015.8i 0.757833 1.19529i
\(97\) 7959.56i 0.845952i −0.906141 0.422976i \(-0.860985\pi\)
0.906141 0.422976i \(-0.139015\pi\)
\(98\) 8433.44 + 3838.91i 0.878117 + 0.399720i
\(99\) −10037.5 −1.02413
\(100\) −2177.25 2500.25i −0.217725 0.250025i
\(101\) 8429.91i 0.826381i −0.910645 0.413190i \(-0.864414\pi\)
0.910645 0.413190i \(-0.135586\pi\)
\(102\) 5026.32 11042.0i 0.483114 1.06132i
\(103\) 11551.8i 1.08887i 0.838803 + 0.544435i \(0.183256\pi\)
−0.838803 + 0.544435i \(0.816744\pi\)
\(104\) 9932.42 2956.22i 0.918308 0.273319i
\(105\) 2393.02 0.217054
\(106\) 5912.89 12989.6i 0.526246 1.15607i
\(107\) 1843.67i 0.161033i 0.996753 + 0.0805165i \(0.0256570\pi\)
−0.996753 + 0.0805165i \(0.974343\pi\)
\(108\) 32.8298 + 37.7001i 0.00281463 + 0.00323217i
\(109\) 3489.38i 0.293694i −0.989159 0.146847i \(-0.953087\pi\)
0.989159 0.146847i \(-0.0469125\pi\)
\(110\) −9193.37 4184.83i −0.759783 0.345854i
\(111\) −5023.28 −0.407700
\(112\) 323.419 2330.67i 0.0257828 0.185799i
\(113\) −14946.4 −1.17052 −0.585260 0.810846i \(-0.699008\pi\)
−0.585260 + 0.810846i \(0.699008\pi\)
\(114\) 10959.6 + 4988.84i 0.843309 + 0.383875i
\(115\) 5463.77i 0.413139i
\(116\) 5063.37 4409.26i 0.376291 0.327680i
\(117\) 13155.4i 0.961021i
\(118\) −4384.94 + 9632.98i −0.314920 + 0.691826i
\(119\) 2188.64i 0.154554i
\(120\) 4753.30 + 15970.3i 0.330090 + 1.10905i
\(121\) 622.508 0.0425182
\(122\) −9958.96 4533.33i −0.669105 0.304577i
\(123\) −21346.0 1677.26i −1.41093 0.110864i
\(124\) −8878.39 + 7731.44i −0.577419 + 0.502825i
\(125\) 17010.3 1.08866
\(126\) 2718.62 + 1237.52i 0.171241 + 0.0779491i
\(127\) 17115.5i 1.06116i −0.847633 0.530582i \(-0.821973\pi\)
0.847633 0.530582i \(-0.178027\pi\)
\(128\) 16196.6 2471.04i 0.988561 0.150820i
\(129\) 40500.9i 2.43380i
\(130\) −5484.75 + 12049.1i −0.324542 + 0.712963i
\(131\) 10956.7i 0.638465i 0.947676 + 0.319232i \(0.103425\pi\)
−0.947676 + 0.319232i \(0.896575\pi\)
\(132\) −16535.2 18988.2i −0.948992 1.08977i
\(133\) 2172.32 0.122806
\(134\) −13324.6 6065.37i −0.742070 0.337791i
\(135\) −63.8630 −0.00350415
\(136\) 14606.3 4347.33i 0.789701 0.235042i
\(137\) 34818.3i 1.85509i −0.373707 0.927547i \(-0.621913\pi\)
0.373707 0.927547i \(-0.378087\pi\)
\(138\) −5642.50 + 12395.6i −0.296288 + 0.650894i
\(139\) 9639.17i 0.498896i 0.968388 + 0.249448i \(0.0802492\pi\)
−0.968388 + 0.249448i \(0.919751\pi\)
\(140\) 1974.05 + 2266.90i 0.100717 + 0.115658i
\(141\) −4099.68 −0.206211
\(142\) −10328.5 4701.53i −0.512223 0.233165i
\(143\) 20004.8i 0.978276i
\(144\) −2858.79 + 20601.4i −0.137866 + 0.993508i
\(145\) 8577.24i 0.407954i
\(146\) 2045.79 + 931.248i 0.0959746 + 0.0436877i
\(147\) −29506.8 −1.36549
\(148\) −4143.80 4758.52i −0.189180 0.217244i
\(149\) 27184.1i 1.22446i −0.790682 0.612228i \(-0.790274\pi\)
0.790682 0.612228i \(-0.209726\pi\)
\(150\) 9608.75 + 4373.91i 0.427056 + 0.194396i
\(151\) 19700.8 0.864031 0.432015 0.901866i \(-0.357803\pi\)
0.432015 + 0.901866i \(0.357803\pi\)
\(152\) 4314.91 + 14497.4i 0.186760 + 0.627484i
\(153\) 19346.0i 0.826432i
\(154\) −4134.07 1881.83i −0.174316 0.0793487i
\(155\) 15039.8i 0.626006i
\(156\) −24886.5 + 21671.5i −1.02262 + 0.890513i
\(157\) 20847.8i 0.845788i 0.906179 + 0.422894i \(0.138986\pi\)
−0.906179 + 0.422894i \(0.861014\pi\)
\(158\) −8773.26 3993.60i −0.351437 0.159974i
\(159\) 45447.9i 1.79771i
\(160\) −11207.5 + 17677.0i −0.437793 + 0.690507i
\(161\) 2456.94i 0.0947858i
\(162\) 23813.2 + 10839.8i 0.907377 + 0.413039i
\(163\) 25362.6i 0.954593i 0.878742 + 0.477297i \(0.158383\pi\)
−0.878742 + 0.477297i \(0.841617\pi\)
\(164\) −16019.9 21604.6i −0.595623 0.803264i
\(165\) 32165.6 1.18147
\(166\) −13330.6 + 29285.1i −0.483764 + 1.06275i
\(167\) 52169.4 1.87061 0.935304 0.353846i \(-0.115126\pi\)
0.935304 + 0.353846i \(0.115126\pi\)
\(168\) 2137.46 + 7181.52i 0.0757321 + 0.254447i
\(169\) 2342.22 0.0820077
\(170\) −8065.71 + 17719.0i −0.279090 + 0.613115i
\(171\) −19201.7 −0.656670
\(172\) −38366.3 + 33409.9i −1.29686 + 1.12932i
\(173\) −5159.14 −0.172379 −0.0861896 0.996279i \(-0.527469\pi\)
−0.0861896 + 0.996279i \(0.527469\pi\)
\(174\) −8857.82 + 19459.1i −0.292569 + 0.642725i
\(175\) 1904.56 0.0621896
\(176\) 4347.21 31327.5i 0.140341 1.01135i
\(177\) 33703.7i 1.07580i
\(178\) 13815.8 30351.0i 0.436050 0.957929i
\(179\) 11400.9 0.355824 0.177912 0.984046i \(-0.443066\pi\)
0.177912 + 0.984046i \(0.443066\pi\)
\(180\) −17449.1 20037.7i −0.538554 0.618448i
\(181\) 41571.3i 1.26893i −0.772953 0.634463i \(-0.781221\pi\)
0.772953 0.634463i \(-0.218779\pi\)
\(182\) −2466.38 + 5418.22i −0.0744590 + 0.163574i
\(183\) 34844.3 1.04047
\(184\) −16396.9 + 4880.27i −0.484313 + 0.144148i
\(185\) 8060.83 0.235525
\(186\) 15531.8 34120.7i 0.448947 0.986262i
\(187\) 29418.4i 0.841271i
\(188\) −3381.90 3883.60i −0.0956853 0.109880i
\(189\) −28.7179 −0.000803950
\(190\) −17586.9 8005.57i −0.487172 0.221761i
\(191\) 30122.3 0.825698 0.412849 0.910799i \(-0.364534\pi\)
0.412849 + 0.910799i \(0.364534\pi\)
\(192\) −43681.7 + 28529.6i −1.18494 + 0.773914i
\(193\) 37272.9i 1.00064i −0.865840 0.500321i \(-0.833215\pi\)
0.865840 0.500321i \(-0.166785\pi\)
\(194\) −13190.5 + 28977.3i −0.350476 + 0.769936i
\(195\) 42157.1i 1.10867i
\(196\) −24340.7 27951.6i −0.633608 0.727603i
\(197\) −39523.9 −1.01842 −0.509211 0.860642i \(-0.670063\pi\)
−0.509211 + 0.860642i \(0.670063\pi\)
\(198\) 36542.2 + 16634.0i 0.932103 + 0.424294i
\(199\) 24377.7 0.615582 0.307791 0.951454i \(-0.400410\pi\)
0.307791 + 0.951454i \(0.400410\pi\)
\(200\) 3783.05 + 12710.4i 0.0945764 + 0.317761i
\(201\) 46619.9 1.15393
\(202\) −13970.0 + 30689.6i −0.342367 + 0.752123i
