Properties

Label 164.5.d.f.163.39
Level $164$
Weight $5$
Character 164.163
Analytic conductor $16.953$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [164,5,Mod(163,164)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("164.163"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(164, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 164 = 2^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 164.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,6,0,-162,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.9526739458\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 163.39
Character \(\chi\) \(=\) 164.163
Dual form 164.5.d.f.163.37

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.537197 + 3.96376i) q^{2} -11.6711 q^{3} +(-15.4228 + 4.25865i) q^{4} -0.283823 q^{5} +(-6.26970 - 46.2616i) q^{6} +88.0916 q^{7} +(-25.1654 - 58.8447i) q^{8} +55.2152 q^{9} +(-0.152469 - 1.12501i) q^{10} +91.8123 q^{11} +(180.002 - 49.7032i) q^{12} +185.258i q^{13} +(47.3226 + 349.174i) q^{14} +3.31253 q^{15} +(219.728 - 131.361i) q^{16} -98.4681i q^{17} +(29.6615 + 218.860i) q^{18} -9.27529 q^{19} +(4.37735 - 1.20870i) q^{20} -1028.13 q^{21} +(49.3213 + 363.922i) q^{22} -120.338i q^{23} +(293.708 + 686.784i) q^{24} -624.919 q^{25} +(-734.320 + 99.5203i) q^{26} +300.938 q^{27} +(-1358.62 + 375.151i) q^{28} -136.920i q^{29} +(1.77948 + 13.1301i) q^{30} +1330.53i q^{31} +(638.721 + 800.382i) q^{32} -1071.55 q^{33} +(390.304 - 52.8968i) q^{34} -25.0024 q^{35} +(-851.575 + 235.142i) q^{36} -1313.01 q^{37} +(-4.98266 - 36.7651i) q^{38} -2162.17i q^{39} +(7.14251 + 16.7015i) q^{40} +(979.684 + 1366.01i) q^{41} +(-552.308 - 4075.26i) q^{42} +2593.95i q^{43} +(-1416.01 + 390.996i) q^{44} -15.6713 q^{45} +(476.990 - 64.6451i) q^{46} +1262.49 q^{47} +(-2564.47 + 1533.13i) q^{48} +5359.13 q^{49} +(-335.705 - 2477.03i) q^{50} +1149.23i q^{51} +(-788.950 - 2857.21i) q^{52} +3827.50i q^{53} +(161.663 + 1192.85i) q^{54} -26.0584 q^{55} +(-2216.86 - 5183.73i) q^{56} +108.253 q^{57} +(542.720 - 73.5532i) q^{58} -1921.58i q^{59} +(-51.0886 + 14.1069i) q^{60} -1743.27 q^{61} +(-5273.91 + 714.758i) q^{62} +4864.00 q^{63} +(-2829.41 + 2961.70i) q^{64} -52.5805i q^{65} +(-575.635 - 4247.38i) q^{66} -5360.12 q^{67} +(419.341 + 1518.66i) q^{68} +1404.48i q^{69} +(-13.4312 - 99.1036i) q^{70} +4274.63 q^{71} +(-1389.51 - 3249.12i) q^{72} +105.236 q^{73} +(-705.343 - 5204.44i) q^{74} +7293.51 q^{75} +(143.051 - 39.5002i) q^{76} +8087.89 q^{77} +(8570.34 - 1161.51i) q^{78} +6153.05 q^{79} +(-62.3638 + 37.2832i) q^{80} -7984.71 q^{81} +(-4888.25 + 4617.05i) q^{82} +12363.0i q^{83} +(15856.7 - 4378.44i) q^{84} +27.9475i q^{85} +(-10281.8 + 1393.46i) q^{86} +1598.01i q^{87} +(-2310.49 - 5402.67i) q^{88} +7494.74i q^{89} +(-8.41860 - 62.1174i) q^{90} +16319.7i q^{91} +(512.476 + 1855.95i) q^{92} -15528.8i q^{93} +(678.206 + 5004.21i) q^{94} +2.63254 q^{95} +(-7454.59 - 9341.37i) q^{96} -15047.2i q^{97} +(2878.91 + 21242.3i) q^{98} +5069.43 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 6 q^{2} - 162 q^{4} - 8 q^{5} + 162 q^{8} + 1728 q^{9} - 272 q^{10} - 2842 q^{16} - 298 q^{18} - 584 q^{20} + 280 q^{21} + 4264 q^{25} + 66 q^{32} + 3512 q^{33} - 11338 q^{36} + 5720 q^{37} - 4648 q^{40}+ \cdots + 2902 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/164\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(129\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.537197 + 3.96376i 0.134299 + 0.990941i
