Properties

Label 164.5.d.f.163.4
Level $164$
Weight $5$
Character 164.163
Analytic conductor $16.953$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [164,5,Mod(163,164)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("164.163"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(164, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 164 = 2^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 164.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,6,0,-162,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.9526739458\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 163.4
Character \(\chi\) \(=\) 164.163
Dual form 164.5.d.f.163.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.71258 + 1.48887i) q^{2} +10.9113 q^{3} +(11.5666 - 11.0551i) q^{4} +8.39889 q^{5} +(-40.5091 + 16.2454i) q^{6} +64.7429 q^{7} +(-26.4823 + 58.2639i) q^{8} +38.0563 q^{9} +(-31.1816 + 12.5048i) q^{10} +53.4978 q^{11} +(126.206 - 120.625i) q^{12} +211.963i q^{13} +(-240.363 + 96.3934i) q^{14} +91.6427 q^{15} +(11.5707 - 255.738i) q^{16} +86.3903i q^{17} +(-141.287 + 56.6606i) q^{18} +370.107 q^{19} +(97.1462 - 92.8503i) q^{20} +706.428 q^{21} +(-198.615 + 79.6511i) q^{22} -759.854i q^{23} +(-288.956 + 635.735i) q^{24} -554.459 q^{25} +(-315.584 - 786.930i) q^{26} -468.572 q^{27} +(748.853 - 715.737i) q^{28} -1221.22i q^{29} +(-340.231 + 136.444i) q^{30} +1548.55i q^{31} +(337.803 + 966.677i) q^{32} +583.730 q^{33} +(-128.623 - 320.731i) q^{34} +543.768 q^{35} +(440.180 - 420.715i) q^{36} +1773.91 q^{37} +(-1374.05 + 551.040i) q^{38} +2312.79i q^{39} +(-222.422 + 489.352i) q^{40} +(1638.20 + 376.900i) q^{41} +(-2622.67 + 1051.78i) q^{42} +966.166i q^{43} +(618.786 - 591.423i) q^{44} +319.630 q^{45} +(1131.32 + 2821.02i) q^{46} +1379.97 q^{47} +(126.251 - 2790.44i) q^{48} +1790.64 q^{49} +(2058.47 - 825.514i) q^{50} +942.630i q^{51} +(2343.27 + 2451.68i) q^{52} +49.7786i q^{53} +(1739.61 - 697.640i) q^{54} +449.322 q^{55} +(-1714.54 + 3772.18i) q^{56} +4038.35 q^{57} +(1818.23 + 4533.89i) q^{58} +2186.63i q^{59} +(1059.99 - 1013.12i) q^{60} -1860.90 q^{61} +(-2305.58 - 5749.11i) q^{62} +2463.87 q^{63} +(-2693.37 - 3085.93i) q^{64} +1780.25i q^{65} +(-2167.15 + 869.096i) q^{66} -1144.73 q^{67} +(955.051 + 999.239i) q^{68} -8290.98i q^{69} +(-2018.78 + 809.597i) q^{70} -4669.47 q^{71} +(-1007.82 + 2217.31i) q^{72} +8288.70 q^{73} +(-6585.80 + 2641.12i) q^{74} -6049.86 q^{75} +(4280.87 - 4091.56i) q^{76} +3463.60 q^{77} +(-3443.43 - 8586.42i) q^{78} -5692.98 q^{79} +(97.1810 - 2147.92i) q^{80} -8195.28 q^{81} +(-6643.12 + 1039.79i) q^{82} -3047.28i q^{83} +(8170.95 - 7809.62i) q^{84} +725.582i q^{85} +(-1438.49 - 3586.97i) q^{86} -13325.1i q^{87} +(-1416.75 + 3116.99i) q^{88} -13007.7i q^{89} +(-1186.65 + 475.886i) q^{90} +13723.1i q^{91} +(-8400.24 - 8788.89i) q^{92} +16896.6i q^{93} +(-5123.24 + 2054.58i) q^{94} +3108.49 q^{95} +(3685.86 + 10547.7i) q^{96} +1202.68i q^{97} +(-6647.90 + 2666.02i) q^{98} +2035.93 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 6 q^{2} - 162 q^{4} - 8 q^{5} + 162 q^{8} + 1728 q^{9} - 272 q^{10} - 2842 q^{16} - 298 q^{18} - 584 q^{20} + 280 q^{21} + 4264 q^{25} + 66 q^{32} + 3512 q^{33} - 11338 q^{36} + 5720 q^{37} - 4648 q^{40}+ \cdots + 2902 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/164\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(129\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.71258 + 1.48887i −0.928146 + 0.372216i
\(3\) 10.9113 1.21237 0.606183 0.795325i \(-0.292700\pi\)
0.606183 + 0.795325i \(0.292700\pi\)
\(4\) 11.5666 11.0551i 0.722910 0.690942i
\(5\) 8.39889 0.335955 0.167978 0.985791i \(-0.446276\pi\)
0.167978 + 0.985791i \(0.446276\pi\)
\(6\) −40.5091 + 16.2454i −1.12525 + 0.451262i
\(7\) 64.7429 1.32128 0.660642 0.750701i \(-0.270284\pi\)
0.660642 + 0.750701i \(0.270284\pi\)
\(8\) −26.4823 + 58.2639i −0.413786 + 0.910374i
\(9\) 38.0563 0.469830
\(10\) −31.1816 + 12.5048i −0.311816 + 0.125048i
\(11\) 53.4978 0.442131 0.221065 0.975259i \(-0.429047\pi\)
0.221065 + 0.975259i \(0.429047\pi\)
\(12\) 126.206 120.625i 0.876431 0.837674i
\(13\) 211.963i 1.25422i 0.778931 + 0.627109i \(0.215762\pi\)
−0.778931 + 0.627109i \(0.784238\pi\)
\(14\) −240.363 + 96.3934i −1.22634 + 0.491803i
\(15\) 91.6427 0.407301
\(16\) 11.5707 255.738i 0.0451981 0.998978i
\(17\) 86.3903i 0.298928i 0.988767 + 0.149464i \(0.0477549\pi\)
−0.988767 + 0.149464i \(0.952245\pi\)
\(18\) −141.287 + 56.6606i −0.436071 + 0.174879i
\(19\) 370.107 1.02523 0.512614 0.858619i \(-0.328677\pi\)
0.512614 + 0.858619i \(0.328677\pi\)
\(20\) 97.1462 92.8503i 0.242866 0.232126i
\(21\) 706.428 1.60188
\(22\) −198.615 + 79.6511i −0.410362 + 0.164568i
\(23\) 759.854i 1.43640i −0.695839 0.718198i \(-0.744967\pi\)
0.695839 0.718198i \(-0.255033\pi\)
\(24\) −288.956 + 635.735i −0.501660 + 1.10371i
\(25\) −554.459 −0.887134
\(26\) −315.584 786.930i −0.466840 1.16410i
\(27\) −468.572 −0.642759
\(28\) 748.853 715.737i 0.955169 0.912930i
\(29\) 1221.22i 1.45211i −0.687638 0.726053i \(-0.741353\pi\)
0.687638 0.726053i \(-0.258647\pi\)
\(30\) −340.231 + 136.444i −0.378035 + 0.151604i
\(31\) 1548.55i 1.61139i 0.592330 + 0.805695i \(0.298208\pi\)
−0.592330 + 0.805695i \(0.701792\pi\)
\(32\) 337.803 + 966.677i 0.329885 + 0.944021i
\(33\) 583.730 0.536024
\(34\) −128.623 320.731i −0.111266 0.277449i
\(35\) 543.768 0.443892
\(36\) 440.180 420.715i 0.339645 0.324626i
\(37\) 1773.91 1.29577 0.647886 0.761737i \(-0.275653\pi\)
0.647886 + 0.761737i \(0.275653\pi\)
\(38\) −1374.05 + 551.040i −0.951561 + 0.381606i
\(39\) 2312.79i 1.52057i
\(40\) −222.422 + 489.352i −0.139014 + 0.305845i
\(41\) 1638.20 + 376.900i 0.974540 + 0.224212i
\(42\) −2622.67 + 1051.78i −1.48678 + 0.596245i
\(43\) 966.166i 0.522534i 0.965267 + 0.261267i \(0.0841404\pi\)
−0.965267 + 0.261267i \(0.915860\pi\)
\(44\) 618.786 591.423i 0.319621 0.305487i
\(45\) 319.630 0.157842
\(46\) 1131.32 + 2821.02i 0.534650 + 1.33319i
\(47\) 1379.97 0.624701 0.312351 0.949967i \(-0.398884\pi\)
0.312351 + 0.949967i \(0.398884\pi\)
\(48\) 126.251 2790.44i 0.0547966 1.21113i
\(49\) 1790.64 0.745790
\(50\) 2058.47 825.514i 0.823390 0.330206i
\(51\) 942.630i 0.362410i
\(52\) 2343.27 + 2451.68i 0.866592 + 0.906687i
\(53\) 49.7786i 0.0177211i 0.999961 + 0.00886056i \(0.00282044\pi\)
−0.999961 + 0.00886056i \(0.997180\pi\)
\(54\) 1739.61 697.640i 0.596575 0.239246i
\(55\) 449.322 0.148536
\(56\) −1714.54 + 3772.18i −0.546729 + 1.20286i
\(57\) 4038.35 1.24295
\(58\) 1818.23 + 4533.89i 0.540498 + 1.34777i
\(59\) 2186.63i 0.628163i 0.949396 + 0.314081i \(0.101696\pi\)
−0.949396 + 0.314081i \(0.898304\pi\)
\(60\) 1059.99 1013.12i 0.294442 0.281421i