\(203\) 3857.01i 0.0935962i
\(204\) −36597.3 + 31869.5i −0.879405 + 0.765799i
\(205\) 34253.9 + 2691.50i 0.815084 + 0.0640451i
\(206\) 19143.6 42055.2i 0.451116 0.991027i
\(207\) 21717.6i 0.506840i
\(208\) −41058.6 5697.58i −0.949025 0.131693i
\(209\) 29199.0 0.668461
\(210\) −8711.95 3965.69i −0.197550 0.0899249i
\(211\) −11049.3 −0.248181 −0.124090 0.992271i \(-0.539601\pi\)
−0.124090 + 0.992271i \(0.539601\pi\)
\(212\) −43052.6 + 37490.8i −0.957916 + 0.834168i
\(213\) 36137.1 0.796515
\(214\) 3055.30 6711.99i 0.0667155 0.146563i
\(215\) 64991.6i 1.40598i
\(216\) −57.0429 191.655i −0.00122263 0.00410783i
\(217\) 6763.08i 0.143623i
\(218\) −5782.57 + 12703.3i −0.121677 + 0.267303i
\(219\) −7157.79 −0.149242
\(220\) 26534.0 + 30470.3i 0.548224 + 0.629552i
\(221\) −38556.6 −0.789430
\(222\) 18287.6 + 8324.52i 0.371065 + 0.168909i
\(223\) 56199.0i 1.13011i 0.825055 + 0.565053i \(0.191144\pi\)
−0.825055 + 0.565053i \(0.808856\pi\)
\(224\) −5039.78 + 7948.98i −0.100442 + 0.158422i
\(225\) −16834.9 −0.332541
\(226\) 54413.3 + 24769.0i 1.06534 + 0.484943i
\(227\) −46646.1 −0.905239 −0.452620 0.891704i \(-0.649510\pi\)
−0.452620 + 0.891704i \(0.649510\pi\)
\(228\) −31631.9 36324.4i −0.608492 0.698761i
\(229\) 92417.7i 1.76232i 0.472820 + 0.881159i \(0.343236\pi\)
−0.472820 + 0.881159i \(0.656764\pi\)
\(230\) 9054.50 19891.2i 0.171162 0.376015i
\(231\) 14464.2 0.271063
\(232\) −25740.5 + 7661.25i −0.478235 + 0.142339i
\(233\) 89487.7i 1.64836i 0.566330 + 0.824179i \(0.308363\pi\)
−0.566330 + 0.824179i \(0.691637\pi\)
\(234\) 21801.0 47893.1i 0.398148 0.874665i
\(235\) 6578.74 0.119126
\(236\) 31927.4 27802.8i 0.573243 0.499189i
\(237\) 30695.7 0.546489
\(238\) −3626.99 + 7967.88i −0.0640312 + 0.140666i
\(239\) −86747.6 −1.51866 −0.759332 0.650703i \(-0.774474\pi\)
−0.759332 + 0.650703i \(0.774474\pi\)
\(240\) 9161.12 66018.1i 0.159047 1.14615i
\(241\) −55558.3 −0.956566 −0.478283 0.878206i \(-0.658741\pi\)
−0.478283 + 0.878206i \(0.658741\pi\)
\(242\) −2266.28 1031.61i −0.0386976 0.0176152i
\(243\) −83570.3 −1.41527
\(244\) 28743.7 + 33007.8i 0.482795 + 0.554417i
\(245\) 47349.4 0.788828
\(246\) 74932.1 + 41480.6i 1.23822 + 0.685449i
\(247\) 38269.0i 0.627269i
\(248\) 45134.8 13433.6i 0.733852 0.218419i
\(249\) 102462.i 1.65259i
\(250\) −61927.1 28189.3i −0.990834 0.451029i
\(251\) 40524.1i 0.643229i 0.946871 + 0.321615i \(0.104226\pi\)
−0.946871 + 0.321615i \(0.895774\pi\)
\(252\) −7846.52 9010.54i −0.123559 0.141889i
\(253\) 33024.8i 0.515940i
\(254\) −28363.7 + 62310.2i −0.439638 + 0.965810i
\(255\) 61995.0i 0.953403i
\(256\) −63059.7 17844.8i −0.962215 0.272290i
\(257\) 113202.i 1.71392i 0.515386 + 0.856958i \(0.327649\pi\)
−0.515386 + 0.856958i \(0.672351\pi\)
\(258\) 67117.6 147446.i 1.00832 2.21510i
\(259\) 3624.79 0.0540360
\(260\) 39935.2 34776.2i 0.590758 0.514441i
\(261\) 34093.1i 0.500479i
\(262\) 18157.3 39888.6i 0.264514 0.581093i
\(263\) −11567.7 −0.167238 −0.0836192 0.996498i \(-0.526648\pi\)
−0.0836192 + 0.996498i \(0.526648\pi\)
\(264\) 28730.5 + 96529.9i 0.412227 + 1.38501i
\(265\) 72930.1i 1.03852i
\(266\) −7908.46 3599.94i −0.111771 0.0508782i
\(267\) 106192.i 1.48959i
\(268\) 38457.6 + 44162.8i 0.535443 + 0.614875i
\(269\) 101322. 1.40023 0.700117 0.714029i \(-0.253131\pi\)
0.700117 + 0.714029i \(0.253131\pi\)
\(270\) 232.498 + 105.833i 0.00318927 + 0.00145176i
\(271\) 36359.5i 0.495085i 0.968877 + 0.247543i \(0.0796230\pi\)
−0.968877 + 0.247543i \(0.920377\pi\)
\(272\) −60379.6 8378.68i −0.816117 0.113250i
\(273\) 18957.2i 0.254360i
\(274\) −57700.4 + 126758.i −0.768560 + 1.68840i
\(275\) 25600.0 0.338512
\(276\) 41083.8 35776.4i 0.539327 0.469654i
\(277\) −55294.7 −0.720649 −0.360325 0.932827i \(-0.617334\pi\)
−0.360325 + 0.932827i \(0.617334\pi\)
\(278\) 15973.9 35092.1i 0.206691 0.454066i
\(279\) 59780.7i 0.767985i
\(280\) −3429.98 11524.2i −0.0437497 0.146992i
\(281\) 18528.5i 0.234654i −0.993093 0.117327i \(-0.962567\pi\)
0.993093 0.117327i \(-0.0374326\pi\)
\(282\) 14925.1 + 6793.94i 0.187681 + 0.0854326i
\(283\) 84117.3i 1.05030i −0.851010 0.525149i \(-0.824010\pi\)
0.851010 0.525149i \(-0.175990\pi\)
\(284\) 29810.2 + 34232.5i 0.369596 + 0.424425i
\(285\) 61532.7 0.757559
\(286\) −33151.7 + 72828.7i −0.405297 + 0.890370i
\(287\) 15403.3 + 1210.31i 0.187003 + 0.0146938i
\(288\) 44548.0 70263.2i 0.537085 0.847116i
\(289\) 26820.9 0.321127
\(290\) 14214.1 31226.0i 0.169014 0.371296i
\(291\) 101385.i 1.19726i
\(292\) −5904.60 6780.54i −0.0692508 0.0795240i
\(293\) 99573.4i 1.15987i −0.814664 0.579933i \(-0.803079\pi\)
0.814664 0.579933i \(-0.196921\pi\)
\(294\) 107421. + 48898.3i 1.24279 + 0.565717i
\(295\) 54084.2i 0.621479i
\(296\) 7199.99 + 24190.8i 0.0821766 + 0.276100i
\(297\) −386.010 −0.00437608
\(298\) −45049.2 + 98965.6i −0.507288 + 1.11443i
\(299\) 43283.2 0.484147
\(300\) −27732.9 31847.0i −0.308143 0.353856i
\(301\) 29225.4i 0.322572i
\(302\) −71721.9 32647.9i −0.786390 0.357966i
\(303\) 107376.i 1.16956i
\(304\) 8316.21 59929.4i 0.0899867 0.648474i
\(305\) −55914.4 −0.601069
\(306\) 32059.9 70430.2i 0.342389 0.752170i
\(307\) 49363.4i 0.523755i 0.965101 + 0.261877i \(0.0843416\pi\)
−0.965101 + 0.261877i \(0.915658\pi\)
\(308\) 11931.8 + 13701.9i 0.125778 + 0.144437i
\(309\) 147142.i 1.54106i
\(310\) −24923.8 + 54753.3i −0.259353 + 0.569754i
\(311\) −39370.2 −0.407049 −0.203525 0.979070i \(-0.565240\pi\)
−0.203525 + 0.979070i \(0.565240\pi\)
\(312\) 126515. 37655.0i 1.29967 0.386824i
\(313\) 34387.2i 0.351000i 0.984479 + 0.175500i \(0.0561543\pi\)
−0.984479 + 0.175500i \(0.943846\pi\)
\(314\) 34548.8 75897.9i 0.350408 0.769787i