\(3\) −11.6711 −1.29679 −0.648396 0.761303i \(-0.724560\pi\)
−0.648396 + 0.761303i \(0.724560\pi\)
\(4\) −15.4228 + 4.25865i −0.963927 + 0.266165i
\(5\) −0.283823 −0.0113529 −0.00567645 0.999984i \(-0.501807\pi\)
−0.00567645 + 0.999984i \(0.501807\pi\)
\(6\) −6.26970 46.2616i −0.174158 1.28504i
\(7\) 88.0916 1.79779 0.898894 0.438166i \(-0.144372\pi\)
0.898894 + 0.438166i \(0.144372\pi\)
\(8\) −25.1654 58.8447i −0.393209 0.919449i
\(9\) 55.2152 0.681669
\(10\) −0.152469 1.12501i −0.00152469 0.0112501i
\(11\) 91.8123 0.758779 0.379390 0.925237i \(-0.376134\pi\)
0.379390 + 0.925237i \(0.376134\pi\)
\(12\) 180.002 49.7032i 1.25001 0.345161i
\(13\) 185.258i 1.09620i 0.836412 + 0.548102i \(0.184649\pi\)
−0.836412 + 0.548102i \(0.815351\pi\)
\(14\) 47.3226 + 349.174i 0.241442 + 1.78150i
\(15\) 3.31253 0.0147224
\(16\) 219.728 131.361i 0.858312 0.513128i
\(17\) 98.4681i 0.340720i −0.985382 0.170360i \(-0.945507\pi\)
0.985382 0.170360i \(-0.0544931\pi\)
\(18\) 29.6615 + 218.860i 0.0915477 + 0.675494i
\(19\) −9.27529 −0.0256933 −0.0128467 0.999917i \(-0.504089\pi\)
−0.0128467 + 0.999917i \(0.504089\pi\)
\(20\) 4.37735 1.20870i 0.0109434 0.00302175i
\(21\) −1028.13 −2.33136
\(22\) 49.3213 + 363.922i 0.101904 + 0.751905i
\(23\) 120.338i 0.227482i −0.993510 0.113741i \(-0.963717\pi\)
0.993510 0.113741i \(-0.0362833\pi\)
\(24\) 293.708 + 686.784i 0.509910 + 1.19233i
\(25\) −624.919 −0.999871
\(26\) −734.320 + 99.5203i −1.08627 + 0.147219i
\(27\) 300.938 0.412809
\(28\) −1358.62 + 375.151i −1.73294 + 0.478509i
\(29\) 136.920i 0.162807i −0.996681 0.0814033i \(-0.974060\pi\)
0.996681 0.0814033i \(-0.0259402\pi\)
\(30\) 1.77948 + 13.1301i 0.00197720 + 0.0145890i
\(31\) 1330.53i 1.38453i 0.721644 + 0.692264i \(0.243387\pi\)
−0.721644 + 0.692264i \(0.756613\pi\)
\(32\) 638.721 + 800.382i 0.623750 + 0.781624i
\(33\) −1071.55 −0.983979
\(34\) 390.304 52.8968i 0.337633 0.0457585i
\(35\) −25.0024 −0.0204101
\(36\) −851.575 + 235.142i −0.657080 + 0.181437i
\(37\) −1313.01 −0.959098 −0.479549 0.877515i \(-0.659200\pi\)
−0.479549 + 0.877515i \(0.659200\pi\)
\(38\) −4.98266 36.7651i −0.00345060 0.0254606i
\(39\) 2162.17i 1.42155i
\(40\) 7.14251 + 16.7015i 0.00446407 + 0.0104384i
\(41\) 979.684 + 1366.01i 0.582798 + 0.812617i
\(42\) −552.308 4075.26i −0.313100 2.31024i
\(43\) 2593.95i 1.40289i 0.712722 + 0.701447i \(0.247462\pi\)
−0.712722 + 0.701447i \(0.752538\pi\)
\(44\) −1416.01 + 390.996i −0.731408 + 0.201961i
\(45\) −15.6713 −0.00773893
\(46\) 476.990 64.6451i 0.225421 0.0305506i
\(47\) 1262.49 0.571521 0.285760 0.958301i \(-0.407754\pi\)
0.285760 + 0.958301i \(0.407754\pi\)
\(48\) −2564.47 + 1533.13i −1.11305 + 0.665421i
\(49\) 5359.13 2.23204
\(50\) −335.705 2477.03i −0.134282 0.990813i
\(51\) 1149.23i 0.441843i
\(52\) −788.950 2857.21i −0.291771 1.05666i
\(53\) 3827.50i 1.36258i 0.732012 + 0.681292i \(0.238582\pi\)