\(61\) −1860.90 −0.500107 −0.250053 0.968232i \(-0.580448\pi\)
−0.250053 + 0.968232i \(0.580448\pi\)
\(62\) −2305.58 5749.11i −0.599786 1.49561i
\(63\) 2463.87 0.620779
\(64\) −2693.37 3085.93i −0.657562 0.753401i
\(65\) 1780.25i 0.421361i
\(66\) −2167.15 + 869.096i −0.497509 + 0.199517i
\(67\) −1144.73 −0.255008 −0.127504 0.991838i \(-0.540697\pi\)
−0.127504 + 0.991838i \(0.540697\pi\)
\(68\) 955.051 + 999.239i 0.206542 + 0.216098i
\(69\) 8290.98i 1.74144i
\(70\) −2018.78 + 809.597i −0.411997 + 0.165224i
\(71\) −4669.47 −0.926298 −0.463149 0.886280i \(-0.653281\pi\)
−0.463149 + 0.886280i \(0.653281\pi\)
\(72\) −1007.82 + 2217.31i −0.194409 + 0.427721i
\(73\) 8288.70 1.55539 0.777697 0.628639i \(-0.216388\pi\)
0.777697 + 0.628639i \(0.216388\pi\)
\(74\) −6585.80 + 2641.12i −1.20267 + 0.482307i
\(75\) −6049.86 −1.07553
\(76\) 4280.87 4091.56i 0.741147 0.708373i
\(77\) 3463.60 0.584180
\(78\) −3443.43 8586.42i −0.565981 1.41131i
\(79\) −5692.98 −0.912191 −0.456095 0.889931i \(-0.650752\pi\)
−0.456095 + 0.889931i \(0.650752\pi\)
\(80\) 97.1810 2147.92i 0.0151845 0.335612i
\(81\) −8195.28 −1.24909
\(82\) −6643.12 + 1039.79i −0.987971 + 0.154638i
\(83\) 3047.28i 0.442341i −0.975235 0.221170i \(-0.929012\pi\)
0.975235 0.221170i \(-0.0709877\pi\)
\(84\) 8170.95 7809.62i 1.15801 1.10681i
\(85\) 725.582i 0.100427i
\(86\) −1438.49 3586.97i −0.194496 0.484988i
\(87\) 13325.1i 1.76048i
\(88\) −1416.75 + 3116.99i −0.182948 + 0.402505i
\(89\) 13007.7i 1.64218i −0.570798 0.821090i \(-0.693366\pi\)
0.570798 0.821090i \(-0.306634\pi\)
\(90\) −1186.65 + 475.886i −0.146500 + 0.0587514i
\(91\) 13723.1i 1.65718i
\(92\) −8400.24 8788.89i −0.992467 1.03839i
\(93\) 16896.6i 1.95359i
\(94\) −5123.24 + 2054.58i −0.579814 + 0.232524i
\(95\) 3108.49 0.344431
\(96\) 3685.86 + 10547.7i 0.399942 + 1.14450i
\(97\) 1202.68i 0.127822i 0.997956 + 0.0639109i \(0.0203574\pi\)
−0.997956 + 0.0639109i \(0.979643\pi\)
\(98\) −6647.90 + 2666.02i −0.692202 + 0.277595i
\(99\) 2035.93 0.207727
\(100\) −6413.18 + 6129.58i −0.641318 + 0.612958i
\(101\) 5757.94i 0.564449i 0.959348 + 0.282225i \(0.0910723\pi\)
−0.959348 + 0.282225i \(0.908928\pi\)
\(102\) −1403.45 3499.59i −0.134895 0.336370i
\(103\) 3187.97i 0.300496i 0.988648 + 0.150248i \(0.0480073\pi\)
−0.988648 + 0.150248i \(0.951993\pi\)
\(104\) −12349.8 5613.27i −1.14181 0.518978i
\(105\) 5933.21 0.538160
\(106\) −74.1137 184.807i −0.00659609 0.0164478i
\(107\) 17012.0i 1.48589i −0.669352 0.742945i \(-0.733428\pi\)
0.669352 0.742945i \(-0.266572\pi\)
\(108\) −5419.76 + 5180.09i −0.464657 + 0.444110i
\(109\) 17305.0i 1.45653i −0.685296 0.728264i \(-0.740327\pi\)
0.685296 0.728264i \(-0.259673\pi\)
\(110\) −1668.15 + 668.980i −0.137863 + 0.0552876i
\(111\) 19355.7 1.57095
\(112\) 749.121 16557.2i 0.0597194 1.31993i
\(113\) −7981.54 −0.625072 −0.312536 0.949906i \(-0.601178\pi\)
−0.312536 + 0.949906i \(0.601178\pi\)
\(114\) −14992.7 + 6012.55i −1.15364 + 0.462646i
\(115\) 6381.92i 0.482565i
\(116\) −13500.7 14125.3i −1.00332 1.04974i
\(117\) 8066.51i 0.589270i
\(118\) −3255.60 8118.06i −0.233812 0.583027i
\(119\) 5593.16i 0.394969i
\(120\) −2426.91 + 5339.46i −0.168535 + 0.370796i
\(121\) −11779.0 −0.804520
\(122\) 6908.74 2770.63i 0.464172 0.186148i
\(123\) 17874.9 + 4112.47i 1.18150 + 0.271827i
\(124\) 17119.3 + 17911.4i 1.11338 + 1.16489i
\(125\) −9906.14 −0.633993
\(126\) −9147.33 + 3668.37i −0.576174 + 0.231064i
\(127\) 12068.8i 0.748265i 0.927375 + 0.374132i \(0.122059\pi\)
−0.927375 + 0.374132i \(0.877941\pi\)
\(128\) 14593.9 + 7446.70i 0.890741 + 0.454511i
\(129\) 10542.1i 0.633503i
\(130\) −2650.55 6609.34i −0.156838 0.391085i
\(131\) 28203.8i 1.64348i −0.569859 0.821742i \(-0.693002\pi\)
0.569859 0.821742i \(-0.306998\pi\)
\(132\) 6751.75 6453.18i 0.387497 0.370362i
\(133\) 23961.8 1.35462
\(134\) 4249.90 1704.35i 0.236684 0.0949180i
\(135\) −3935.48 −0.215939
\(136\) −5033.44 2287.82i −0.272137 0.123692i
\(137\) 21965.2i 1.17029i 0.810928 + 0.585145i \(0.198963\pi\)
−0.810928 + 0.585145i \(0.801037\pi\)
\(138\) 12344.2 + 30781.0i 0.648191 + 1.61631i
\(139\) 7395.26i 0.382758i 0.981516 + 0.191379i \(0.0612959\pi\)
−0.981516 + 0.191379i \(0.938704\pi\)
\(140\) 6289.53 6011.40i 0.320894 0.306704i
\(141\) 15057.2 0.757366
\(142\) 17335.8 6952.21i 0.859740 0.344783i
\(143\) 11339.6i 0.554529i
\(144\) 440.338 9732.45i 0.0212354 0.469350i
\(145\) 10256.9i 0.487843i
\(146\) −30772.5 + 12340.8i −1.44363 + 0.578943i
\(147\) 19538.2 0.904170
\(148\) 20518.1 19610.7i 0.936727 0.895304i
\(149\) 33575.6i 1.51235i 0.654371 + 0.756173i \(0.272933\pi\)
−0.654371 + 0.756173i \(0.727067\pi\)
\(150\) 22460.6 9007.43i 0.998250 0.400330i
\(151\) −26884.0 −1.17907 −0.589536 0.807742i \(-0.700689\pi\)
−0.589536 + 0.807742i \(0.700689\pi\)
\(152\) −9801.30 + 21563.9i −0.424225 + 0.933340i
\(153\) 3287.69i 0.140446i
\(154\) −12858.9 + 5156.84i −0.542205 + 0.217441i
\(155\) 13006.1i 0.541356i
\(156\) 25568.0 + 26751.0i 1.05063 + 1.09924i
\(157\) 31732.0i 1.28735i −0.765298 0.643677i \(-0.777408\pi\)
0.765298 0.643677i \(-0.222592\pi\)
\(158\) 21135.7 8476.08i 0.846646 0.339532i
\(159\) 543.149i 0.0214845i
\(160\) 2837.17 + 8119.01i 0.110827 + 0.317149i
\(161\) 49195.1i 1.89789i
\(162\) 30425.7 12201.7i 1.15934 0.464932i
\(163\) 26471.0i 0.996313i 0.867087 + 0.498156i \(0.165989\pi\)
−0.867087 + 0.498156i \(0.834011\pi\)
\(164\) 23115.0 13751.0i 0.859423 0.511266i
\(165\) 4902.69 0.180080
\(166\) 4536.99 + 11313.3i 0.164646 + 0.410557i
\(167\) −21454.0 −0.769264 −0.384632 0.923070i \(-0.625672\pi\)
−0.384632 + 0.923070i \(0.625672\pi\)
\(168\) −18707.9 + 41159.3i −0.662835 + 1.45831i
\(169\) −16367.3 −0.573063
\(170\) −1080.29 2693.78i −0.0373804 0.0932106i
\(171\) 14084.9 0.481683
\(172\) 10681.0 + 11175.2i 0.361041 + 0.377745i
\(173\) −40986.3 −1.36945 −0.684725 0.728802i \(-0.740078\pi\)
−0.684725 + 0.728802i \(0.740078\pi\)
\(174\) 19839.3 + 49470.6i 0.655281 + 1.63399i
\(175\) −35897.3 −1.17216
\(176\) 619.008 13681.5i 0.0199835 0.441679i
\(177\) 23859.0i 0.761563i
\(178\) 19366.7 + 48292.2i 0.611246 + 1.52418i
\(179\) 418.430 0.0130592 0.00652960 0.999979i \(-0.497922\pi\)
0.00652960 + 0.999979i \(0.497922\pi\)
\(180\) 3697.02 3533.54i 0.114106 0.109060i
\(181\) 31402.8i 0.958542i −0.877667 0.479271i \(-0.840901\pi\)
0.877667 0.479271i \(-0.159099\pi\)
\(182\) −20431.8 50948.1i −0.616828 1.53810i
\(183\) −20304.8 −0.606312
\(184\) 44272.1 + 20122.7i 1.30766 + 0.594361i
\(185\) 14898.9 0.435322
\(186\) −25156.8 62730.2i −0.727160 1.81322i
\(187\) 4621.69i 0.132165i
\(188\) 15961.5 15255.6i 0.451603 0.431632i
\(189\) −30336.7 −0.849267
\(190\) −11540.5 + 4628.12i −0.319682 + 0.128203i