\(315\) 15263.7 0.153829
\(316\) 25321.5 + 29077.9i 0.253580 + 0.291198i
\(317\) 12073.7i 0.120150i 0.998194 + 0.0600750i \(0.0191340\pi\)
−0.998194 + 0.0600750i \(0.980866\pi\)
\(318\) 75315.8 165456.i 0.744787 1.63617i
\(319\) 51843.7i 0.509465i
\(320\) 70095.8 45781.3i 0.684529 0.447083i
\(321\) 23483.8i 0.227907i
\(322\) 4071.62 8944.66i 0.0392695 0.0862685i
\(323\) 56277.3i 0.539422i
\(324\) −68730.0 78926.0i −0.654721 0.751848i
\(325\) 33552.0i 0.317652i
\(326\) 42030.6 92334.2i 0.395485 0.868815i
\(327\) 44446.2i 0.415661i
\(328\) 22518.5 + 105201.i 0.209311 + 0.977849i
\(329\) 2958.32 0.0273309
\(330\) −117101. 53304.5i −1.07531 0.489481i
\(331\) 142970. 1.30494 0.652468 0.757816i \(-0.273734\pi\)
0.652468 + 0.757816i \(0.273734\pi\)
\(332\) 97061.8 84522.9i 0.880587 0.766828i
\(333\) −32040.5 −0.288942
\(334\) −189926. 86454.5i −1.70252 0.774988i
\(335\) −74810.8 −0.666614
\(336\) 4119.57 29687.0i 0.0364899 0.262959i
\(337\) −163863. −1.44285 −0.721425 0.692493i \(-0.756513\pi\)
−0.721425 + 0.692493i \(0.756513\pi\)
\(338\) −8527.01 3881.50i −0.0746386 0.0339756i
\(339\) −190380. −1.65662
\(340\) 58727.5 51140.8i 0.508024 0.442395i
\(341\) 90905.5i 0.781774i
\(342\) 69905.1 + 31820.9i 0.597663 + 0.272057i
\(343\) 43360.6 0.368559
\(344\) 195042. 58050.9i 1.64820 0.490560i
\(345\) 69595.0i 0.584709i
\(346\) 18782.2 + 8549.67i 0.156889 + 0.0714162i
\(347\) 229696. 1.90764 0.953818 0.300386i \(-0.0971156\pi\)
0.953818 + 0.300386i \(0.0971156\pi\)
\(348\) 64495.0 56163.2i 0.532559 0.463760i
\(349\) −161790. −1.32831 −0.664157 0.747593i \(-0.731209\pi\)
−0.664157 + 0.747593i \(0.731209\pi\)
\(350\) −6933.66 3156.21i −0.0566013 0.0257650i
\(351\) 505.915i 0.00410642i
\(352\) −67741.9 + 106846.i −0.546729 + 0.862326i
\(353\) −198778. −1.59521 −0.797606 0.603179i \(-0.793900\pi\)
−0.797606 + 0.603179i \(0.793900\pi\)
\(354\) −55853.5 + 122701.i −0.445701 + 0.979130i
\(355\) −57989.0 −0.460139
\(356\) −100595. + 87599.5i −0.793735 + 0.691197i
\(357\) 27877.9i 0.218738i
\(358\) −41505.9 18893.5i −0.323850 0.147417i
\(359\) 70546.3i 0.547376i 0.961819 + 0.273688i \(0.0882435\pi\)
−0.961819 + 0.273688i \(0.911756\pi\)
\(360\) 30318.5 + 101865.i 0.233939 + 0.785996i
\(361\) −74463.3 −0.571384
\(362\) −68891.5 + 151343.i −0.525713 + 1.15490i
\(363\) 7929.24 0.0601753
\(364\) 17958.0 15638.1i 0.135536 0.118027i
\(365\) 11486.1 0.0862156
\(366\) −126853. 57743.5i −0.946974 0.431064i
\(367\) 63570.6i 0.471981i 0.971755 + 0.235990i \(0.0758334\pi\)
−0.971755 + 0.235990i \(0.924167\pi\)
\(368\) 67781.6 + 9405.83i 0.500514 + 0.0694547i
\(369\) −136154. 10698.3i −0.999946 0.0785707i
\(370\) −29346.0 13358.3i −0.214361 0.0975772i
\(371\) 32795.2i 0.238266i
\(372\) −113089. + 98479.6i −0.817211 + 0.711640i
\(373\) 51703.3 0.371622 0.185811 0.982586i \(-0.440509\pi\)
0.185811 + 0.982586i \(0.440509\pi\)
\(374\) −48751.9 + 107100.i −0.348536 + 0.765676i
\(375\) 216670. 1.54076
\(376\) 5876.17 + 19743.0i 0.0415641 + 0.139649i
\(377\) 67947.7 0.478071
\(378\) 104.549 + 47.5910i 0.000731708 + 0.000333074i
\(379\) 267423.i 1.86174i 0.365346 + 0.930872i \(0.380951\pi\)
−0.365346 + 0.930872i \(0.619049\pi\)
\(380\) 50759.5 + 58289.6i 0.351520 + 0.403668i
\(381\) 218010.i 1.50185i
\(382\) −109662. 49918.4i −0.751502 0.342085i
\(383\) −4628.99 −0.0315565 −0.0157782 0.999876i \(-0.505023\pi\)
−0.0157782 + 0.999876i \(0.505023\pi\)
\(384\) 206305. 31475.0i 1.39909 0.213454i
\(385\) −23210.7 −0.156591
\(386\) −61768.3 + 135695.i −0.414564 + 0.910726i
\(387\) 258331.i 1.72486i
\(388\) 96041.8 83634.7i 0.637965 0.555550i
\(389\) −90834.3 −0.600276 −0.300138 0.953896i \(-0.597033\pi\)
−0.300138 + 0.953896i \(0.597033\pi\)
\(390\) −69862.3 + 153476.i −0.459318 + 1.00905i
\(391\) 63651.0 0.416344
\(392\) 42292.8 + 142097.i 0.275229 + 0.924724i
\(393\) 139562.i 0.903609i
\(394\) 143889. + 65498.6i 0.926908 + 0.421929i
\(395\) −49257.3 −0.315702
\(396\) −105468. 121115.i −0.672562 0.772336i
\(397\) 73959.6i 0.469260i 0.972085 + 0.234630i \(0.0753879\pi\)
−0.972085 + 0.234630i \(0.924612\pi\)
\(398\) −88748.5 40398.4i −0.560267 0.255034i
\(399\) 27670.0 0.173805
\(400\) 7291.15 52542.4i 0.0455697 0.328390i
\(401\) −114072. −0.709397 −0.354699 0.934981i \(-0.615417\pi\)
−0.354699 + 0.934981i \(0.615417\pi\)
\(402\) −169723. 77258.0i −1.05024 0.478070i
\(403\) −119143. −0.733600
\(404\) 101717. 88576.8i 0.623205 0.542697i
\(405\) 133699. 0.815112
\(406\) 6391.79 14041.7i 0.0387767 0.0851858i
\(407\) 48722.4 0.294130
\(408\) 186049. 55374.3i 1.11765 0.332651i
\(409\) −46424.2 −0.277522 −0.138761 0.990326i \(-0.544312\pi\)
−0.138761 + 0.990326i \(0.544312\pi\)
\(410\) −120243. 66563.7i −0.715308 0.395977i
\(411\) 443499.i 2.62548i
\(412\) −139387. + 121380.i −0.821159 + 0.715078i
\(413\) 24320.6i 0.142585i
\(414\) −35990.2 + 79064.3i −0.209982 + 0.461296i
\(415\) 164420.i 0.954684i
\(416\) 140035. + 88784.3i 0.809187 + 0.513038i
\(417\) 122780.i 0.706080i
\(418\) −106301. 48388.3i −0.608394 0.276942i
\(419\) 161644.i 0.920727i 0.887731 + 0.460363i \(0.152281\pi\)
−0.887731 + 0.460363i \(0.847719\pi\)
\(420\) 25144.5 + 28874.7i 0.142543 + 0.163689i
\(421\) 294394.i 1.66098i 0.557034 + 0.830490i \(0.311939\pi\)
−0.557034 + 0.830490i \(0.688061\pi\)
\(422\) 40225.6 + 18310.7i 0.225880 + 0.102821i
\(423\) −26149.4 −0.146144
\(424\) 218865. 65141.6i 1.21743 0.362349i
\(425\) 49340.5i 0.273166i
\(426\) −131559. 59886.0i −0.724941 0.329994i
\(427\) −25143.6 −0.137902
\(428\) −22246.1 + 19372.2i −0.121441 + 0.105753i
\(429\) 254812.i 1.38454i
\(430\) −107703. + 236606.i −0.582495 + 1.27964i
\(431\) 240746.i 1.29600i 0.761640 + 0.648001i \(0.224395\pi\)