−0.732012 + 0.681292i \(0.761418\pi\)
\(54\) 161.663 + 1192.85i 0.0554400 + 0.409069i
\(55\) −26.0584 −0.00861435
\(56\) −2216.86 5183.73i −0.706907 1.65297i
\(57\) 108.253 0.0333189
\(58\) 542.720 73.5532i 0.161332 0.0218648i
\(59\) 1921.58i 0.552021i −0.961155 0.276010i \(-0.910988\pi\)
0.961155 0.276010i \(-0.0890124\pi\)
\(60\) −51.0886 + 14.1069i −0.0141913 + 0.00391858i
\(61\) −1743.27 −0.468495 −0.234247 0.972177i \(-0.575263\pi\)
−0.234247 + 0.972177i \(0.575263\pi\)
\(62\) −5273.91 + 714.758i −1.37199 + 0.185941i
\(63\) 4864.00 1.22550
\(64\) −2829.41 + 2961.70i −0.690773 + 0.723071i
\(65\) 52.5805i 0.0124451i
\(66\) −575.635 4247.38i −0.132148 0.975065i
\(67\) −5360.12 −1.19406 −0.597029 0.802220i \(-0.703652\pi\)
−0.597029 + 0.802220i \(0.703652\pi\)
\(68\) 419.341 + 1518.66i 0.0906879 + 0.328429i
\(69\) 1404.48i 0.294996i
\(70\) −13.4312 99.1036i −0.00274107 0.0202252i
\(71\) 4274.63 0.847974 0.423987 0.905668i \(-0.360630\pi\)
0.423987 + 0.905668i \(0.360630\pi\)
\(72\) −1389.51 3249.12i −0.268038 0.626760i
\(73\) 105.236 0.0197477 0.00987385 0.999951i \(-0.496857\pi\)
0.00987385 + 0.999951i \(0.496857\pi\)
\(74\) −705.343 5204.44i −0.128806 0.950410i
\(75\) 7293.51 1.29662
\(76\) 143.051 39.5002i 0.0247665 0.00683868i
\(77\) 8087.89 1.36412
\(78\) 8570.34 1161.51i 1.40867 0.190913i
\(79\) 6153.05 0.985908 0.492954 0.870055i \(-0.335917\pi\)
0.492954 + 0.870055i \(0.335917\pi\)
\(80\) −62.3638 + 37.2832i −0.00974434 + 0.00582550i
\(81\) −7984.71 −1.21700
\(82\) −4888.25 + 4617.05i −0.726986 + 0.686652i
\(83\) 12363.0i 1.79461i 0.441415 + 0.897303i \(0.354477\pi\)
−0.441415 + 0.897303i \(0.645523\pi\)
\(84\) 15856.7 4378.44i 2.24726 0.620527i
\(85\) 27.9475i 0.00386816i
\(86\) −10281.8 + 1393.46i −1.39018 + 0.188408i
\(87\) 1598.01i 0.211126i
\(88\) −2310.49 5402.67i −0.298359 0.697659i
\(89\) 7494.74i 0.946186i 0.881012 + 0.473093i \(0.156863\pi\)
−0.881012 + 0.473093i \(0.843137\pi\)
\(90\) −8.41860 62.1174i −0.00103933 0.00766882i
\(91\) 16319.7i 1.97074i
\(92\) 512.476 + 1855.95i 0.0605477 + 0.219276i
\(93\) 15528.8i 1.79545i
\(94\) 678.206 + 5004.21i 0.0767549 + 0.566343i
\(95\) 2.63254 0.000291694
\(96\) −7454.59 9341.37i −0.808875 1.01360i
\(97\) 15047.2i 1.59924i −0.600507 0.799620i \(-0.705034\pi\)
0.600507 0.799620i \(-0.294966\pi\)
\(98\) 2878.91 + 21242.3i 0.299762 + 2.21182i
\(99\) 5069.43 0.517236
\(100\) 9638.03 2661.31i 0.963803 0.266131i
\(101\) 3321.58i 0.325613i −0.986658 0.162807i \(-0.947945\pi\)
0.986658 0.162807i \(-0.0520547\pi\)
\(102\) −4555.29 + 617.365i −0.437840 + 0.0593392i
\(103\) 10434.1i 0.983515i −0.870732 0.491757i \(-0.836355\pi\)
0.870732 0.491757i \(-0.163645\pi\)
\(104\) 10901.5 4662.10i 1.00790 0.431037i
\(105\) 291.806 0.0264677
\(106\) −15171.3 + 2056.12i −1.35024 + 0.182994i
\(107\) 14089.4i 1.23062i 0.788284 + 0.615312i \(0.210970\pi\)
−0.788284 + 0.615312i \(0.789030\pi\)
\(108\) −4641.31 + 1281.59i −0.397918 + 0.109875i
\(109\) 6676.06i 0.561911i 0.959721 + 0.280955i \(0.0906513\pi\)
−0.959721 + 0.280955i \(0.909349\pi\)
\(110\) −13.9985 103.289i −0.00115690 0.00853631i
\(111\) 15324.3 1.24375
\(112\) 19356.2 11571.8i 1.54306 0.922496i