\(191\) −39525.7 −1.08346 −0.541729 0.840553i \(-0.682230\pi\)
−0.541729 + 0.840553i \(0.682230\pi\)
\(192\) −29388.2 33671.5i −0.797205 0.913397i
\(193\) 11715.0i 0.314505i −0.987558 0.157253i \(-0.949736\pi\)
0.987558 0.157253i \(-0.0502637\pi\)
\(194\) −1790.62 4465.03i −0.0475774 0.118637i
\(195\) 19424.8i 0.510844i
\(196\) 20711.6 19795.7i 0.539139 0.515297i
\(197\) −16057.4 −0.413755 −0.206877 0.978367i \(-0.566330\pi\)
−0.206877 + 0.978367i \(0.566330\pi\)
\(198\) −7558.55 + 3031.22i −0.192801 + 0.0773192i
\(199\) −7311.67 −0.184633 −0.0923167 0.995730i \(-0.529427\pi\)
−0.0923167 + 0.995730i \(0.529427\pi\)
\(200\) 14683.4 32304.9i 0.367084 0.807624i
\(201\) −12490.5 −0.309163
\(202\) −8572.80 21376.9i −0.210097 0.523891i
\(203\) 79065.4i 1.91864i
\(204\) 10420.8 + 10903.0i 0.250405 + 0.261990i
\(205\) 13759.1 + 3165.54i 0.327402 + 0.0753252i
\(206\) −4746.45 11835.6i −0.111850 0.278905i
\(207\) 28917.2i 0.674863i
\(208\) 54207.0 + 2452.56i 1.25294 + 0.0566882i
\(209\) 19799.9 0.453285
\(210\) −22027.5 + 8833.75i −0.499491 + 0.200312i
\(211\) 33084.4 0.743120 0.371560 0.928409i \(-0.378823\pi\)
0.371560 + 0.928409i \(0.378823\pi\)
\(212\) 550.306 + 575.768i 0.0122443 + 0.0128108i
\(213\) −50949.9 −1.12301
\(214\) 25328.5 + 63158.3i 0.553073 + 1.37912i
\(215\) 8114.72i 0.175548i
\(216\) 12408.9 27300.8i 0.265965 0.585152i
\(217\) 100257.i 2.12910i
\(218\) 25764.8 + 64246.3i 0.542144 + 1.35187i
\(219\) 90440.4 1.88571
\(220\) 5197.11 4967.29i 0.107378 0.102630i
\(221\) −18311.5 −0.374921
\(222\) −71859.6 + 28818.0i −1.45807 + 0.584733i
\(223\) 67686.9i 1.36111i −0.732695 0.680557i \(-0.761738\pi\)
0.732695 0.680557i \(-0.238262\pi\)
\(224\) 21870.3 + 62585.5i 0.435872 + 1.24732i
\(225\) −21100.6 −0.416802
\(226\) 29632.1 11883.4i 0.580158 0.232662i
\(227\) −25028.0 −0.485707 −0.242854 0.970063i \(-0.578083\pi\)
−0.242854 + 0.970063i \(0.578083\pi\)
\(228\) 46709.8 44644.2i 0.898541 0.858807i
\(229\) 94720.5i 1.80623i 0.429399 + 0.903115i \(0.358725\pi\)
−0.429399 + 0.903115i \(0.641275\pi\)
\(230\) 9501.82 + 23693.4i 0.179619 + 0.447891i
\(231\) 37792.4 0.708240
\(232\) 71153.2 + 32340.8i 1.32196 + 0.600862i
\(233\) 43248.7i 0.796638i −0.917247 0.398319i \(-0.869594\pi\)
0.917247 0.398319i \(-0.130406\pi\)
\(234\) −12010.0 29947.6i −0.219336 0.546928i
\(235\) 11590.2 0.209872
\(236\) 24173.4 + 25291.8i 0.434024 + 0.454105i
\(237\) −62117.8 −1.10591
\(238\) −8327.46 20765.1i −0.147014 0.366589i
\(239\) −45302.7 −0.793101 −0.396550 0.918013i \(-0.629793\pi\)
−0.396550 + 0.918013i \(0.629793\pi\)
\(240\) 1060.37 23436.6i 0.0184092 0.406885i
\(241\) 41114.1 0.707875 0.353937 0.935269i \(-0.384843\pi\)
0.353937 + 0.935269i \(0.384843\pi\)
\(242\) 43730.5 17537.3i 0.746712 0.299456i
\(243\) −51466.8 −0.871594
\(244\) −21524.2 + 20572.4i −0.361532 + 0.345545i
\(245\) 15039.4 0.250552
\(246\) −72485.0 + 11345.4i −1.19778 + 0.187478i
\(247\) 78449.0i 1.28586i
\(248\) −90224.4 41009.1i −1.46697 0.666771i
\(249\) 33249.8i 0.536278i
\(250\) 36777.4 14748.9i 0.588438 0.235982i
\(251\) 31230.5i 0.495714i 0.968797 + 0.247857i \(0.0797262\pi\)
−0.968797 + 0.247857i \(0.920274\pi\)
\(252\) 28498.5 27238.3i 0.448767 0.428922i
\(253\) 40650.5i 0.635075i
\(254\) −17968.8 44806.3i −0.278516 0.694499i
\(255\) 7917.04i 0.121754i
\(256\) −65268.2 5918.15i −0.995914 0.0903038i
\(257\) 108313.i 1.63989i −0.572441 0.819946i \(-0.694003\pi\)
0.572441 0.819946i \(-0.305997\pi\)
\(258\) −15695.8 39138.5i −0.235800 0.587983i
\(259\) 114848. 1.71208
\(260\) 19680.8 + 20591.4i 0.291136 + 0.304606i
\(261\) 46475.1i 0.682244i
\(262\) 41991.7 + 104709.i 0.611732 + 1.52539i
\(263\) −79971.4 −1.15617 −0.578087 0.815975i \(-0.696201\pi\)
−0.578087 + 0.815975i \(0.696201\pi\)
\(264\) −15458.5 + 34010.4i −0.221800 + 0.487983i
\(265\) 418.085i 0.00595351i
\(266\) −88960.2 + 35675.9i −1.25728 + 0.504210i
\(267\) 141931.i 1.99092i
\(268\) −13240.6 + 12655.1i −0.184348 + 0.176196i
\(269\) −31997.5 −0.442192 −0.221096 0.975252i \(-0.570963\pi\)
−0.221096 + 0.975252i \(0.570963\pi\)
\(270\) 14610.8 5859.40i 0.200422 0.0803758i
\(271\) 697.687i 0.00949997i −0.999989 0.00474999i \(-0.998488\pi\)
0.999989 0.00474999i \(-0.00151197\pi\)
\(272\) 22093.3 + 999.597i 0.298623 + 0.0135110i
\(273\) 149737.i 2.00911i
\(274\) −32703.2 81547.6i −0.435601 1.08620i
\(275\) −29662.3 −0.392229
\(276\) −91657.4 95898.2i −1.20323 1.25890i
\(277\) −24514.1 −0.319489 −0.159744 0.987158i \(-0.551067\pi\)
−0.159744 + 0.987158i \(0.551067\pi\)
\(278\) −11010.5 27455.5i −0.142469 0.355255i
\(279\) 58931.9i 0.757080i
\(280\) −14400.2 + 31682.1i −0.183677 + 0.404108i
\(281\) 98113.6i 1.24256i 0.783589 + 0.621279i \(0.213387\pi\)
−0.783589 + 0.621279i \(0.786613\pi\)
\(282\) −55901.1 + 22418.1i −0.702947 + 0.281904i
\(283\) 18480.4i 0.230748i −0.993322 0.115374i \(-0.963193\pi\)
0.993322 0.115374i \(-0.0368067\pi\)
\(284\) −54009.7 + 51621.3i −0.669630 + 0.640018i
\(285\) 33917.6 0.417576
\(286\) −16883.1 42099.1i −0.206405 0.514684i
\(287\) 106062. + 24401.6i 1.28764 + 0.296247i
\(288\) 12855.5 + 36788.1i 0.154990 + 0.443530i
\(289\) 76057.7 0.910642
\(290\) 15271.1 + 38079.6i 0.181583 + 0.452790i
\(291\) 13122.7i 0.154967i
\(292\) 95871.8 91632.2i 1.12441 1.07469i
\(293\) 13202.8i 0.153791i −0.997039 0.0768953i \(-0.975499\pi\)
0.997039 0.0768953i \(-0.0245007\pi\)
\(294\) −72537.2 + 29089.7i −0.839201 + 0.336547i
\(295\) 18365.3i 0.211035i
\(296\) −46977.3 + 103355.i −0.536173 + 1.17964i
\(297\) −25067.6 −0.284184
\(298\) −49989.6 124652.i −0.562920 1.40368i
\(299\) 161061. 1.80155
\(300\) −69976.1 + 66881.6i −0.777512 + 0.743129i
\(301\) 62552.4i 0.690416i
\(302\) 99809.1 40026.7i 1.09435 0.438870i
\(303\) 62826.6i 0.684319i
\(304\) 4282.40 94650.6i 0.0463383 1.02418i
\(305\) −15629.5 −0.168014
\(306\) −4894.93 12205.8i −0.0522761 0.130354i
\(307\) 22851.6i 0.242460i 0.992624 + 0.121230i \(0.0386839\pi\)
−0.992624 + 0.121230i \(0.961316\pi\)
\(308\) 40062.0 38290.4i 0.422310 0.403635i
\(309\) 34784.8i 0.364311i
\(310\) −19364.3 48286.1i −0.201501 0.502457i
\(311\) −158073. −1.63432 −0.817159 0.576412i \(-0.804452\pi\)
−0.817159 + 0.576412i \(0.804452\pi\)
\(312\) −134752. 61248.0i −1.38429 0.629191i
\(313\) 62359.7i 0.636525i −0.948003 0.318263i \(-0.896901\pi\)
0.948003 0.318263i \(-0.103099\pi\)
\(314\) 47244.6 + 117808.i 0.479174 + 1.19485i
\(315\) 20693.8 0.208554
\(316\) −65848.2 + 62936.3i −0.659432 + 0.630271i
\(317\) 12742.6i 0.126806i 0.997988 + 0.0634030i \(0.0201953\pi\)
−0.997988 + 0.0634030i \(0.979805\pi\)
\(318\) −808.676 2016.49i −0.00799687 0.0199407i
\(319\) 65332.7i 0.642021i
\(320\) −22621.3 25918.4i −0.220911 0.253109i
\(321\) 185622.i 1.80144i