−0.761640 + 0.648001i \(0.775605\pi\)
\(432\) −109.940 + 792.263i −0.000589098 + 0.00424523i
\(433\) 302542. 1.61365 0.806826 0.590790i \(-0.201184\pi\)
0.806826 + 0.590790i \(0.201184\pi\)
\(434\) −11207.7 + 24621.5i −0.0595028 + 0.130718i
\(435\) 109253.i 0.577371i
\(436\) 42103.6 36664.5i 0.221486 0.192874i
\(437\) 63176.4i 0.330820i
\(438\) 26058.4 + 11861.8i 0.135831 + 0.0618305i
\(439\) −264484. −1.37237 −0.686183 0.727429i \(-0.740715\pi\)
−0.686183 + 0.727429i \(0.740715\pi\)
\(440\) −46103.8 154901.i −0.238139 0.800109i
\(441\) −188206. −0.967736
\(442\) 140368. + 63895.5i 0.718493 + 0.327059i
\(443\) 117956.i 0.601054i −0.953773 0.300527i \(-0.902837\pi\)
0.953773 0.300527i \(-0.0971625\pi\)
\(444\) −52781.8 60612.0i −0.267743 0.307463i
\(445\) 170405.i 0.860524i
\(446\) 93132.5 204596.i 0.468200 1.02856i
\(447\) 346259.i 1.73295i
\(448\) 31520.6 20586.9i 0.157050 0.102573i
\(449\) −329452. −1.63418 −0.817090 0.576510i \(-0.804414\pi\)
−0.817090 + 0.576510i \(0.804414\pi\)
\(450\) 61288.5 + 27898.6i 0.302659 + 0.137771i
\(451\) 207042. + 16268.3i 1.01790 + 0.0799814i
\(452\) −157048. 180346.i −0.768699 0.882734i
\(453\) 250940. 1.22285
\(454\) 169818. + 77301.4i 0.823896 + 0.375038i
\(455\) 30420.5i 0.146941i
\(456\) 54961.4 + 184661.i 0.264319 + 0.888068i
\(457\) 139636.i 0.668598i −0.942467 0.334299i \(-0.891501\pi\)
0.942467 0.334299i \(-0.108499\pi\)
\(458\) 153154. 336453.i 0.730124 1.60396i
\(459\) 743.983i 0.00353132i
\(460\) −65927.0 + 57410.2i −0.311564 + 0.271315i
\(461\) −97954.6 −0.460917 −0.230459 0.973082i \(-0.574023\pi\)
−0.230459 + 0.973082i \(0.574023\pi\)
\(462\) −52657.9 23969.9i −0.246706 0.112301i
\(463\) −81767.7 −0.381434 −0.190717 0.981645i \(-0.561081\pi\)
−0.190717 + 0.981645i \(0.561081\pi\)
\(464\) 106406. + 14765.7i 0.494232 + 0.0685830i
\(465\) 191570.i 0.885976i
\(466\) 148298. 325786.i 0.682910 1.50024i
\(467\) 30540.8i 0.140038i 0.997546 + 0.0700192i \(0.0223060\pi\)
−0.997546 + 0.0700192i \(0.977694\pi\)
\(468\) −158736. + 138230.i −0.724743 + 0.631117i
\(469\) −33640.9 −0.152940
\(470\) −23950.3 10902.2i −0.108422 0.0493536i
\(471\) 265550.i 1.19703i
\(472\) −162308. + 48308.4i −0.728545 + 0.216840i
\(473\) 392831.i 1.75583i
\(474\) −111750. 50868.7i −0.497382 0.226409i
\(475\) 48972.6 0.217053
\(476\) 26408.6 22997.0i 0.116555 0.101498i
\(477\) 289885.i 1.27406i
\(478\) 315811. + 143757.i 1.38220 + 0.629179i
\(479\) −134802. −0.587525 −0.293763 0.955878i \(-0.594908\pi\)
−0.293763 + 0.955878i \(0.594908\pi\)
\(480\) −142756. + 225162.i −0.619601 + 0.977264i
\(481\) 63856.8i 0.276005i
\(482\) 202264. + 92070.6i 0.870610 + 0.396303i
\(483\) 31295.4i 0.134149i
\(484\) 6540.97 + 7511.32i 0.0279223 + 0.0320646i
\(485\) 162693.i 0.691647i
\(486\) 304243. + 138492.i 1.28810 + 0.586343i
\(487\) 384607.i 1.62166i −0.585284 0.810828i \(-0.699017\pi\)
0.585284 0.810828i \(-0.300983\pi\)
\(488\) −49943.1 167801.i −0.209718 0.704619i
\(489\) 323057.i 1.35102i
\(490\) −172379. 78466.9i −0.717945 0.326809i
\(491\) 300163.i 1.24507i 0.782591 + 0.622536i \(0.213898\pi\)
−0.782591 + 0.622536i \(0.786102\pi\)
\(492\) −204054. 275190.i −0.842976 1.13685i
\(493\) 99921.9 0.411118
\(494\) −63419.1 + 139321.i −0.259876 + 0.570904i
\(495\) 205165. 0.837324
\(496\) −186578. 25890.9i −0.758399 0.105241i
\(497\) −26076.5 −0.105569
\(498\) −169799. + 373020.i −0.684663 + 1.50409i
\(499\) −348668. −1.40027 −0.700134 0.714012i \(-0.746876\pi\)
−0.700134 + 0.714012i \(0.746876\pi\)
\(500\) 178735. + 205250.i 0.714939 + 0.821000i
\(501\) 664510. 2.64744
\(502\) 67156.1 147531.i 0.266488 0.585430i
\(503\) −485393. −1.91848 −0.959240 0.282592i \(-0.908806\pi\)
−0.959240 + 0.282592i \(0.908806\pi\)
\(504\) 13633.6 + 45806.7i 0.0536722 + 0.180330i
\(505\) 172306.i 0.675645i
\(506\) 54728.4 120229.i 0.213753 0.469579i
\(507\) 29834.2 0.116064
\(508\) 206520. 179840.i 0.800265 0.696883i
\(509\) 412610.i 1.59259i 0.604909 + 0.796295i \(0.293210\pi\)
−0.604909 + 0.796295i \(0.706790\pi\)
\(510\) −102737. + 225697.i −0.394992 + 0.867731i
\(511\) 5165.05 0.0197803
\(512\) 200001. + 169467.i 0.762943 + 0.646466i
\(513\) −738.435 −0.00280594
\(514\) 187598. 412121.i 0.710071 1.55991i
\(515\) 236118.i 0.890256i
\(516\) −488693. + 425561.i −1.83542 + 1.59831i
\(517\) 39764.1 0.148768
\(518\) −13196.3 6006.96i −0.0491804 0.0223870i
\(519\) −65714.8 −0.243965
\(520\) −203018. + 60424.8i −0.750805 + 0.223465i
\(521\) 275507.i 1.01498i 0.861658 + 0.507489i \(0.169426\pi\)
−0.861658 + 0.507489i \(0.830574\pi\)
\(522\) −56498.8 + 124118.i −0.207347 + 0.455507i
\(523\) 429200.i 1.56912i −0.620053 0.784560i \(-0.712889\pi\)
0.620053 0.784560i \(-0.287111\pi\)
\(524\) −132206. + 115127.i −0.481491 + 0.419290i
\(525\) 24259.4 0.0880159
\(526\) 42113.0 + 19169.9i 0.152211 + 0.0692864i
\(527\) −175208. −0.630861
\(528\) 55372.9 399035.i 0.198623 1.43134i
\(529\) 208387. 0.744662
\(530\) −120859. + 265507.i −0.430256 + 0.945200i
\(531\) 214976.i 0.762432i
\(532\) 22825.5 + 26211.6i 0.0806486 + 0.0926128i
\(533\) 21321.7 271355.i 0.0750528 0.955175i
\(534\) 175980. 386598.i 0.617135 1.35574i
\(535\) 37684.3i 0.131660i
\(536\) −66821.5 224509.i −0.232588 0.781456i
\(537\) 145220. 0.503592
\(538\) −368870. 167910.i −1.27441 0.580113i
\(539\) 286196. 0.985111
\(540\) −671.038 770.585i −0.00230123 0.00264261i
\(541\) 251897. 0.860654 0.430327 0.902673i \(-0.358398\pi\)
0.430327 + 0.902673i \(0.358398\pi\)
\(542\) 60254.7 132369.i 0.205112 0.450598i
\(543\) 529517.i 1.79589i
\(544\) 205931. + 130564.i 0.695863 + 0.441189i
\(545\) 71322.6i 0.240123i