\(113\) 7660.91 0.599962 0.299981 0.953945i \(-0.403020\pi\)
0.299981 + 0.953945i \(0.403020\pi\)
\(114\) 58.1533 + 429.090i 0.00447471 + 0.0330171i
\(115\) 34.1546i 0.00258258i
\(116\) 583.095 + 2111.70i 0.0433335 + 0.156934i
\(117\) 10229.1i 0.747248i
\(118\) 7616.71 1032.27i 0.547020 0.0741361i
\(119\) 8674.22i 0.612543i
\(120\) −83.3611 194.925i −0.00578896 0.0135365i
\(121\) −6211.50 −0.424254
\(122\) −936.480 6909.91i −0.0629186 0.464251i
\(123\) −11434.0 15942.9i −0.755768 1.05379i
\(124\) −5666.26 20520.6i −0.368514 1.33458i
\(125\) 354.756 0.0227044
\(126\) 2612.93 + 19279.7i 0.164583 + 1.21439i
\(127\) 23909.3i 1.48238i −0.671296 0.741189i \(-0.734262\pi\)
0.671296 0.741189i \(-0.265738\pi\)
\(128\) −13259.4 9624.08i −0.809291 0.587407i
\(129\) 30274.3i 1.81926i
\(130\) 208.417 28.2461i 0.0123324 0.00167137i
\(131\) 19433.2i 1.13240i 0.824267 + 0.566201i \(0.191588\pi\)
−0.824267 + 0.566201i \(0.808412\pi\)
\(132\) 16526.4 4563.37i 0.948484 0.261901i
\(133\) −817.076 −0.0461912
\(134\) −2879.44 21246.3i −0.160361 1.18324i
\(135\) −85.4129 −0.00468658
\(136\) −5794.33 + 2477.99i −0.313275 + 0.133974i
\(137\) 13314.3i 0.709375i 0.934985 + 0.354687i \(0.115413\pi\)
−0.934985 + 0.354687i \(0.884587\pi\)
\(138\) −5567.02 + 754.482i −0.292324 + 0.0396178i
\(139\) 29105.8i 1.50643i −0.657772 0.753217i \(-0.728501\pi\)
0.657772 0.753217i \(-0.271499\pi\)
\(140\) 385.608 106.476i 0.0196739 0.00543247i
\(141\) −14734.7 −0.741144
\(142\) 2296.32 + 16943.6i 0.113882 + 0.840292i
\(143\) 17009.0i 0.831776i
\(144\) 12132.3 7253.12i 0.585085 0.349784i
\(145\) 38.8611i 0.00184833i
\(146\) 56.5322 + 417.129i 0.00265210 + 0.0195688i
\(147\) −62547.1 −2.89450
\(148\) 20250.3 5591.63i 0.924501 0.255279i
\(149\) 14318.6i 0.644954i 0.946577 + 0.322477i \(0.104515\pi\)
−0.946577 + 0.322477i \(0.895485\pi\)
\(150\) 3918.06 + 28909.8i 0.174136 + 1.28488i
\(151\) 13902.8 0.609745 0.304872 0.952393i \(-0.401386\pi\)
0.304872 + 0.952393i \(0.401386\pi\)
\(152\) 233.416 + 545.802i 0.0101029 + 0.0236237i
\(153\) 5436.94i 0.232258i
\(154\) 4344.80 + 32058.5i 0.183201 + 1.35177i
\(155\) 377.635i 0.0157184i
\(156\) 9207.93 + 33346.9i 0.378367 + 1.37027i
\(157\) 3348.74i 0.135857i 0.997690 + 0.0679286i \(0.0216390\pi\)
−0.997690 + 0.0679286i \(0.978361\pi\)
\(158\) 3305.40 + 24389.2i 0.132407 + 0.976976i
\(159\) 44671.2i 1.76699i
\(160\) −181.283 227.167i −0.00708138 0.00887370i
\(161\) 10600.7i 0.408964i
\(162\) −4289.37 31649.5i −0.163442 1.20597i
\(163\) 36435.5i 1.37135i 0.727907 + 0.685676i \(0.240493\pi\)
−0.727907 + 0.685676i \(0.759507\pi\)
\(164\) −20926.9 16895.6i −0.778066 0.628183i
\(165\) 304.131 0.0111710
\(166\) −49004.2 + 6641.40i −1.77835 + 0.241015i
\(167\) 29283.2 1.04999 0.524995 0.851105i \(-0.324067\pi\)
0.524995 + 0.851105i \(0.324067\pi\)
\(168\) 25873.2 + 60500.0i 0.916711 + 2.14356i
\(169\) −5759.66 −0.201662
\(170\) −110.777 + 15.0133i −0.00383312 + 0.000519492i
\(171\) −512.137 −0.0175144
\(172\) −11046.7 40006.1i −0.373402 1.35229i
\(173\) −28645.5 −0.957116 −0.478558 0.878056i \(-0.658840\pi\)
−0.478558 + 0.878056i \(0.658840\pi\)
\(174\) −6334.15 + 858.449i −0.209214 + 0.0283541i
\(175\) −55050.2 −1.79756