\(322\) 73244.9 + 182641.i 0.706424 + 1.76152i
\(323\) 31973.7i 0.306470i
\(324\) −94791.2 + 90599.4i −0.902980 + 0.863049i
\(325\) 117525.i 1.11266i
\(326\) −39411.8 98276.0i −0.370844 0.924724i
\(327\) 188820.i 1.76585i
\(328\) −65343.1 + 85466.9i −0.607368 + 0.794420i
\(329\) 89342.9 0.825407
\(330\) −18201.6 + 7299.44i −0.167141 + 0.0670288i
\(331\) −4782.50 −0.0436514 −0.0218257 0.999762i \(-0.506948\pi\)
−0.0218257 + 0.999762i \(0.506948\pi\)
\(332\) −33687.9 35246.6i −0.305632 0.319772i
\(333\) 67508.5 0.608793
\(334\) 79649.8 31942.1i 0.713989 0.286333i
\(335\) −9614.45 −0.0856712
\(336\) 8173.87 180661.i 0.0724018 1.60024i
\(337\) 179723. 1.58250 0.791251 0.611492i \(-0.209430\pi\)
0.791251 + 0.611492i \(0.209430\pi\)
\(338\) 60764.8 24368.6i 0.531886 0.213303i
\(339\) −87088.9 −0.757816
\(340\) 8021.36 + 8392.49i 0.0693890 + 0.0725994i
\(341\) 82843.9i 0.712446i
\(342\) −52291.3 + 20970.5i −0.447072 + 0.179290i
\(343\) −39516.4 −0.335884
\(344\) −56292.6 25586.3i −0.475702 0.216218i
\(345\) 69635.0i 0.585045i
\(346\) 152165. 61023.0i 1.27105 0.509732i
\(347\) −30157.9 −0.250462 −0.125231 0.992128i \(-0.539967\pi\)
−0.125231 + 0.992128i \(0.539967\pi\)
\(348\) −147310. 154126.i −1.21639 1.27267i
\(349\) −205819. −1.68979 −0.844897 0.534929i \(-0.820338\pi\)
−0.844897 + 0.534929i \(0.820338\pi\)
\(350\) 133272. 53446.2i 1.08793 0.436295i
\(351\) 99319.8i 0.806161i
\(352\) 18071.7 + 51715.2i 0.145853 + 0.417381i
\(353\) 37308.9 0.299408 0.149704 0.988731i \(-0.452168\pi\)
0.149704 + 0.988731i \(0.452168\pi\)
\(354\) −35522.8 88578.6i −0.283466 0.706842i
\(355\) −39218.3 −0.311195
\(356\) −143801. 150455.i −1.13465 1.18715i
\(357\) 61028.6i 0.478847i
\(358\) −1553.46 + 622.986i −0.0121208 + 0.00486085i
\(359\) 157948.i 1.22553i 0.790265 + 0.612766i \(0.209943\pi\)
−0.790265 + 0.612766i \(0.790057\pi\)
\(360\) −8464.55 + 18622.9i −0.0653129 + 0.143695i
\(361\) 6658.27 0.0510913
\(362\) 46754.5 + 116586.i 0.356785 + 0.889667i
\(363\) −128524. −0.975373
\(364\) 151710. + 158729.i 1.14501 + 1.19799i
\(365\) 69615.8 0.522543
\(366\) 75383.3 30231.1i 0.562746 0.225679i
\(367\) 123736.i 0.918678i 0.888261 + 0.459339i \(0.151914\pi\)
−0.888261 + 0.459339i \(0.848086\pi\)
\(368\) −194324. 8792.04i −1.43493 0.0649223i
\(369\) 62343.9 + 14343.4i 0.457869 + 0.105342i
\(370\) −55313.4 + 22182.4i −0.404042 + 0.162034i
\(371\) 3222.81i 0.0234146i
\(372\) 186794. + 195436.i 1.34982 + 1.41227i
\(373\) −167782. −1.20595 −0.602974 0.797761i \(-0.706018\pi\)
−0.602974 + 0.797761i \(0.706018\pi\)
\(374\) −6881.08 17158.4i −0.0491941 0.122669i
\(375\) −108089. −0.768631
\(376\) −36544.7 + 80402.2i −0.258493 + 0.568712i
\(377\) 258854. 1.82126
\(378\) 112627. 45167.2i 0.788244 0.316111i
\(379\) 238729.i 1.66198i 0.556285 + 0.830992i \(0.312226\pi\)
−0.556285 + 0.830992i \(0.687774\pi\)
\(380\) 35954.5 34364.6i 0.248992 0.237982i
\(381\) 131686.i 0.907170i
\(382\) 146742. 58848.4i 1.00561 0.403281i
\(383\) 237079. 1.61620 0.808100 0.589045i \(-0.200496\pi\)
0.808100 + 0.589045i \(0.200496\pi\)
\(384\) 159238. + 81253.1i 1.07990 + 0.551033i
\(385\) 29090.4 0.196258
\(386\) 17442.1 + 43492.9i 0.117064 + 0.291907i
\(387\) 36768.7i 0.245503i
\(388\) 13295.7 + 13910.8i 0.0883175 + 0.0924037i
\(389\) 219696. 1.45185 0.725927 0.687772i \(-0.241411\pi\)
0.725927 + 0.687772i \(0.241411\pi\)
\(390\) −28921.0 72116.4i −0.190144 0.474138i
\(391\) 65644.0 0.429380
\(392\) −47420.3 + 104330.i −0.308597 + 0.678947i
\(393\) 307740.i 1.99250i
\(394\) 59614.5 23907.3i 0.384025 0.154006i
\(395\) −47814.7 −0.306455
\(396\) 23548.7 22507.3i 0.150168 0.143527i
\(397\) 11360.1i 0.0720778i −0.999350 0.0360389i \(-0.988526\pi\)
0.999350 0.0360389i \(-0.0114740\pi\)
\(398\) 27145.2 10886.1i 0.171367 0.0687236i
\(399\) 261454. 1.64229
\(400\) −6415.48 + 141796.i −0.0400967 + 0.886227i
\(401\) −5772.18 −0.0358964 −0.0179482 0.999839i \(-0.505713\pi\)
−0.0179482 + 0.999839i \(0.505713\pi\)
\(402\) 46371.9 18596.6i 0.286948 0.115075i
\(403\) −328234. −2.02104
\(404\) 63654.5 + 66599.6i 0.390002 + 0.408046i
\(405\) −68831.2 −0.419638
\(406\) 117718. + 293537.i 0.714150 + 1.78078i
\(407\) 94900.5 0.572901
\(408\) −54921.3 24963.0i −0.329929 0.149960i
\(409\) 242850. 1.45175 0.725874 0.687828i \(-0.241436\pi\)
0.725874 + 0.687828i \(0.241436\pi\)
\(410\) −55794.8 + 8733.06i −0.331914 + 0.0519516i
\(411\) 239669.i 1.41882i
\(412\) 35243.2 + 36873.8i 0.207626 + 0.217232i
\(413\) 141569.i 0.829981i
\(414\) 43053.8 + 107357.i 0.251195 + 0.626371i
\(415\) 25593.8i 0.148607i
\(416\) −204900. + 71601.6i −1.18401 + 0.413748i
\(417\) 80691.8i 0.464042i
\(418\) −73508.9 + 29479.4i −0.420714 + 0.168720i
\(419\) 112368.i 0.640050i 0.947409 + 0.320025i \(0.103691\pi\)
−0.947409 + 0.320025i \(0.896309\pi\)
\(420\) 68626.9 65592.1i 0.389041 0.371837i
\(421\) 115877.i 0.653780i −0.945062 0.326890i \(-0.893999\pi\)
0.945062 0.326890i \(-0.106001\pi\)
\(422\) −122829. + 49258.3i −0.689724 + 0.276601i
\(423\) 52516.3 0.293504
\(424\) −2900.30 1318.25i −0.0161328 0.00733276i
\(425\) 47899.9i 0.265190i
\(426\) 189156. 75857.6i 1.04232 0.418003i
\(427\) −120480. −0.660783
\(428\) −188068. 196770.i −1.02666 1.07417i
\(429\) 123729.i 0.672291i
\(430\) −12081.7 30126.6i −0.0653419 0.162934i
\(431\) 241005.i 1.29739i −0.761048 0.648695i \(-0.775315\pi\)
0.761048 0.648695i \(-0.224685\pi\)
\(432\) −5421.70 + 119832.i −0.0290515 + 0.642103i
\(433\) 49875.4 0.266018 0.133009 0.991115i \(-0.457536\pi\)
0.133009 + 0.991115i \(0.457536\pi\)
\(434\) −149270. 372214.i −0.792487 1.97612i
\(435\) 111916.i 0.591444i
\(436\) −191308. 200160.i −1.00638 1.05294i
\(437\) 281227.i 1.47263i
\(438\) −335768. + 134654.i −1.75021 + 0.701891i
\(439\) 130984. 0.679658 0.339829 0.940487i \(-0.389631\pi\)
0.339829 + 0.940487i \(0.389631\pi\)
\(440\) −11899.1 + 26179.3i −0.0614623 + 0.135224i
\(441\) 68145.1 0.350395
\(442\) 67983.1 27263.4i 0.347982 0.139552i
\(443\) 20713.2i 0.105546i 0.998607 + 0.0527729i \(0.0168059\pi\)
−0.998607 + 0.0527729i \(0.983194\pi\)
\(444\) 223879. 213978.i 1.13566 1.08544i
\(445\) 109250.i 0.551700i
\(446\) 100777. + 251293.i 0.506629 + 1.26331i
\(447\) 366353.i 1.83352i
\(448\) −174377. 199792.i −0.868825 0.995456i
\(449\) 131041. 0.650003 0.325002 0.945713i \(-0.394635\pi\)
0.325002 + 0.945713i \(0.394635\pi\)
\(450\) 78337.8 31416.0i 0.386854 0.155141i
\(451\) 87640.3 + 20163.4i 0.430874 + 0.0991310i
\(452\) −92319.0 + 88236.5i −0.451871 + 0.431888i
\(453\) −293339. −1.42947
\(454\) 92918.6 37263.3i 0.450807 0.180788i
\(455\) 115259.i 0.556738i
\(456\) −106945. + 235290.i −0.514316 + 1.13155i
\(457\) 95912.4i 0.459243i −0.973280 0.229621i \(-0.926251\pi\)
0.973280 0.229621i \(-0.0737488\pi\)