\(546\) −31415.7 + 69014.9i −0.105381 + 0.231504i
\(547\) 281478. 0.940740 0.470370 0.882469i \(-0.344121\pi\)
0.470370 + 0.882469i \(0.344121\pi\)
\(548\) 420125. 365851.i 1.39900 1.21827i
\(549\) 222251. 0.737393
\(550\) −93198.3 42424.0i −0.308094 0.140245i
\(551\) 99176.8i 0.326668i
\(552\) −208857. + 62162.7i −0.685441 + 0.204010i
\(553\) −22150.0 −0.0724308
\(554\) 201304. + 91633.8i 0.655893 + 0.298563i
\(555\) 102675. 0.333334
\(556\) −116308. + 101283.i −0.376237 + 0.327633i
\(557\) 372163.i 1.19956i −0.800164 0.599781i \(-0.795254\pi\)
0.800164 0.599781i \(-0.204746\pi\)
\(558\) 99068.0 217636.i 0.318174 0.698975i
\(559\) −514855. −1.64764
\(560\) −6610.65 + 47638.6i −0.0210799 + 0.151909i
\(561\) 374719.i 1.19064i
\(562\) −30705.3 + 67454.4i −0.0972167 + 0.213569i
\(563\) 441661. 1.39339 0.696694 0.717368i \(-0.254654\pi\)
0.696694 + 0.717368i \(0.254654\pi\)
\(564\) −43077.1 49467.6i −0.135422 0.155512i
\(565\) 305502. 0.957013
\(566\) −139398. + 306235.i −0.435136 + 0.955920i
\(567\) 60121.6 0.187010
\(568\) −51796.2 174027.i −0.160547 0.539410i
\(569\) −155484. −0.480244 −0.240122 0.970743i \(-0.577187\pi\)
−0.240122 + 0.970743i \(0.577187\pi\)
\(570\) −224014. 101971.i −0.689486 0.313855i
\(571\) 397304. 1.21857 0.609286 0.792951i \(-0.291456\pi\)
0.609286 + 0.792951i \(0.291456\pi\)
\(572\) 241382. 210199.i 0.737756 0.642449i
\(573\) 383685. 1.16860
\(574\) −54070.9 29932.3i −0.164112 0.0908483i
\(575\) 55389.2i 0.167529i
\(576\) −278619. + 181973.i −0.839782 + 0.548482i
\(577\) 501200.i 1.50543i −0.658348 0.752714i \(-0.728745\pi\)
0.658348 0.752714i \(-0.271255\pi\)
\(578\) −97643.2 44447.3i −0.292271 0.133042i
\(579\) 474766.i 1.41619i
\(580\) −103495. + 90124.9i −0.307654 + 0.267910i
\(581\) 73936.5i 0.219032i
\(582\) −168015. + 369100.i −0.496023 + 1.08968i
\(583\) 440814.i 1.29693i
\(584\) 10259.4 + 34470.0i 0.0300814 + 0.101069i
\(585\) 268895.i 0.785727i
\(586\) −165012. + 362503.i −0.480530 + 1.05564i
\(587\) 385632. 1.11917 0.559586 0.828772i \(-0.310960\pi\)
0.559586 + 0.828772i \(0.310960\pi\)
\(588\) −310041. 356035.i −0.896735 1.02977i
\(589\) 173902.i 0.501272i
\(590\) 89627.8 196897.i 0.257477 0.565634i
\(591\) −503438. −1.44136
\(592\) 13876.7 99999.9i 0.0395951 0.285336i
\(593\) 236772.i 0.673318i 0.941627 + 0.336659i \(0.109297\pi\)
−0.941627 + 0.336659i \(0.890703\pi\)
\(594\) 1405.29 + 639.691i 0.00398285 + 0.00181300i
\(595\) 44735.5i 0.126363i
\(596\) 328010. 285636.i 0.923409 0.804118i
\(597\) 310512. 0.871223
\(598\) −157575. 71728.5i −0.440642 0.200581i
\(599\) 285158.i 0.794752i 0.917656 + 0.397376i \(0.130079\pi\)
−0.917656 + 0.397376i \(0.869921\pi\)
\(600\) 48186.9 + 161900.i 0.133852 + 0.449722i
\(601\) 145665.i 0.403280i 0.979460 + 0.201640i \(0.0646271\pi\)
−0.979460 + 0.201640i \(0.935373\pi\)
\(602\) −48432.0 + 106397.i −0.133641 + 0.293587i
\(603\) 297361. 0.817803
\(604\) 207005. + 237714.i 0.567422 + 0.651599i
\(605\) −12724.0 −0.0347627
\(606\) −177943. + 390911.i −0.484547 + 1.06447i
\(607\) 219232.i 0.595012i 0.954720 + 0.297506i \(0.0961548\pi\)
−0.954720 + 0.297506i \(0.903845\pi\)
\(608\) −129590. + 204395.i −0.350562 + 0.552922i
\(609\) 49128.8i 0.132465i
\(610\) 203560. + 92660.8i 0.547058 + 0.249021i
\(611\) 52115.9i 0.139601i
\(612\) −233432. + 203277.i −0.623244 + 0.542731i
\(613\) 281375. 0.748797 0.374398 0.927268i \(-0.377849\pi\)
0.374398 + 0.927268i \(0.377849\pi\)
\(614\) 81804.5 179711.i 0.216990 0.476691i
\(615\) 436311. + 34283.1i 1.15357 + 0.0906420i
\(616\) −20731.9 69655.8i −0.0546359 0.183568i
\(617\) −623247. −1.63715 −0.818577 0.574397i \(-0.805237\pi\)
−0.818577 + 0.574397i \(0.805237\pi\)
\(618\) 243842. 535681.i 0.638458 1.40258i
\(619\) 22048.4i 0.0575433i −0.999586 0.0287717i \(-0.990840\pi\)
0.999586 0.0287717i \(-0.00915957\pi\)
\(620\) 181473. 158030.i 0.472095 0.411108i
\(621\) 835.188i 0.00216571i
\(622\) 143330. + 65243.9i 0.370473 + 0.168639i
\(623\) 76627.7i 0.197429i
\(624\) −522987. 72573.2i −1.34314 0.186383i
\(625\) −218182. −0.558546
\(626\) 56986.0 125189.i 0.145419 0.319460i
\(627\) 371924. 0.946062
\(628\) −251554. + 219057.i −0.637841 + 0.555442i
\(629\) 93905.9i 0.237351i
\(630\) −55568.4 25294.8i −0.140006 0.0637308i
\(631\) 351702.i 0.883316i −0.897183 0.441658i \(-0.854390\pi\)
0.897183 0.441658i \(-0.145610\pi\)
\(632\) −43997.0 147823.i −0.110151 0.370089i
\(633\) −140741. −0.351246
\(634\) 20008.5 43955.3i 0.0497778 0.109353i
\(635\) 349840.i 0.867604i
\(636\) −548384. + 477542.i −1.35572 + 1.18058i
\(637\) 375096.i 0.924407i
\(638\) 85914.8 188740.i 0.211070 0.463686i
\(639\) 230497. 0.564499
\(640\) −331057. + 50507.8i −0.808244 + 0.123310i
\(641\) 605323.i 1.47323i 0.676311 + 0.736616i \(0.263577\pi\)
−0.676311 + 0.736616i \(0.736423\pi\)
\(642\) 38917.1 85494.3i 0.0944214 0.207428i
\(643\) 11372.6 0.0275067 0.0137534 0.999905i \(-0.495622\pi\)
0.0137534 + 0.999905i \(0.495622\pi\)
\(644\) −29646.0 + 25816.2i −0.0714816 + 0.0622473i
\(645\) 827834.i 1.98987i
\(646\) −93262.2 + 204881.i −0.223481 + 0.490950i
\(647\) 775276.i 1.85203i 0.377487 + 0.926015i \(0.376788\pi\)
−0.377487 + 0.926015i \(0.623212\pi\)
\(648\) 119421. + 401234.i 0.284400 + 0.955537i
\(649\) 326903.i 0.776121i
\(650\) −55602.0 + 122148.i −0.131602 + 0.289108i
\(651\) 86145.1i 0.203268i
\(652\) −306030. + 266496.i −0.719895 + 0.626896i
\(653\) 199228.i 0.467222i −0.972330 0.233611i \(-0.924946\pi\)
0.972330 0.233611i \(-0.0750542\pi\)
\(654\) −73655.7 + 161809.i −0.172207 + 0.378310i
\(655\) 223954.i 0.522006i
\(656\) 92357.6 420308.i 0.214617 0.976698i
\(657\) −45655.3 −0.105770