\(176\) 20173.7 12060.5i 0.651269 0.389351i
\(177\) 22427.1i 0.715856i
\(178\) −29707.4 + 4026.15i −0.937614 + 0.127072i
\(179\) −1822.31 −0.0568744 −0.0284372 0.999596i \(-0.509053\pi\)
−0.0284372 + 0.999596i \(0.509053\pi\)
\(180\) 241.696 66.7387i 0.00745977 0.00205984i
\(181\) 17439.2i 0.532317i 0.963929 + 0.266158i \(0.0857544\pi\)
−0.963929 + 0.266158i \(0.914246\pi\)
\(182\) −64687.5 + 8766.91i −1.95289 + 0.264669i
\(183\) 20345.9 0.607540
\(184\) −7081.24 + 3028.34i −0.209158 + 0.0894478i
\(185\) 372.661 0.0108886
\(186\) 61552.5 8342.03i 1.77918 0.241127i
\(187\) 9040.58i 0.258531i
\(188\) −19471.2 + 5376.50i −0.550905 + 0.152119i
\(189\) 26510.1 0.742143
\(190\) 1.41419 + 10.4348i 3.91743e−5 + 0.000289052i
\(191\) −41190.1 −1.12908 −0.564541 0.825405i \(-0.690947\pi\)
−0.564541 + 0.825405i \(0.690947\pi\)
\(192\) 33022.4 34566.4i 0.895789 0.937673i
\(193\) 52114.7i 1.39909i 0.714589 + 0.699545i \(0.246614\pi\)
−0.714589 + 0.699545i \(0.753386\pi\)
\(194\) 59643.7 8083.34i 1.58475 0.214777i
\(195\) 613.674i 0.0161387i
\(196\) −82653.1 + 22822.7i −2.15153 + 0.594093i
\(197\) 60362.6 1.55538 0.777689 0.628650i \(-0.216392\pi\)
0.777689 + 0.628650i \(0.216392\pi\)
\(198\) 2723.29 + 20094.0i 0.0694645 + 0.512551i
\(199\) −35549.3 −0.897687 −0.448844 0.893610i \(-0.648164\pi\)
−0.448844 + 0.893610i \(0.648164\pi\)
\(200\) 15726.3 + 36773.2i 0.393158 + 0.919331i
\(201\) 62558.7 1.54844
\(202\) 13166.0 1784.35i 0.322664 0.0437297i
\(203\) 12061.5i 0.292692i
\(204\) −4894.18 17724.4i −0.117603 0.425905i
\(205\) −278.057 387.704i −0.00661646 0.00922557i
\(206\) 41358.3 5605.17i 0.974605 0.132085i
\(207\) 6644.47i 0.155067i
\(208\) 24335.7 + 40706.4i 0.562493 + 0.940884i
\(209\) −851.586 −0.0194956
\(210\) 156.758 + 1156.65i 0.00355459 + 0.0262279i
\(211\) −40151.0 −0.901843 −0.450921 0.892564i \(-0.648905\pi\)
−0.450921 + 0.892564i \(0.648905\pi\)
\(212\) −16300.0 59030.9i −0.362673 1.31343i
\(213\) −49889.8 −1.09965
\(214\) −55847.1 + 7568.80i −1.21948 + 0.165272i
\(215\) 736.222i 0.0159269i
\(216\) −7573.21 17708.6i −0.162320 0.379557i
\(217\) 117209.i 2.48909i
\(218\) −26462.3 + 3586.36i −0.556820 + 0.0754643i
\(219\) −1228.22 −0.0256087
\(220\) 401.895 110.974i 0.00830361 0.00229284i
\(221\) 18242.0 0.373499
\(222\) 8232.15 + 60741.7i 0.167035 + 1.23248i
\(223\) 18192.7i 0.365837i −0.983128 0.182919i \(-0.941446\pi\)
0.983128 0.182919i \(-0.0585545\pi\)
\(224\) 56265.9 + 70507.0i 1.12137 + 1.40519i
\(225\) −34505.1 −0.681581
\(226\) 4115.42 + 30366.0i 0.0805745 + 0.594526i
\(227\) 68894.6 1.33701 0.668503 0.743710i \(-0.266935\pi\)
0.668503 + 0.743710i \(0.266935\pi\)
\(228\) −1669.57 + 461.012i −0.0321170 + 0.00886834i
\(229\) 60150.2i 1.14701i −0.819203 0.573504i \(-0.805584\pi\)
0.819203 0.573504i \(-0.194416\pi\)
\(230\) −135.381 + 18.3478i −0.00255918 + 0.000346839i
\(231\) −94394.8 −1.76899
\(232\) −8057.04 + 3445.65i −0.149692 + 0.0640170i
\(233\) 59556.7i 1.09703i −0.836141 0.548515i \(-0.815193\pi\)
0.836141 0.548515i \(-0.184807\pi\)
\(234\) −40545.6 + 5495.03i −0.740479 + 0.100355i
\(235\) −358.323 −0.00648843
\(236\) 8183.35 + 29636.3i 0.146929 + 0.532108i
\(237\) −71813.0 −1.27852