\(458\) −141026. 351658.i −0.672308 1.67644i
\(459\) 40480.0i 0.192139i
\(460\) −70552.6 73816.9i −0.333425 0.348851i
\(461\) 101343. 0.476860 0.238430 0.971160i \(-0.423367\pi\)
0.238430 + 0.971160i \(0.423367\pi\)
\(462\) −140307. + 56267.8i −0.657350 + 0.263618i
\(463\) 307663. 1.43520 0.717601 0.696454i \(-0.245240\pi\)
0.717601 + 0.696454i \(0.245240\pi\)
\(464\) −312313. 14130.4i −1.45062 0.0656324i
\(465\) 141913.i 0.656321i
\(466\) 64391.5 + 160564.i 0.296522 + 0.739397i
\(467\) 15893.5i 0.0728761i 0.999336 + 0.0364380i \(0.0116012\pi\)
−0.999336 + 0.0364380i \(0.988399\pi\)
\(468\) 89175.9 + 93301.8i 0.407151 + 0.425989i
\(469\) −74113.1 −0.336937
\(470\) −43029.5 + 17256.2i −0.194792 + 0.0781177i
\(471\) 346237.i 1.56074i
\(472\) −127402. 57907.2i −0.571863 0.259925i
\(473\) 51687.8i 0.231029i
\(474\) 230617. 92485.0i 1.02644 0.411637i
\(475\) −205209. −0.909514
\(476\) 61832.8 + 64693.6i 0.272901 + 0.285527i
\(477\) 1894.39i 0.00832592i
\(478\) 168190. 67449.6i 0.736113 0.295205i
\(479\) 326388. 1.42254 0.711268 0.702921i \(-0.248121\pi\)
0.711268 + 0.702921i \(0.248121\pi\)
\(480\) 30957.1 + 88588.9i 0.134363 + 0.384500i
\(481\) 376004.i 1.62518i
\(482\) −152639. + 61213.3i −0.657011 + 0.263483i
\(483\) 536782.i 2.30093i
\(484\) −136242. + 130218.i −0.581596 + 0.555877i
\(485\) 10101.1i 0.0429424i
\(486\) 191075. 76627.1i 0.808967 0.324421i
\(487\) 95282.0i 0.401747i 0.979617 + 0.200874i \(0.0643781\pi\)
−0.979617 + 0.200874i \(0.935622\pi\)
\(488\) 49280.9 108423.i 0.206937 0.455284i
\(489\) 288833.i 1.20790i
\(490\) −55835.0 + 22391.6i −0.232549 + 0.0932595i
\(491\) 166293.i 0.689782i 0.938643 + 0.344891i \(0.112084\pi\)
−0.938643 + 0.344891i \(0.887916\pi\)
\(492\) 252215. 150041.i 1.04193 0.619841i
\(493\) 105502. 0.434076
\(494\) −116800. 291248.i −0.478618 1.19346i
\(495\) 17099.5 0.0697869
\(496\) 396023. + 17917.8i 1.60974 + 0.0728318i
\(497\) −302315. −1.22390
\(498\) 49504.5 + 123443.i 0.199612 + 0.497745i
\(499\) 18690.1 0.0750605 0.0375302 0.999295i \(-0.488051\pi\)
0.0375302 + 0.999295i \(0.488051\pi\)
\(500\) −114580. + 109513.i −0.458320 + 0.438052i
\(501\) −234091. −0.932629
\(502\) −46497.9 115946.i −0.184513 0.460095i
\(503\) −155261. −0.613660 −0.306830 0.951764i \(-0.599268\pi\)
−0.306830 + 0.951764i \(0.599268\pi\)
\(504\) −65249.0 + 143555.i −0.256870 + 0.565141i
\(505\) 48360.3i 0.189630i
\(506\) 60523.2 + 150919.i 0.236385 + 0.589443i
\(507\) −178588. −0.694762
\(508\) 133421. + 139594.i 0.517007 + 0.540928i
\(509\) 22301.9i 0.0860810i 0.999073 + 0.0430405i \(0.0137044\pi\)
−0.999073 + 0.0430405i \(0.986296\pi\)
\(510\) −11787.4 29392.7i −0.0453187 0.113005i
\(511\) 536634. 2.05512
\(512\) 251125. 75204.0i 0.957966 0.286880i
\(513\) −173422. −0.658975
\(514\) 161264. + 402122.i 0.610395 + 1.52206i
\(515\) 26775.4i 0.100953i
\(516\) 116544. + 121936.i 0.437714 + 0.457966i
\(517\) 73825.2 0.276200
\(518\) −426384. + 170993.i −1.58906 + 0.637265i
\(519\) −447213. −1.66027
\(520\) −103724. 47145.2i −0.383596 0.174354i
\(521\) 160459.i 0.591136i −0.955322 0.295568i \(-0.904491\pi\)
0.955322 0.295568i \(-0.0955089\pi\)
\(522\) 69195.2 + 172543.i 0.253942 + 0.633222i
\(523\) 439631.i 1.60725i −0.595133 0.803627i \(-0.702900\pi\)
0.595133 0.803627i \(-0.297100\pi\)
\(524\) −311795. 326221.i −1.13555 1.18809i
\(525\) −391685. −1.42108
\(526\) 296900. 119067.i 1.07310 0.430347i
\(527\) −133779. −0.481690
\(528\) 6754.17 149282.i 0.0242273 0.535477i
\(529\) −297537. −1.06323
\(530\) −622.472 1552.18i −0.00221599 0.00552572i
\(531\) 83215.1i 0.295130i
\(532\) 277156. 264899.i 0.979266 0.935961i
\(533\) −79888.9 + 347238.i −0.281211 + 1.22229i
\(534\) 211316. + 526931.i 0.741054 + 1.84787i
\(535\) 142882.i 0.499193i
\(536\) 30315.1 66696.4i 0.105519 0.232152i
\(537\) 4565.61 0.0158325
\(538\) 118793. 47639.9i 0.410419 0.164591i
\(539\) 95795.4 0.329737
\(540\) −45520.0 + 43507.0i −0.156104 + 0.149201i
\(541\) −456987. −1.56138 −0.780691 0.624917i \(-0.785133\pi\)
−0.780691 + 0.624917i \(0.785133\pi\)
\(542\) 1038.76 + 2590.22i 0.00353604 + 0.00881736i
\(543\) 342645.i 1.16210i
\(544\) −83511.6 + 29182.9i −0.282195 + 0.0986121i
\(545\) 145343.i 0.489329i
\(546\) −222938. 555910.i −0.747822 1.86474i
\(547\) −223278. −0.746226 −0.373113 0.927786i \(-0.621710\pi\)
−0.373113 + 0.927786i \(0.621710\pi\)
\(548\) 242827. + 254062.i 0.808603 + 0.846015i
\(549\) −70818.8 −0.234965
\(550\) 110124. 44163.2i 0.364046 0.145994i
\(551\) 451983.i 1.48874i
\(552\) 483065. + 219565.i 1.58536 + 0.720583i
\(553\) −368580. −1.20526
\(554\) 91010.5 36498.1i 0.296532 0.118919i
\(555\) 162566. 0.527769
\(556\) 81755.1 + 85537.7i 0.264463 + 0.276699i
\(557\) 501110.i 1.61519i −0.589740 0.807593i \(-0.700770\pi\)
0.589740 0.807593i \(-0.299230\pi\)
\(558\) −87741.6 218790.i −0.281798 0.702681i
\(559\) −204791. −0.655372
\(560\) 6291.78 139062.i 0.0200631 0.443439i
\(561\) 50428.6i 0.160233i
\(562\) −146078. 364255.i −0.462500 1.15328i
\(563\) 364685. 1.15054 0.575269 0.817965i \(-0.304898\pi\)
0.575269 + 0.817965i \(0.304898\pi\)
\(564\) 174160. 166458.i 0.547508 0.523296i
\(565\) −67036.1 −0.209996
\(566\) 27514.8 + 68610.0i 0.0858883 + 0.214168i
\(567\) −530586. −1.65040
\(568\) 123658. 272062.i 0.383289 0.843278i
\(569\) 593925. 1.83445 0.917227 0.398365i \(-0.130422\pi\)
0.917227 + 0.398365i \(0.130422\pi\)
\(570\) −125922. + 50498.7i −0.387571 + 0.155429i
\(571\) −323291. −0.991565 −0.495783 0.868447i \(-0.665119\pi\)
−0.495783 + 0.868447i \(0.665119\pi\)
\(572\) 125360. + 131160.i 0.383147 + 0.400874i
\(573\) −431276. −1.31355
\(574\) −430095. + 67318.9i −1.30539 + 0.204321i
\(575\) 421307.i 1.27428i
\(576\) −102500. 117439.i −0.308943 0.353970i
\(577\) 60102.3i 0.180526i 0.995918 + 0.0902630i \(0.0287707\pi\)
−0.995918 + 0.0902630i \(0.971229\pi\)
\(578\) −282371. + 113240.i −0.845209 + 0.338956i
\(579\) 127826.i 0.381295i
\(580\) −113391. 118637.i −0.337071 0.352667i
\(581\) 197290.i 0.584457i
\(582\) −19538.0 48719.3i −0.0576812 0.143832i
\(583\) 2663.05i 0.00783505i
\(584\) −219504. + 482932.i −0.643601 + 1.41599i
\(585\) 67749.7i 0.197968i
\(586\) 19657.2 + 49016.4i 0.0572434 + 0.142740i
\(587\) −350288. −1.01660 −0.508298 0.861181i \(-0.669725\pi\)
−0.508298 + 0.861181i \(0.669725\pi\)
\(588\) 225990. 215996.i 0.653633 0.624729i
\(589\) 573128.i 1.65204i
\(590\) −27343.4 68182.7i −0.0785505 0.195871i
\(591\) −175207. −0.501622
\(592\) 20525.4 453657.i 0.0585664 1.29445i
\(593\) 519422.i 1.47710i 0.674197 + 0.738552i \(0.264490\pi\)
−0.674197 + 0.738552i \(0.735510\pi\)
\(594\) 93065.5 37322.2i 0.263764 0.105778i
\(595\) 46976.3i 0.132692i
\(596\) 371181. + 388354.i 1.04494 + 1.09329i