\(658\) −10770.0 4902.50i −0.0248750 0.0113231i
\(659\) 58349.5 0.134359 0.0671794 0.997741i \(-0.478600\pi\)
0.0671794 + 0.997741i \(0.478600\pi\)
\(660\) 337979. + 388117.i 0.775892 + 0.890995i
\(661\) 788610. 1.80493 0.902463 0.430767i \(-0.141757\pi\)
0.902463 + 0.430767i \(0.141757\pi\)
\(662\) −520492. 236929.i −1.18768 0.540632i
\(663\) −491116. −1.11727
\(664\) −493430. + 146861.i −1.11915 + 0.333098i
\(665\) −44401.9 −0.100406
\(666\) 116646. + 53097.2i 0.262978 + 0.119708i
\(667\) −112171. −0.252133
\(668\) 548167. + 629487.i 1.22846 + 1.41070i
\(669\) 715838.i 1.59942i
\(670\) 272354. + 123976.i 0.606713 + 0.276176i
\(671\) −337966. −0.750633
\(672\) −64194.5 + 101251.i −0.142154 + 0.224212i
\(673\) 336101.i 0.742061i 0.928621 + 0.371031i \(0.120996\pi\)
−0.928621 + 0.371031i \(0.879004\pi\)
\(674\) 596554. + 271552.i 1.31320 + 0.597769i
\(675\) −647.415 −0.00142094
\(676\) 24610.8 + 28261.7i 0.0538557 + 0.0618451i
\(677\) −457.310 −0.000997777 −0.000498889 1.00000i \(-0.500159\pi\)
−0.000498889 1.00000i \(0.500159\pi\)
\(678\) 693092. + 315496.i 1.50776 + 0.686333i
\(679\) 73159.5i 0.158683i
\(680\) −298552. + 88859.0i −0.645656 + 0.192169i
\(681\) −594157. −1.28117
\(682\) −150648. + 330948.i −0.323887 + 0.711525i
\(683\) −405013. −0.868215 −0.434107 0.900861i \(-0.642936\pi\)
−0.434107 + 0.900861i \(0.642936\pi\)
\(684\) −201761. 231692.i −0.431246 0.495220i
\(685\) 711681.i 1.51672i
\(686\) −157857. 71856.7i −0.335441 0.152693i
\(687\) 1.17718e6i 2.49418i
\(688\) −806263. 111883.i −1.70333 0.236366i
\(689\) −577742. −1.21701
\(690\) 115332. 253365.i 0.242243 0.532168i
\(691\) −640269. −1.34093 −0.670465 0.741941i \(-0.733905\pi\)
−0.670465 + 0.741941i \(0.733905\pi\)
\(692\) −54209.3 62251.3i −0.113204 0.129998i
\(693\) 92258.6 0.192106
\(694\) −836225. 380651.i −1.73622 0.790328i
\(695\) 197024.i 0.407896i
\(696\) −327871. + 97585.5i −0.676838 + 0.201450i
\(697\) 31355.0 399046.i 0.0645418 0.821405i
\(698\) 589007. + 268117.i 1.20895 + 0.550317i
\(699\) 1.13985e6i 2.33289i
\(700\) 20012.0 + 22980.8i 0.0408408 + 0.0468995i
\(701\) 70939.4 0.144361 0.0721807 0.997392i \(-0.477004\pi\)
0.0721807 + 0.997392i \(0.477004\pi\)
\(702\) 838.396 1841.82i 0.00170128 0.00373742i
\(703\) 93205.7 0.188596
\(704\) 423682. 276717.i 0.854860 0.558330i
\(705\) 83797.0 0.168597
\(706\) 723663. + 329412.i 1.45187 + 0.660892i
\(707\) 77482.7i 0.155012i
\(708\) 406676. 354140.i 0.811302 0.706494i
\(709\) 279667.i 0.556351i 0.960530 + 0.278175i \(0.0897297\pi\)
−0.960530 + 0.278175i \(0.910270\pi\)
\(710\) 211113. + 96098.8i 0.418792 + 0.190634i
\(711\) 195790. 0.387303
\(712\) 511391. 152207.i 1.00877 0.300244i
\(713\) 196687. 0.386899
\(714\) −46198.9 + 101491.i −0.0906224 + 0.199082i
\(715\) 408895.i 0.799834i
\(716\) 119795. + 137566.i 0.233675 + 0.268340i
\(717\) −1.10495e6 −2.14934
\(718\) 116909. 256829.i 0.226776 0.498189i
\(719\) −818203. −1.58272 −0.791359 0.611352i \(-0.790626\pi\)
−0.791359 + 0.611352i \(0.790626\pi\)
\(720\) 58433.4 421090.i 0.112719 0.812288i
\(721\) 106178.i 0.204250i
\(722\) 271089. + 123400.i 0.520040 + 0.236723i
\(723\) −707677. −1.35381
\(724\) 501608. 436808.i 0.956946 0.833324i
\(725\) 86952.2i 0.165426i
\(726\) −28866.9 13140.2i −0.0547680 0.0249305i
\(727\) 980994. 1.85608 0.928042 0.372476i \(-0.121491\pi\)
0.928042 + 0.372476i \(0.121491\pi\)
\(728\) −91292.8 + 27171.8i −0.172256 + 0.0512691i
\(729\) −534655. −1.00605
\(730\) −41815.8 19034.6i −0.0784684 0.0357189i
\(731\) −757130. −1.41689
\(732\) 366124. + 420438.i 0.683292 + 0.784658i
\(733\) 206372. 0.384098 0.192049 0.981385i \(-0.438487\pi\)
0.192049 + 0.981385i \(0.438487\pi\)
\(734\) 105349. 231433.i 0.195540 0.429570i
\(735\) 603115. 1.11642
\(736\) −231176. 146569.i −0.426763 0.270575i
\(737\) −452181. −0.832487
\(738\) 477947. + 264580.i 0.877541 + 0.485785i
\(739\) 511327.i 0.936290i −0.883652 0.468145i \(-0.844923\pi\)
0.883652 0.468145i \(-0.155077\pi\)
\(740\) 84698.8 + 97263.7i 0.154673 + 0.177618i
\(741\) 487454.i 0.887764i
\(742\) −54347.8 + 119393.i −0.0987129 + 0.216856i
\(743\) 928747.i 1.68236i −0.540753 0.841182i \(-0.681860\pi\)
0.540753 0.841182i \(-0.318140\pi\)
\(744\) 574907. 171112.i 1.03861 0.309125i
\(745\) 555641.i 1.00111i
\(746\) −188229. 85682.2i −0.338228 0.153962i
\(747\) 653545.i 1.17121i
\(748\) 354969. 309112.i 0.634435 0.552476i
\(749\) 16945.9i 0.0302065i
\(750\) −788800. 359063.i −1.40231 0.638333i
\(751\) −570479. −1.01148 −0.505742 0.862685i \(-0.668781\pi\)
−0.505742 + 0.862685i \(0.668781\pi\)
\(752\) 11325.2 81613.5i 0.0200268 0.144320i
\(753\) 516178.i 0.910352i
\(754\) −247368. 112602.i −0.435112 0.198064i
\(755\) −402682. −0.706428
\(756\) −301.752 346.516i −0.000527966 0.000606290i
\(757\) 607716.i 1.06050i −0.847842 0.530248i \(-0.822099\pi\)
0.847842 0.530248i \(-0.177901\pi\)
\(758\) 443170. 973570.i 0.771315 1.69445i
\(759\) 420656.i 0.730202i
\(760\) −88196.4 296325.i −0.152695 0.513029i
\(761\) −1.07393e6 −1.85442 −0.927211 0.374540i \(-0.877801\pi\)
−0.927211 + 0.374540i \(0.877801\pi\)
\(762\) −361284. + 793680.i −0.622212 + 1.36690i
\(763\) 32072.3i 0.0550910i
\(764\) 316509. + 363462.i 0.542249 + 0.622691i
\(765\) 395429.i 0.675688i
\(766\) 16852.1 + 7671.11i 0.0287209 + 0.0130738i
\(767\) 428448. 0.728295
\(768\) −803227. 227299.i −1.36181 0.385368i
\(769\) −228327. −0.386104 −0.193052 0.981188i \(-0.561839\pi\)
−0.193052 + 0.981188i \(0.561839\pi\)
\(770\) 84500.0 + 38464.5i 0.142520 + 0.0648751i
\(771\) 1.44192e6i 2.42568i
\(772\) 449743. 391643.i 0.754623 0.657137i
\(773\) 967760.i 1.61960i 0.586704 + 0.809802i \(0.300425\pi\)