\(238\) 34382.5 4659.77i 0.606994 0.0822641i
\(239\) 96486.8 1.68916 0.844582 0.535426i \(-0.179849\pi\)
0.844582 + 0.535426i \(0.179849\pi\)
\(240\) 727.855 435.137i 0.0126364 0.00755446i
\(241\) −10724.2 −0.184643 −0.0923215 0.995729i \(-0.529429\pi\)
−0.0923215 + 0.995729i \(0.529429\pi\)
\(242\) −3336.80 24620.9i −0.0569771 0.420411i
\(243\) 68814.7 1.16538
\(244\) 26886.2 7423.97i 0.451595 0.124697i
\(245\) −1521.04 −0.0253402
\(246\) 57051.4 53886.2i 0.942749 0.890445i
\(247\) 1718.33i 0.0281651i
\(248\) 78294.8 33483.3i 1.27300 0.544409i
\(249\) 144291.i 2.32723i
\(250\) 190.574 + 1406.17i 0.00304918 + 0.0224987i
\(251\) 94132.8i 1.49415i −0.664741 0.747074i \(-0.731458\pi\)
0.664741 0.747074i \(-0.268542\pi\)
\(252\) −75016.6 + 20714.0i −1.18129 + 0.326185i
\(253\) 11048.5i 0.172608i
\(254\) 94770.7 12844.0i 1.46895 0.199082i
\(255\) 326.179i 0.00501620i
\(256\) 31024.7 57727.3i 0.473399 0.880848i
\(257\) 19618.0i 0.297022i 0.988911 + 0.148511i \(0.0474481\pi\)
−0.988911 + 0.148511i \(0.952552\pi\)
\(258\) 120000. 16263.3i 1.80278 0.244326i
\(259\) −115665. −1.72426
\(260\) 223.922 + 810.941i 0.00331245 + 0.0119962i
\(261\) 7560.08i 0.110980i
\(262\) −77028.5 + 10439.4i −1.12214 + 0.152081i
\(263\) 14085.6 0.203640 0.101820 0.994803i \(-0.467533\pi\)
0.101820 + 0.994803i \(0.467533\pi\)
\(264\) 26966.0 + 63055.3i 0.386909 + 0.904718i
\(265\) 1086.33i 0.0154693i
\(266\) −438.931 3238.69i −0.00620345 0.0457727i
\(267\) 87472.1i 1.22701i
\(268\) 82668.3 22826.9i 1.15098 0.317817i
\(269\) −43104.1 −0.595682 −0.297841 0.954616i \(-0.596266\pi\)
−0.297841 + 0.954616i \(0.596266\pi\)
\(270\) −45.8836 338.557i −0.000629405 0.00464412i
\(271\) 72579.6i 0.988271i −0.869385 0.494136i \(-0.835485\pi\)
0.869385 0.494136i \(-0.164515\pi\)
\(272\) −12934.9 21636.2i −0.174833 0.292444i
\(273\) 190469.i 2.55564i
\(274\) −52774.6 + 7152.38i −0.702948 + 0.0952686i
\(275\) −57375.3 −0.758681
\(276\) −5981.17 21661.0i −0.0785178 0.284355i
\(277\) 33123.2 0.431691 0.215845 0.976428i \(-0.430749\pi\)
0.215845 + 0.976428i \(0.430749\pi\)
\(278\) 115369. 15635.6i 1.49279 0.202313i
\(279\) 73465.6i 0.943790i
\(280\) 629.195 + 1471.26i 0.00802545 + 0.0187661i
\(281\) 67891.2i 0.859807i −0.902875 0.429904i \(-0.858548\pi\)
0.902875 0.429904i \(-0.141452\pi\)
\(282\) −7915.43 58404.8i −0.0995351 0.734430i
\(283\) 38952.5i 0.486366i 0.969980 + 0.243183i \(0.0781915\pi\)
−0.969980 + 0.243183i \(0.921809\pi\)
\(284\) −65927.0 + 18204.2i −0.817385 + 0.225701i
\(285\) −30.7247 −0.000378267
\(286\) −67419.6 + 9137.19i −0.824241 + 0.111707i
\(287\) 86301.9 + 120334.i 1.04775 + 1.46091i
\(288\) 35267.1 + 44193.3i 0.425192 + 0.532809i
\(289\) 73825.0 0.883910
\(290\) −154.036 + 20.8761i −0.00183158 + 0.000248229i
\(291\) 175618.i 2.07388i
\(292\) −1623.03 + 448.161i −0.0190354 + 0.00525616i
\(293\) 96912.0i 1.12887i −0.825479 0.564433i \(-0.809095\pi\)
0.825479 0.564433i \(-0.190905\pi\)
\(294\) −33600.2 247922.i −0.388729 2.86827i
\(295\) 545.389i 0.00626704i
\(296\) 33042.3 + 77263.5i 0.377126 + 0.881842i
\(297\) 27629.8 0.313231
\(298\) −56755.6 + 7691.93i −0.639111 + 0.0866169i
\(299\) 22293.6 0.249366