\(597\) −79779.8 −0.223843
\(598\) −597952. + 239798.i −1.67211 + 0.670568i
\(599\) 306566.i 0.854419i 0.904153 + 0.427210i \(0.140503\pi\)
−0.904153 + 0.427210i \(0.859497\pi\)
\(600\) 160214. 352489.i 0.445040 0.979135i
\(601\) 539204.i 1.49281i −0.665492 0.746405i \(-0.731778\pi\)
0.665492 0.746405i \(-0.268222\pi\)
\(602\) −93132.0 232231.i −0.256984 0.640807i
\(603\) −43564.1 −0.119810
\(604\) −310956. + 297205.i −0.852363 + 0.814670i
\(605\) −98930.3 −0.270283
\(606\) −93540.3 233249.i −0.254715 0.635148i
\(607\) 565998.i 1.53616i −0.640352 0.768081i \(-0.721212\pi\)
0.640352 0.768081i \(-0.278788\pi\)
\(608\) 125023. + 357774.i 0.338208 + 0.967836i
\(609\) 862706.i 2.32610i
\(610\) 58025.7 23270.2i 0.155941 0.0625374i
\(611\) 292501.i 0.783512i
\(612\) 36345.7 + 38027.3i 0.0970398 + 0.101530i
\(613\) −434334. −1.15585 −0.577927 0.816089i \(-0.696138\pi\)
−0.577927 + 0.816089i \(0.696138\pi\)
\(614\) −34023.0 84838.6i −0.0902476 0.225038i
\(615\) 150129. + 34540.1i 0.396931 + 0.0913217i
\(616\) −91724.3 + 201803.i −0.241726 + 0.531822i
\(617\) −94005.0 −0.246934 −0.123467 0.992349i \(-0.539401\pi\)
−0.123467 + 0.992349i \(0.539401\pi\)
\(618\) −51789.9 129142.i −0.135603 0.338134i
\(619\) 503623.i 1.31439i −0.753721 0.657194i \(-0.771743\pi\)
0.753721 0.657194i \(-0.228257\pi\)
\(620\) 143783. + 150435.i 0.374045 + 0.391351i
\(621\) 356046.i 0.923257i
\(622\) 586859. 235349.i 1.51689 0.608320i
\(623\) 842157.i 2.16979i
\(624\) 591469. + 26760.6i 1.51902 + 0.0687269i
\(625\) 263336. 0.674141
\(626\) 92845.2 + 231516.i 0.236925 + 0.590788i
\(627\) 216043. 0.549547
\(628\) −350799. 367030.i −0.889487 0.930641i
\(629\) 153249.i 0.387343i
\(630\) −76827.4 + 30810.2i −0.193569 + 0.0776272i
\(631\) 547080.i 1.37402i 0.726649 + 0.687009i \(0.241077\pi\)
−0.726649 + 0.687009i \(0.758923\pi\)
\(632\) 150763. 331696.i 0.377452 0.830435i
\(633\) 360994. 0.900933
\(634\) −18972.0 47308.0i −0.0471992 0.117694i
\(635\) 101364.i 0.251384i
\(636\) 6004.55 + 6282.37i 0.0148445 + 0.0155313i
\(637\) 379549.i 0.935383i
\(638\) 97271.6 + 242553.i 0.238971 + 0.595889i
\(639\) −177703. −0.435203
\(640\) 122573. + 62544.0i 0.299249 + 0.152695i
\(641\) 396706.i 0.965500i −0.875758 0.482750i \(-0.839638\pi\)
0.875758 0.482750i \(-0.160362\pi\)
\(642\) 276367. + 689139.i 0.670526 + 1.67200i
\(643\) 638459. 1.54423 0.772113 0.635485i \(-0.219200\pi\)
0.772113 + 0.635485i \(0.219200\pi\)
\(644\) −543856. 569018.i −1.31133 1.37200i
\(645\) 88542.1i 0.212829i
\(646\) −47604.5 118705.i −0.114073 0.284449i
\(647\) 573811.i 1.37076i 0.728187 + 0.685378i \(0.240363\pi\)
−0.728187 + 0.685378i \(0.759637\pi\)
\(648\) 217030. 477489.i 0.516856 1.13714i
\(649\) 116980.i 0.277730i
\(650\) 174978. + 436320.i 0.414150 + 1.03271i
\(651\) 1.09394e6i 2.58125i
\(652\) 292639. + 306179.i 0.688395 + 0.720245i
\(653\) 61153.9i 0.143416i 0.997426 + 0.0717080i \(0.0228450\pi\)
−0.997426 + 0.0717080i \(0.977155\pi\)
\(654\) 281128. + 701011.i 0.657276 + 1.63896i
\(655\) 236881.i 0.552137i
\(656\) 115343. 414590.i 0.268030 0.963411i
\(657\) 315437. 0.730772
\(658\) −331693. + 133020.i −0.766099 + 0.307230i
\(659\) 749776. 1.72648 0.863238 0.504797i \(-0.168433\pi\)
0.863238 + 0.504797i \(0.168433\pi\)
\(660\) 56707.2 54199.5i 0.130182 0.124425i
\(661\) 343879. 0.787051 0.393525 0.919314i \(-0.371255\pi\)
0.393525 + 0.919314i \(0.371255\pi\)
\(662\) 17755.4 7120.49i 0.0405149 0.0162478i
\(663\) −199802. −0.454542
\(664\) 177547. + 80699.2i 0.402695 + 0.183034i
\(665\) 201252. 0.455091
\(666\) −250631. + 100511.i −0.565049 + 0.226603i
\(667\) −927950. −2.08580
\(668\) −248149. + 237176.i −0.556109 + 0.531517i
\(669\) 738551.i 1.65017i
\(670\) 35694.5 14314.6i 0.0795154 0.0318882i
\(671\) −99554.0 −0.221113
\(672\) 238633. + 682888.i 0.528436 + 1.51221i
\(673\) 154257.i 0.340576i −0.985394 0.170288i \(-0.945530\pi\)
0.985394 0.170288i \(-0.0544698\pi\)
\(674\) −667237. + 267584.i −1.46879 + 0.589033i
\(675\) 259804. 0.570214
\(676\) −189313. + 180941.i −0.414273 + 0.395954i
\(677\) 108868. 0.237531 0.118766 0.992922i \(-0.462106\pi\)
0.118766 + 0.992922i \(0.462106\pi\)
\(678\) 323325. 129664.i 0.703363 0.282071i
\(679\) 77864.7i 0.168889i
\(680\) −42275.3 19215.1i −0.0914258 0.0415552i
\(681\) −273088. −0.588855
\(682\) −123343. 307565.i −0.265184 0.661254i
\(683\) −193799. −0.415443 −0.207721 0.978188i \(-0.566605\pi\)
−0.207721 + 0.978188i \(0.566605\pi\)
\(684\) 162914. 155710.i 0.348214 0.332815i
\(685\) 184483.i 0.393166i
\(686\) 146708. 58834.6i 0.311749 0.125022i
\(687\) 1.03352e6i 2.18981i
\(688\) 247086. + 11179.2i 0.522000 + 0.0236175i
\(689\) −10551.2 −0.0222262
\(690\) 103677. + 258526.i 0.217763 + 0.543008i
\(691\) −105395. −0.220732 −0.110366 0.993891i \(-0.535202\pi\)
−0.110366 + 0.993891i \(0.535202\pi\)
\(692\) −474070. + 453106.i −0.989989 + 0.946211i
\(693\) 131812. 0.274466
\(694\) 111964. 44901.1i 0.232466 0.0932262i
\(695\) 62111.9i 0.128589i
\(696\) 776373. + 352880.i 1.60270 + 0.728464i
\(697\) −32560.5 + 141525.i −0.0670233 + 0.291318i
\(698\) 764119. 306436.i 1.56838 0.628969i
\(699\) 471899.i 0.965817i
\(700\) −415208. + 396847.i −0.847363 + 0.809891i
\(701\) 534922. 1.08857 0.544283 0.838902i \(-0.316802\pi\)
0.544283 + 0.838902i \(0.316802\pi\)
\(702\) 147874. + 368733.i 0.300066 + 0.748235i
\(703\) 656537. 1.32846
\(704\) −144090. 165091.i −0.290728 0.333102i
\(705\) 126464. 0.254441
\(706\) −138512. + 55547.9i −0.277894 + 0.111444i
\(707\) 372786.i 0.745797i
\(708\) 263763. + 275967.i 0.526196 + 0.550542i
\(709\) 154782.i 0.307913i −0.988078 0.153957i \(-0.950798\pi\)
0.988078 0.153957i \(-0.0492016\pi\)
\(710\) 145601. 58390.8i 0.288834 0.115832i
\(711\) −216654. −0.428575
\(712\) 757881. + 344474.i 1.49500 + 0.679512i
\(713\) 1.17667e6 2.31460
\(714\) −90863.3 226574.i −0.178235 0.444440i
\(715\) 95239.6i 0.186297i
\(716\) 4839.79 4625.77i 0.00944063 0.00902315i
\(717\) −494311. −0.961528
\(718\) −235163. 586394.i −0.456163 1.13747i
\(719\) 158146. 0.305915 0.152957 0.988233i \(-0.451120\pi\)
0.152957 + 0.988233i \(0.451120\pi\)
\(720\) 3698.35 81741.7i 0.00713416 0.157681i
\(721\) 206398.i 0.397041i
\(722\) −24719.4 + 9913.27i −0.0474202 + 0.0190170i
\(723\) 448608. 0.858203
\(724\) −347160. 363222.i −0.662297 0.692940i
\(725\) 677117.i 1.28821i
\(726\) 477156. 191355.i 0.905288 0.363050i
\(727\) 903429. 1.70933 0.854664 0.519182i \(-0.173763\pi\)
0.854664 + 0.519182i \(0.173763\pi\)
\(728\) −799561. 363419.i −1.50865 0.685717i
\(729\) 102249. 0.192399
\(730\) −258455. + 103649.i −0.484997 + 0.194499i
\(731\) −83467.4 −0.156200
\(732\) −234857. + 224471.i −0.438309 + 0.418927i
\(733\) −454267. −0.845479 −0.422740 0.906251i \(-0.638931\pi\)