−0.586704 + 0.809802i \(0.699575\pi\)
\(774\) 428104. 940472.i 0.714607 1.56987i
\(775\) 152467.i 0.253847i
\(776\) −488245. + 145318.i −0.810801 + 0.241322i
\(777\) 46171.0 0.0764763
\(778\) 330688. + 150530.i 0.546336 + 0.248693i
\(779\) 396071. + 31121.2i 0.652676 + 0.0512839i
\(780\) 508677. 442964.i 0.836090 0.728080i
\(781\) −350505. −0.574635
\(782\) −231726. 105482.i −0.378932 0.172490i
\(783\) 1311.11i 0.00213853i
\(784\) 81511.6 587400.i 0.132613 0.955657i
\(785\) 426127.i 0.691513i
\(786\) 231280. 508083.i 0.374363 0.822412i
\(787\) 461085.i 0.744443i 0.928144 + 0.372222i \(0.121404\pi\)
−0.928144 + 0.372222i \(0.878596\pi\)
\(788\) −415295. 476904.i −0.668813 0.768031i
\(789\) −147344. −0.236690
\(790\) 179325. + 81628.7i 0.287333 + 0.130794i
\(791\) 137378. 0.219566
\(792\) 183255. + 615707.i 0.292150 + 0.981575i
\(793\) 442947.i 0.704377i
\(794\) 122565. 269255.i 0.194413 0.427093i
\(795\) 928951.i 1.46980i
\(796\) 256147. + 294146.i 0.404262 + 0.464234i
\(797\) −490245. −0.771786 −0.385893 0.922544i \(-0.626107\pi\)
−0.385893 + 0.922544i \(0.626107\pi\)
\(798\) −100734. 45854.4i −0.158188 0.0720071i
\(799\) 76640.0i 0.120050i
\(800\) −113617. + 179201.i −0.177526 + 0.280002i
\(801\) 677334.i 1.05569i
\(802\) 415286. + 189039.i 0.645652 + 0.293901i
\(803\) 69425.7 0.107669
\(804\) 489856. + 562526.i 0.757803 + 0.870223i
\(805\) 50219.7i 0.0774965i
\(806\) 433749. + 197443.i 0.667680 + 0.303928i
\(807\) 1.29060e6 1.98173
\(808\) −517096. + 153905.i −0.792043 + 0.235739i
\(809\) 1.11500e6i 1.70363i −0.523840 0.851817i \(-0.675501\pi\)
0.523840 0.851817i \(-0.324499\pi\)
\(810\) −486739. 221564.i −0.741868 0.337699i
\(811\) 476106.i 0.723873i −0.932203 0.361937i \(-0.882116\pi\)
0.932203 0.361937i \(-0.117884\pi\)
\(812\) −46539.5 + 40527.3i −0.0705845 + 0.0614661i
\(813\) 463132.i 0.700686i
\(814\) −177377. 80742.2i −0.267700 0.121857i
\(815\) 518409.i 0.780471i
\(816\) −769088. 106724.i −1.15504 0.160281i
\(817\) 751484.i 1.12584i
\(818\) 169010. + 76933.7i 0.252584 + 0.114977i
\(819\) 120917.i 0.180268i
\(820\) 327445. + 441596.i 0.486979 + 0.656745i
\(821\) 125583. 0.186313 0.0931565 0.995651i \(-0.470304\pi\)
0.0931565 + 0.995651i \(0.470304\pi\)
\(822\) −734962. + 1.61459e6i −1.08773 + 2.38956i
\(823\) 1.00562e6 1.48469 0.742343 0.670020i \(-0.233715\pi\)
0.742343 + 0.670020i \(0.233715\pi\)
\(824\) 708597. 210902.i 1.04363 0.310618i
\(825\) 326081. 0.479090
\(826\) 40303.8 88540.6i 0.0590725 0.129772i
\(827\) 129029. 0.188658 0.0943291 0.995541i \(-0.469929\pi\)
0.0943291 + 0.995541i \(0.469929\pi\)
\(828\) 262049. 228196.i 0.382228 0.332850i
\(829\) 1.06280e6 1.54648 0.773240 0.634114i \(-0.218635\pi\)
0.773240 + 0.634114i \(0.218635\pi\)
\(830\) 272476. 598584.i 0.395523 0.868898i
\(831\) −704319. −1.01992
\(832\) −362673. 555289.i −0.523925 0.802182i
\(833\) 551604.i 0.794946i
\(834\) 203469. 446987.i 0.292527 0.642633i
\(835\) −1.06634e6 −1.52940
\(836\) 306807. + 352322.i 0.438989 + 0.504112i
\(837\) 2298.97i 0.00328158i
\(838\) 267874. 588475.i 0.381455 0.837992i
\(839\) 606080. 0.861006 0.430503 0.902589i \(-0.358336\pi\)
0.430503 + 0.902589i \(0.358336\pi\)
\(840\) −43689.5 146790.i −0.0619182 0.208035i
\(841\) 531190. 0.751031
\(842\) 487866. 1.07176e6i 0.688139 1.51173i
\(843\) 236008.i 0.332103i
\(844\) −116099. 133323.i −0.162984 0.187163i
\(845\) −47874.8 −0.0670491
\(846\) 95198.7 + 43334.5i 0.133012 + 0.0605471i
\(847\) −5721.72 −0.00797554
\(848\) −904745. 125549.i −1.25816 0.174590i
\(849\) 1.07145e6i 1.48647i
\(850\) −81766.6 + 179628.i −0.113172 + 0.248619i
\(851\) 105418.i 0.145564i
\(852\) 379708. + 436038.i 0.523084 + 0.600683i
\(853\) 375927. 0.516661 0.258331 0.966057i \(-0.416828\pi\)
0.258331 + 0.966057i \(0.416828\pi\)
\(854\) 91536.8 + 41667.7i 0.125511 + 0.0571325i
\(855\) 392481. 0.536891
\(856\) 113092. 33659.9i 0.154342 0.0459373i
\(857\) −143692. −0.195646 −0.0978228 0.995204i \(-0.531188\pi\)
−0.0978228 + 0.995204i \(0.531188\pi\)
\(858\) −422271. + 927659.i −0.573610 + 1.26013i
\(859\) 101369.i 0.137379i −0.997638 0.0686894i \(-0.978118\pi\)
0.997638 0.0686894i \(-0.0218817\pi\)
\(860\) 784203. 682896.i 1.06031 0.923331i
\(861\) 196200. + 15416.4i 0.264663 + 0.0207958i
\(862\) 398962. 876453.i 0.536930 1.17954i
\(863\) 1.25765e6i 1.68864i 0.535837 + 0.844322i \(0.319996\pi\)
−0.535837 + 0.844322i \(0.680004\pi\)
\(864\) 1713.17 2702.09i 0.00229495 0.00361970i
\(865\) 105452. 0.140937
\(866\) −1.10142e6 501369.i −1.46865 0.668531i
\(867\) 341633. 0.454487
\(868\) 81604.8 71062.7i 0.108312 0.0943197i
\(869\) −297728. −0.394257
\(870\) 181053. 397743.i 0.239203 0.525489i
\(871\) 592641.i 0.781187i
\(872\) −214041. + 63705.8i −0.281491 + 0.0837811i
\(873\) 646677.i 0.848514i
\(874\) 104695. 229998.i 0.137058 0.301093i
\(875\) −156348. −0.204210
\(876\) −75210.1 86367.5i −0.0980095 0.112549i
\(877\) −67546.7 −0.0878224 −0.0439112 0.999035i \(-0.513982\pi\)
−0.0439112 + 0.999035i \(0.513982\pi\)
\(878\) 962871. + 438300.i 1.24905 + 0.568568i
\(879\) 1.26832e6i 1.64154i
\(880\) −88856.6 + 640330.i −0.114743 + 0.826873i
\(881\) −30852.7 −0.0397504 −0.0198752 0.999802i \(-0.506327\pi\)
−0.0198752 + 0.999802i \(0.506327\pi\)
\(882\) 685177. + 311893.i 0.880776 + 0.400930i
\(883\) −784152. −1.00572 −0.502862 0.864367i \(-0.667720\pi\)
−0.502862 + 0.864367i \(0.667720\pi\)
\(884\) −405131. 465232.i −0.518431 0.595340i
\(885\) 688901.i 0.879569i
\(886\) −195476. + 429427.i −0.249015 + 0.547044i
\(887\) 254996. 0.324105 0.162052 0.986782i \(-0.448189\pi\)
0.162052 + 0.986782i \(0.448189\pi\)
\(888\) 91710.2 + 308131.i 0.116303 + 0.390760i