\(300\) −112487. + 31060.5i −1.24985 + 0.345117i
\(301\) 228505.i 2.52211i
\(302\) 7468.55 + 55107.4i 0.0818884 + 0.604221i
\(303\) 38766.6i 0.422253i
\(304\) −2038.04 + 1218.41i −0.0220529 + 0.0131840i
\(305\) 494.780 0.00531878
\(306\) 21550.7 2920.71i 0.230154 0.0311922i
\(307\) 11786.8i 0.125060i 0.998043 + 0.0625299i \(0.0199169\pi\)
−0.998043 + 0.0625299i \(0.980083\pi\)
\(308\) −124738. + 34443.5i −1.31492 + 0.363083i
\(309\) 121778.i 1.27541i
\(310\) 1496.86 202.865i 0.0155760 0.00211097i
\(311\) −81525.1 −0.842889 −0.421445 0.906854i \(-0.638477\pi\)
−0.421445 + 0.906854i \(0.638477\pi\)
\(312\) −127233. + 54411.9i −1.30704 + 0.558965i
\(313\) 143714.i 1.46694i 0.679724 + 0.733468i \(0.262100\pi\)
−0.679724 + 0.733468i \(0.737900\pi\)
\(314\) −13273.6 + 1798.94i −0.134626 + 0.0182455i
\(315\) −1380.51 −0.0139130
\(316\) −94897.5 + 26203.7i −0.950344 + 0.262415i
\(317\) 72857.0i 0.725025i 0.931979 + 0.362513i \(0.118081\pi\)
−0.931979 + 0.362513i \(0.881919\pi\)
\(318\) 177066. 23997.3i 1.75098 0.237305i
\(319\) 12571.0i 0.123534i
\(320\) 803.050 840.598i 0.00784229 0.00820896i
\(321\) 164439.i 1.59586i
\(322\) 42018.9 5694.69i 0.405259 0.0549236i
\(323\) 913.321i 0.00875424i
\(324\) 123147. 34004.1i 1.17310 0.323922i
\(325\) 115772.i 1.09606i
\(326\) −144422. + 19573.0i −1.35893 + 0.184172i
\(327\) 77917.2i 0.728682i
\(328\) 55728.3 92025.4i 0.517998 0.855382i
\(329\) 111215. 1.02747
\(330\) 163.378 + 1205.50i 0.00150026 + 0.0110698i
\(331\) 180664. 1.64898 0.824491 0.565874i \(-0.191461\pi\)
0.824491 + 0.565874i \(0.191461\pi\)
\(332\) −52649.8 190673.i −0.477662 1.72987i
\(333\) −72497.9 −0.653788
\(334\) 15730.9 + 116072.i 0.141013 + 1.04048i
\(335\) 1521.32 0.0135560
\(336\) −225908. + 135056.i −2.00103 + 1.19629i
\(337\) 197260. 1.73691 0.868457 0.495764i \(-0.165112\pi\)
0.868457 + 0.495764i \(0.165112\pi\)
\(338\) −3094.07 22829.9i −0.0270830 0.199835i
\(339\) −89411.5 −0.778025
\(340\) −119.018 431.030i −0.00102957 0.00372863i
\(341\) 122159.i 1.05055i
\(342\) −275.119 2029.99i −0.00235217 0.0173557i
\(343\) 260587. 2.21495
\(344\) 152640. 65277.8i 1.28989 0.551631i
\(345\) 398.623i 0.00334907i
\(346\) −15388.3 113544.i −0.128540 0.948445i
\(347\) 192372. 1.59765 0.798826 0.601562i \(-0.205455\pi\)
0.798826 + 0.601562i \(0.205455\pi\)
\(348\) −6805.38 24645.9i −0.0561945 0.203510i
\(349\) −123583. −1.01463 −0.507316 0.861760i \(-0.669362\pi\)
−0.507316 + 0.861760i \(0.669362\pi\)
\(350\) −29572.8 218206.i −0.241411 1.78127i
\(351\) 55751.2i 0.452522i
\(352\) 58642.4 + 73484.9i 0.473289 + 0.593080i
\(353\) −155844. −1.25066 −0.625332 0.780358i \(-0.715037\pi\)
−0.625332 + 0.780358i \(0.715037\pi\)
\(354\) −88895.6 + 12047.8i −0.709371 + 0.0961390i
\(355\) −1213.24 −0.00962697
\(356\) −31917.4 115590.i −0.251842 0.912055i
\(357\) 101238.i 0.794340i
\(358\) −978.941 7223.21i −0.00763819 0.0563591i
\(359\) 44309.5i 0.343801i 0.985114 + 0.171901i \(0.0549908\pi\)
−0.985114 + 0.171901i \(0.945009\pi\)
\(360\) 394.375 + 922.175i 0.00304302 + 0.00711555i
\(361\) −130235. −0.999340
\(362\) −69125.0 + 9368.31i −0.527494 + 0.0714898i
\(363\) 72495.3 0.550169
\(364\) −69499.9 251696.i −0.524543 1.89965i