−0.422740 + 0.906251i \(0.638931\pi\)
\(734\) −184226. 459380.i −0.341947 0.852667i
\(735\) 164099. 0.303761
\(736\) 734533. 256681.i 1.35599 0.473846i
\(737\) −61240.5 −0.112747
\(738\) −252812. + 39570.5i −0.464179 + 0.0726538i
\(739\) 23069.1i 0.0422417i 0.999777 + 0.0211208i \(0.00672347\pi\)
−0.999777 + 0.0211208i \(0.993277\pi\)
\(740\) 172329. 164708.i 0.314698 0.300782i
\(741\) 855979.i 1.55893i
\(742\) −4798.33 11965.0i −0.00871530 0.0217322i
\(743\) 418800.i 0.758629i 0.925268 + 0.379314i \(0.123840\pi\)
−0.925268 + 0.379314i \(0.876160\pi\)
\(744\) −984465. 447462.i −1.77850 0.808371i
\(745\) 281998.i 0.508081i
\(746\) 622906. 249805.i 1.11930 0.448874i
\(747\) 115968.i 0.207825i
\(748\) 51093.2 + 53457.1i 0.0913187 + 0.0955438i
\(749\) 1.10140e6i 1.96328i
\(750\) 401289. 160930.i 0.713402 0.286097i
\(751\) 530569. 0.940723 0.470362 0.882474i \(-0.344123\pi\)
0.470362 + 0.882474i \(0.344123\pi\)
\(752\) 15967.2 352910.i 0.0282353 0.624063i
\(753\) 340765.i 0.600986i
\(754\) −961016. + 385398.i −1.69039 + 0.677902i
\(755\) −225796. −0.396115
\(756\) −350891. + 335374.i −0.613944 + 0.586795i
\(757\) 861681.i 1.50368i −0.659347 0.751839i \(-0.729167\pi\)
0.659347 0.751839i \(-0.270833\pi\)
\(758\) −355435. 886301.i −0.618617 1.54256i
\(759\) 443550.i 0.769943i
\(760\) −82320.0 + 181113.i −0.142521 + 0.313561i
\(761\) 541732. 0.935438 0.467719 0.883877i \(-0.345076\pi\)
0.467719 + 0.883877i \(0.345076\pi\)
\(762\) −196062. 488894.i −0.337663 0.841986i
\(763\) 1.12038e6i 1.92449i
\(764\) −457176. + 436959.i −0.783243 + 0.748607i
\(765\) 27612.9i 0.0471835i
\(766\) −880175. + 352978.i −1.50007 + 0.601576i
\(767\) −463485. −0.787853
\(768\) −712161. 64574.6i −1.20741 0.109481i
\(769\) 616831. 1.04307 0.521535 0.853230i \(-0.325359\pi\)
0.521535 + 0.853230i \(0.325359\pi\)
\(770\) −108001. + 43311.7i −0.182157 + 0.0730506i
\(771\) 1.18184e6i 1.98815i
\(772\) −129510. 135502.i −0.217305 0.227359i
\(773\) 977948.i 1.63665i 0.574753 + 0.818327i \(0.305098\pi\)
−0.574753 + 0.818327i \(0.694902\pi\)
\(774\) −54743.6 136507.i −0.0913800 0.227862i
\(775\) 858605.i 1.42952i
\(776\) −70072.6 31849.6i −0.116366 0.0528909i
\(777\) 1.25314e6 2.07567
\(778\) −815640. + 327098.i −1.34753 + 0.540404i
\(779\) 606310. + 139493.i 0.999126 + 0.229868i
\(780\) 214743. + 224679.i 0.352964 + 0.369294i
\(781\) −249806. −0.409545
\(782\) −243709. + 97735.0i −0.398527 + 0.159822i
\(783\) 572230.i 0.933355i
\(784\) 20719.0 457936.i 0.0337082 0.745027i
\(785\) 266513.i 0.432493i
\(786\) 458184. + 1.14251e6i 0.741642 + 1.84933i
\(787\) 872525.i 1.40873i 0.709837 + 0.704366i \(0.248768\pi\)
−0.709837 + 0.704366i \(0.751232\pi\)
\(788\) −185729. + 177516.i −0.299108 + 0.285881i
\(789\) −872591. −1.40171
\(790\) 177516. 71189.6i 0.284435 0.114068i
\(791\) −516748. −0.825897
\(792\) −53916.1 + 118621.i −0.0859544 + 0.189109i
\(793\) 394441.i 0.627243i
\(794\) 16913.7 + 42175.4i 0.0268285 + 0.0668987i
\(795\) 4561.85i 0.00721783i
\(796\) −84570.9 + 80831.0i −0.133473 + 0.127571i
\(797\) 670191. 1.05507 0.527536 0.849533i \(-0.323116\pi\)
0.527536 + 0.849533i \(0.323116\pi\)
\(798\) −970671. + 389270.i −1.52428 + 0.611287i
\(799\) 119216.i 0.186741i
\(800\) −187298. 535983.i −0.292653 0.837473i
\(801\) 495025.i 0.771546i
\(802\) 21429.7 8594.00i 0.0333171 0.0133612i
\(803\) 443428. 0.687688
\(804\) −144472. + 138083.i −0.223497 + 0.213613i
\(805\) 413184.i 0.637605i
\(806\) 1.21860e6 488697.i 1.87582 0.752262i
\(807\) −349134. −0.536098
\(808\) −335481. 152484.i −0.513860 0.233561i
\(809\) 527423.i 0.805864i −0.915230 0.402932i \(-0.867991\pi\)
0.915230 0.402932i \(-0.132009\pi\)
\(810\) 255542. 102480.i 0.389486 0.156196i
\(811\) 403394.i 0.613321i 0.951819 + 0.306661i \(0.0992117\pi\)
−0.951819 + 0.306661i \(0.900788\pi\)
\(812\) −874074. 914515.i −1.32567 1.38701i
\(813\) 7612.67i 0.0115174i
\(814\) −352326. + 141294.i −0.531736 + 0.213243i
\(815\) 222327.i 0.334717i
\(816\) 241067. + 10906.9i 0.362040 + 0.0163803i
\(817\) 357585.i 0.535717i
\(818\) −901600. + 361571.i −1.34743 + 0.540364i
\(819\) 522249.i 0.778592i
\(820\) 194140. 115493.i 0.288728 0.171763i
\(821\) 302174. 0.448303 0.224151 0.974554i \(-0.428039\pi\)
0.224151 + 0.974554i \(0.428039\pi\)
\(822\) −356834. 889790.i −0.528108 1.31687i
\(823\) 396407. 0.585251 0.292625 0.956227i \(-0.405471\pi\)
0.292625 + 0.956227i \(0.405471\pi\)
\(824\) −185743. 84424.7i −0.273564 0.124341i
\(825\) −323654. −0.475525
\(826\) −210777. 525587.i −0.308932 0.770343i
\(827\) −1.19767e6 −1.75115 −0.875577 0.483078i \(-0.839519\pi\)
−0.875577 + 0.483078i \(0.839519\pi\)
\(828\) −319682. 334472.i −0.466291 0.487865i
\(829\) 464722. 0.676215 0.338107 0.941108i \(-0.390213\pi\)
0.338107 + 0.941108i \(0.390213\pi\)
\(830\) 38105.7 + 95019.1i 0.0553138 + 0.137929i
\(831\) −267480. −0.387337
\(832\) 654102. 570895.i 0.944929 0.824726i
\(833\) 154694.i 0.222938i
\(834\) −120139. 299575.i −0.172724 0.430699i
\(835\) −180190. −0.258438
\(836\) 229017. 218890.i 0.327684 0.313194i
\(837\) 725605.i 1.03574i
\(838\) −167301. 417175.i −0.238237 0.594060i
\(839\) −311715. −0.442827 −0.221413 0.975180i \(-0.571067\pi\)
−0.221413 + 0.975180i \(0.571067\pi\)
\(840\) −157125. + 345692.i −0.222683 + 0.489927i
\(841\) −784101. −1.10861
\(842\) 172525. + 430202.i 0.243348 + 0.606803i
\(843\) 1.07055e6i 1.50643i
\(844\) 382673. 365751.i 0.537209 0.513453i
\(845\) −137467. −0.192524
\(846\) −194971. + 78189.7i −0.272414 + 0.109247i
\(847\) −762605. −1.06300
\(848\) 12730.3 + 575.974i 0.0177030 + 0.000800960i
\(849\) 201645.i 0.279751i
\(850\) 71316.4 + 177832.i 0.0987078 + 0.246135i
\(851\) 1.34791e6i 1.86124i
\(852\) −589316. + 563255.i −0.811837 + 0.775936i
\(853\) −1.31916e6 −1.81301 −0.906506 0.422193i \(-0.861260\pi\)
−0.906506 + 0.422193i \(0.861260\pi\)
\(854\) 447292. 179378.i 0.613303 0.245954i
\(855\) 118297. 0.161824
\(856\) 991184. + 450516.i 1.35272 + 0.614841i
\(857\) −281386. −0.383125 −0.191563 0.981480i \(-0.561356\pi\)
−0.191563 + 0.981480i \(0.561356\pi\)
\(858\) −184216. 459355.i −0.250238 0.623985i
\(859\) 1.39446e6i 1.88982i 0.327328 + 0.944911i \(0.393852\pi\)
−0.327328 + 0.944911i \(0.606148\pi\)
\(860\) 89708.8 + 93859.4i 0.121294 + 0.126906i
\(861\) 1.15727e6 + 266253.i 1.56110 + 0.359160i
\(862\) 358823. + 894750.i 0.482910 + 1.20417i
\(863\) 1.15180e6i 1.54652i −0.634089 0.773260i \(-0.718625\pi\)
0.634089 0.773260i \(-0.281375\pi\)
\(864\) −158285. 452958.i −0.212037 0.606778i
\(865\) −344239. −0.460074
\(866\) −185167. + 74257.8i −0.246903 + 0.0990162i
\(867\) 829888. 1.10403
\(868\) 1.10835e6 + 1.15963e6i 1.47109 + 1.53915i
\(869\) −304562. −0.403308