\(889\) 157316.i 0.199053i
\(890\) −282394. + 620372.i −0.356513 + 0.783199i
\(891\) 808120. 1.01794
\(892\) −678110. + 590508.i −0.852256 + 0.742158i
\(893\) 76068.5 0.0953899
\(894\) −573817. + 1.26058e6i −0.717957 + 1.57723i
\(895\) −233034. −0.290920
\(896\) −148869. + 22712.3i −0.185434 + 0.0282908i
\(897\) 551322. 0.685205
\(898\) 1.19939e6 + 545965.i 1.48734 + 0.677037i
\(899\) 308768. 0.382043
\(900\) −176892. 203133.i −0.218385 0.250782i
\(901\) −849611. −1.04657
\(902\) −726790. 402334.i −0.893297 0.494508i
\(903\) 372260.i 0.456532i
\(904\) 272877. + 916821.i 0.333910 + 1.12188i
\(905\) 849713.i 1.03747i
\(906\) −913562. 415854.i −1.11297 0.506623i
\(907\) 434736.i 0.528458i −0.964460 0.264229i \(-0.914882\pi\)
0.964460 0.264229i \(-0.0851175\pi\)
\(908\) −490131. 562842.i −0.594485 0.682676i
\(909\) 684890.i 0.828883i
\(910\) 50412.6 110748.i 0.0608774 0.133737i
\(911\) 509973.i 0.614483i −0.951632 0.307242i \(-0.900594\pi\)
0.951632 0.307242i \(-0.0994060\pi\)
\(912\) 105928. 763354.i 0.127357 0.917775i
\(913\) 993812.i 1.19224i
\(914\) −231403. + 508354.i −0.276998 + 0.608519i
\(915\) −712213. −0.850683
\(916\) −1.11513e6 + 971074.i −1.32903 + 1.15734i
\(917\) 100707.i 0.119763i
\(918\) 1232.92 2708.52i 0.00146302 0.00321400i
\(919\) −84574.6 −0.100140 −0.0500701 0.998746i \(-0.515944\pi\)
−0.0500701 + 0.998746i \(0.515944\pi\)
\(920\) 335151. 99752.3i 0.395973 0.117855i
\(921\) 628769.i 0.741262i
\(922\) 356610. + 162329.i 0.419500 + 0.190957i
\(923\) 459381.i 0.539225i
\(924\) 151982. + 174528.i 0.178012 + 0.204419i
\(925\) 81717.1 0.0955058
\(926\) 297681. + 135504.i 0.347159 + 0.158027i
\(927\) 938532.i 1.09217i
\(928\) −362909. 230091.i −0.421408 0.267179i
\(929\) 892909.i 1.03461i 0.855802 + 0.517304i \(0.173064\pi\)
−0.855802 + 0.517304i \(0.826936\pi\)
\(930\) −317468. + 697424.i −0.367057 + 0.806363i
\(931\) 547491. 0.631652
\(932\) −1.07978e6 + 940287.i −1.24309 + 1.08250i
\(933\) −501480. −0.576090
\(934\) 50611.9 111186.i 0.0580175 0.127455i
\(935\) 601309.i 0.687820i
\(936\) 806962. 240179.i 0.921089 0.274147i
\(937\) 878668.i 1.00080i −0.865795 0.500398i \(-0.833187\pi\)
0.865795 0.500398i \(-0.166813\pi\)
\(938\) 122472. + 55749.3i 0.139197 + 0.0633627i
\(939\) 438008.i 0.496765i
\(940\) 69125.7 + 79380.4i 0.0782319 + 0.0898375i
\(941\) −370968. −0.418945 −0.209472 0.977815i \(-0.567175\pi\)
−0.209472 + 0.977815i \(0.567175\pi\)
\(942\) 440067. 966754.i 0.495926 1.08947i
\(943\) −35198.8 + 447965.i −0.0395827 + 0.503757i
\(944\) 670950. + 93105.6i 0.752915 + 0.104480i
\(945\) 586.991 0.000657306
\(946\) −650995. + 1.43013e6i −0.727437 + 1.59806i
\(947\) 123684.i 0.137916i −0.997620 0.0689579i \(-0.978033\pi\)
0.997620 0.0689579i \(-0.0219674\pi\)
\(948\) 322534. + 370381.i 0.358888 + 0.412128i
\(949\) 90991.2i 0.101034i
\(950\) −178288. 81156.9i −0.197549 0.0899246i
\(951\) 153790.i 0.170046i
\(952\) −134252. + 39958.0i −0.148132 + 0.0440890i
\(953\) −1.28041e6 −1.40982 −0.704908 0.709299i \(-0.749012\pi\)
−0.704908 + 0.709299i \(0.749012\pi\)
\(954\) 480395. 1.05535e6i 0.527839 1.15957i
\(955\) −615697. −0.675088
\(956\) −911496. 1.04672e6i −0.997331 1.14528i
\(957\) 660362.i 0.721038i
\(958\) 490757. + 223393.i 0.534731 + 0.243410i
\(959\) 320028.i 0.347978i
\(960\) 892849. 583142.i 0.968803 0.632749i
\(961\) 382111. 0.413755
\(962\) −105823. + 232475.i −0.114348 + 0.251204i
\(963\) 149789.i 0.161521i
\(964\) −583776. 670379.i −0.628192 0.721383i
\(965\) 761855.i 0.818121i
\(966\) 51862.5 113933.i 0.0555775 0.122094i
\(967\) 1.15025e6 1.23009 0.615047 0.788490i \(-0.289137\pi\)
0.615047 + 0.788490i \(0.289137\pi\)
\(968\) −11365.2 38185.1i −0.0121290 0.0407515i
\(969\) 716835.i 0.763435i
\(970\) 269613. 592293.i 0.286547 0.629497i
\(971\) 821667. 0.871480 0.435740 0.900072i \(-0.356487\pi\)
0.435740 + 0.900072i \(0.356487\pi\)
\(972\) −878111. 1.00838e6i −0.929430 1.06731i
\(973\) 88597.5i 0.0935828i
\(974\) −637366. + 1.40019e6i −0.671848 + 1.47594i
\(975\) 427370.i 0.449568i
\(976\) −96256.3 + 693655.i −0.101048 + 0.728189i
\(977\) 206218.i 0.216042i −0.994149 0.108021i \(-0.965549\pi\)
0.994149 0.108021i \(-0.0344514\pi\)
\(978\) 535367. 1.17611e6i 0.559724 1.22962i
\(979\) 1.02999e6i 1.07465i
\(980\) 497521. + 571328.i 0.518035 + 0.594885i
\(981\) 283496.i 0.294584i
\(982\) 497427. 1.09276e6i 0.515830 1.13319i
\(983\) 1.23734e6i 1.28051i −0.768163 0.640254i \(-0.778829\pi\)
0.768163 0.640254i \(-0.221171\pi\)
\(984\) 286831. + 1.34000e6i 0.296235 + 1.38393i
\(985\) 807865. 0.832657
\(986\) −363772. 165590.i −0.374176 0.170325i
\(987\) 37681.8 0.0386809
\(988\) 461763. 402110.i 0.473048 0.411937i
\(989\) 849947. 0.868959
\(990\) −746918. 339998.i −0.762084 0.346901i
\(991\) −1.35832e6 −1.38310 −0.691550 0.722329i \(-0.743072\pi\)
−0.691550 + 0.722329i \(0.743072\pi\)
\(992\) 636345. + 403453.i 0.646650 + 0.409987i
\(993\) 1.82109e6 1.84686
\(994\) 94933.1 + 43213.6i 0.0960826 + 0.0437369i
\(995\) −498277. −0.503297
\(996\) 1.23633e6 1.07662e6i 1.24628 1.08528i
\(997\) 1.02180e6i 1.02796i −0.857802 0.513980i \(-0.828171\pi\)
0.857802 0.513980i \(-0.171829\pi\)
\(998\) 1.26935e6 + 577809.i 1.27444 + 0.580127i
\(999\) −1232.17 −0.00123464
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 164.5.d.f.163.6 yes 72
4.3 odd 2 inner 164.5.d.f.163.7 yes 72
41.40 even 2 inner 164.5.d.f.163.5 72
164.163 odd 2 inner 164.5.d.f.163.8 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
164.5.d.f.163.5 72 41.40 even 2 inner
164.5.d.f.163.6 yes 72 1.1 even 1 trivial
164.5.d.f.163.7 yes 72 4.3 odd 2 inner
164.5.d.f.163.8 yes 72 164.163 odd 2 inner