\(870\) 166628. + 415498.i 0.220145 + 0.548947i
\(871\) 242640.i 0.319835i
\(872\) 1.00826e6 + 458277.i 1.32599 + 0.602692i
\(873\) 45769.3i 0.0600546i
\(874\) 418709. + 1.04408e6i 0.548138 + 1.36682i
\(875\) −641352. −0.837684
\(876\) 1.04608e6 999825.i 1.36320 1.30291i
\(877\) 602111. 0.782848 0.391424 0.920210i \(-0.371983\pi\)
0.391424 + 0.920210i \(0.371983\pi\)
\(878\) −486291. + 195018.i −0.630822 + 0.252980i
\(879\) 144059.i 0.186451i
\(880\) 5198.97 114909.i 0.00671355 0.148384i
\(881\) 167820. 0.216218 0.108109 0.994139i \(-0.465520\pi\)
0.108109 + 0.994139i \(0.465520\pi\)
\(882\) −252994. + 101459.i −0.325217 + 0.130423i
\(883\) −1.43605e6 −1.84182 −0.920910 0.389776i \(-0.872552\pi\)
−0.920910 + 0.389776i \(0.872552\pi\)
\(884\) −211802. + 202435.i −0.271034 + 0.259049i
\(885\) 200389.i 0.255851i
\(886\) −30839.2 76899.7i −0.0392858 0.0979619i
\(887\) −497062. −0.631776 −0.315888 0.948796i \(-0.602302\pi\)
−0.315888 + 0.948796i \(0.602302\pi\)
\(888\) −512583. + 1.12774e6i −0.650037 + 1.43015i
\(889\) 781366.i 0.988669i
\(890\) 162659. + 405601.i 0.205352 + 0.512058i
\(891\) −438430. −0.552261
\(892\) −748283. 782904.i −0.940451 0.983963i
\(893\) 510735. 0.640461
\(894\) −545451. 1.36012e6i −0.682465 1.70177i
\(895\) 3514.34 0.00438731
\(896\) 944852. + 482121.i 1.17692 + 0.600537i
\(897\) 1.75738e6 2.18414
\(898\) −486502. + 195103.i −0.603298 + 0.241942i
\(899\) 1.89112e6 2.33991
\(900\) −244062. + 233269.i −0.301311 + 0.287986i
\(901\) −4300.39 −0.00529735
\(902\) −355392. + 55626.4i −0.436813 + 0.0683704i
\(903\) 682527.i 0.837037i
\(904\) 211370. 465036.i 0.258646 0.569049i
\(905\) 263749.i 0.322027i
\(906\) 1.08905e6 436742.i 1.32675 0.532070i
\(907\) 744074.i 0.904485i 0.891895 + 0.452242i \(0.149376\pi\)
−0.891895 + 0.452242i \(0.850624\pi\)
\(908\) −289488. + 276686.i −0.351123 + 0.335596i
\(909\) 219126.i 0.265195i
\(910\) −171605. 427907.i −0.207227 0.516734i
\(911\) 1.05100e6i 1.26639i 0.773992 + 0.633196i \(0.218257\pi\)
−0.773992 + 0.633196i \(0.781743\pi\)
\(912\) 46726.5 1.03276e6i 0.0561790 1.24168i
\(913\) 163023.i 0.195572i
\(914\) 142801. + 356083.i 0.170938 + 0.426244i
\(915\) −170538. −0.203694
\(916\) 1.04714e6 + 1.09559e6i 1.24800 + 1.30574i
\(917\) 1.82600e6i 2.17151i
\(918\) 60269.3 + 150286.i 0.0715173 + 0.178333i
\(919\) −528431. −0.625688 −0.312844 0.949805i \(-0.601282\pi\)
−0.312844 + 0.949805i \(0.601282\pi\)
\(920\) 371836. + 169008.i 0.439315 + 0.199679i
\(921\) 249341.i 0.293950i
\(922\) −376244. + 150886.i −0.442596 + 0.177495i
\(923\) 989754.i 1.16178i
\(924\) 437128. 417798.i 0.511994 0.489353i
\(925\) −983561. −1.14952
\(926\) −1.14222e6 + 458069.i −1.33208 + 0.534206i
\(927\) 121322.i 0.141182i
\(928\) 1.18053e6 412532.i 1.37082 0.479029i
\(929\) 1.54286e6i 1.78770i 0.448366 + 0.893850i \(0.352006\pi\)
−0.448366 + 0.893850i \(0.647994\pi\)
\(930\) −211289. 526864.i −0.244293 0.609162i
\(931\) 662729. 0.764604
\(932\) −478118. 500239.i −0.550431 0.575898i
\(933\) −1.72478e6 −1.98139
\(934\) −23663.2 59005.8i −0.0271257 0.0676396i
\(935\) 38817.1i 0.0444017i
\(936\) −469987. 213620.i −0.536456 0.243832i
\(937\) 554710.i 0.631811i −0.948791 0.315905i \(-0.897692\pi\)
0.948791 0.315905i \(-0.102308\pi\)
\(938\) 275151. 110344.i 0.312727 0.125414i
\(939\) 680425.i 0.771701i
\(940\) 134058. 128130.i 0.151718 0.145009i
\(941\) 379562. 0.428651 0.214326 0.976762i \(-0.431245\pi\)
0.214326 + 0.976762i \(0.431245\pi\)
\(942\) 515500. + 1.28543e6i 0.580934 + 1.44860i
\(943\) 286389. 1.24479e6i 0.322057 1.39983i
\(944\) 559206. + 25300.9i 0.627521 + 0.0283917i
\(945\) −254794. −0.285316
\(946\) −76956.2 191895.i −0.0859926 0.214428i
\(947\) 223175.i 0.248855i −0.992229 0.124427i \(-0.960291\pi\)
0.992229 0.124427i \(-0.0397094\pi\)
\(948\) −718489. + 686717.i −0.799472 + 0.764119i
\(949\) 1.75690e6i 1.95080i
\(950\) 761856. 305529.i 0.844162 0.338536i
\(951\) 139038.i 0.153735i
\(952\) −325879. 148120.i −0.359570 0.163433i
\(953\) −262226. −0.288729 −0.144364 0.989525i \(-0.546114\pi\)
−0.144364 + 0.989525i \(0.546114\pi\)
\(954\) −2820.49 7033.08i −0.00309904 0.00772767i
\(955\) −331972. −0.363994
\(956\) −523997. + 500825.i −0.573341 + 0.547987i
\(957\) 712864.i 0.778364i
\(958\) −1.21174e6 + 485947.i −1.32032 + 0.529491i
\(959\) 1.42209e6i 1.54629i
\(960\) −246828. 282803.i −0.267825 0.306861i
\(961\) −1.47448e6 −1.59658
\(962\) −559818. 1.39594e6i −0.604919 1.50841i
\(963\) 647412.i 0.698117i
\(964\) 475549. 454519.i 0.511730 0.489101i
\(965\) 98393.0i 0.105660i
\(966\) 799196. + 1.99285e6i 0.856444 + 2.13560i
\(967\) 1.33860e6 1.43152 0.715759 0.698348i \(-0.246081\pi\)
0.715759 + 0.698348i \(0.246081\pi\)
\(968\) 311935. 686290.i 0.332899 0.732414i
\(969\) 348874.i 0.371553i
\(970\) −15039.2 37501.3i −0.0159839 0.0398569i
\(971\) 1.12869e6 1.19712 0.598558 0.801079i \(-0.295740\pi\)
0.598558 + 0.801079i \(0.295740\pi\)
\(972\) −595293. + 568969.i −0.630084 + 0.602221i
\(973\) 478790.i 0.505731i
\(974\) −141862. 353743.i −0.149537 0.372880i
\(975\) 1.28235e6i 1.34895i
\(976\) −21531.9 + 475903.i −0.0226039 + 0.499596i
\(977\) 1.67211e6i 1.75177i −0.482520 0.875885i \(-0.660279\pi\)
0.482520 0.875885i \(-0.339721\pi\)
\(978\) −430034. 1.07232e6i −0.449598 1.12110i
\(979\) 695885.i 0.726059i
\(980\) 173954. 166262.i 0.181127 0.173117i
\(981\) 658564.i 0.684322i
\(982\) −247588. 617378.i −0.256748 0.640219i
\(983\) 39813.3i 0.0412022i −0.999788 0.0206011i \(-0.993442\pi\)
0.999788 0.0206011i \(-0.00655801\pi\)
\(984\) −712978. + 932555.i −0.736352 + 0.963128i
\(985\) −134864. −0.139003
\(986\) −391684. + 157078.i −0.402886 + 0.161570i
\(987\) 974847. 1.00070
\(988\) 867259. + 907385.i 0.888454 + 0.929560i
\(989\) 734145. 0.750566
\(990\) −63483.4 + 25458.9i −0.0647724 + 0.0259758i
\(991\) −1.86660e6 −1.90065 −0.950327 0.311253i \(-0.899251\pi\)
−0.950327 + 0.311253i \(0.899251\pi\)
\(992\) −1.49695e6 + 523103.i −1.52119 + 0.531574i
\(993\) −52183.2 −0.0529215
\(994\) 1.12237e6 450106.i 1.13596 0.455556i
\(995\) −61409.9 −0.0620286
\(996\) −367579. 384586.i −0.370537 0.387681i
\(997\) 1.59801e6i 1.60764i 0.594874 + 0.803819i \(0.297202\pi\)
−0.594874 + 0.803819i \(0.702798\pi\)
\(998\) −69388.7 + 27827.1i −0.0696671 + 0.0279387i
\(999\) −831205. −0.832870
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 164.5.d.f.163.4 yes 72
4.3 odd 2 inner 164.5.d.f.163.1 72
41.40 even 2 inner 164.5.d.f.163.3 yes 72
164.163 odd 2 inner 164.5.d.f.163.2 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
164.5.d.f.163.1 72 4.3 odd 2 inner
164.5.d.f.163.2 yes 72 164.163 odd 2 inner
164.5.d.f.163.3 yes 72 41.40 even 2 inner
164.5.d.f.163.4 yes 72 1.1 even 1 trivial