\(365\) −29.8682 −0.000224194
\(366\) 10929.8 + 80646.4i 0.0815923 + 0.602037i
\(367\) 253331.i 1.88086i −0.339989 0.940429i \(-0.610423\pi\)
0.339989 0.940429i \(-0.389577\pi\)
\(368\) −15807.7 26441.6i −0.116727 0.195250i
\(369\) 54093.4 + 75424.5i 0.397276 + 0.553936i
\(370\) 200.192 + 1477.14i 0.00146233 + 0.0107899i
\(371\) 337171.i 2.44964i
\(372\) 66131.7 + 239498.i 0.477885 + 1.73068i
\(373\) 43093.6 0.309738 0.154869 0.987935i \(-0.450504\pi\)
0.154869 + 0.987935i \(0.450504\pi\)
\(374\) 35834.7 4856.58i 0.256189 0.0347206i
\(375\) −4140.40 −0.0294428
\(376\) −31771.0 74290.9i −0.224727 0.525484i
\(377\) 25365.6 0.178469
\(378\) 14241.1 + 105080.i 0.0996693 + 0.735420i
\(379\) 82263.8i 0.572704i 0.958124 + 0.286352i \(0.0924427\pi\)
−0.958124 + 0.286352i \(0.907557\pi\)
\(380\) −40.6012 + 11.2111i −0.000281172 + 7.76389e-5i
\(381\) 279048.i 1.92234i
\(382\) −22127.2 163268.i −0.151635 1.11885i
\(383\) 163372. 1.11373 0.556867 0.830602i \(-0.312003\pi\)
0.556867 + 0.830602i \(0.312003\pi\)
\(384\) 154752. + 112324.i 1.04948 + 0.761745i
\(385\) −2295.53 −0.0154868
\(386\) −206570. + 27995.9i −1.38642 + 0.187897i
\(387\) 143226.i 0.956310i
\(388\) 64080.9 + 232071.i 0.425662 + 1.54155i
\(389\) 48751.6 0.322174 0.161087 0.986940i \(-0.448500\pi\)
0.161087 + 0.986940i \(0.448500\pi\)
\(390\) −2432.46 + 329.664i −0.0159925 + 0.00216742i
\(391\) −11849.4 −0.0775075
\(392\) −134865. 315357.i −0.877659 2.05225i
\(393\) 226807.i 1.46849i
\(394\) 32426.7 + 239263.i 0.208886 + 1.54129i
\(395\) −1746.38 −0.0111929
\(396\) −78185.1 + 21588.9i −0.498578 + 0.137670i
\(397\) 12961.3i 0.0822371i 0.999154 + 0.0411186i \(0.0130921\pi\)
−0.999154 + 0.0411186i \(0.986908\pi\)
\(398\) −19097.0 140909.i −0.120559 0.889555i
\(399\) 9536.19 0.0599003
\(400\) −137312. + 82089.9i −0.858201 + 0.513062i
\(401\) 167374. 1.04088 0.520438 0.853900i \(-0.325769\pi\)
0.520438 + 0.853900i \(0.325769\pi\)
\(402\) 33606.4 + 247968.i 0.207955 + 1.53442i
\(403\) −246492. −1.51772
\(404\) 14145.4 + 51228.2i 0.0866670 + 0.313868i
\(405\) 2266.24 0.0138164
\(406\) 47809.1 6479.42i 0.290040 0.0393083i
\(407\) −120550. −0.727744
\(408\) 67626.4 28920.9i 0.406252 0.173737i
\(409\) −268931. −1.60766 −0.803830 0.594859i \(-0.797208\pi\)
−0.803830 + 0.594859i \(0.797208\pi\)
\(410\) 1387.40 1310.42i 0.00825340 0.00779550i
\(411\) 155392.i 0.919912i
\(412\) 44435.2 + 160924.i 0.261778 + 0.948037i
\(413\) 169276.i 0.992417i
\(414\) 26337.1 3569.39i 0.153662 0.0208254i
\(415\) 3508.91i 0.0203740i
\(416\) −148278. + 118328.i −0.856818 + 0.683757i
\(417\) 339698.i 1.95353i
\(418\) −457.470 3375.48i −0.00261824 0.0193190i
\(419\) 268459.i 1.52915i −0.644536 0.764574i \(-0.722950\pi\)
0.644536 0.764574i \(-0.277050\pi\)
\(420\) −4500.48 + 1242.70i −0.0255129 + 0.00704478i
\(421\) 92905.9i 0.524178i 0.965044 + 0.262089i \(0.0844115\pi\)
−0.965044 + 0.262089i \(0.915589\pi\)
\(422\) −21569.0 159149.i −0.121117 0.893673i
\(423\) 69708.6 0.389588
\(424\) 225228. 96320.5i 1.25283 0.535780i
\(425\) 61534.6i 0.340676i
\(426\) −26800.7 197751.i −0.147682 1.08968i
\(427\) −153567. −0.842255
\(428\) −60001.9 217299.i −0.327550 1.18623i
\(429\) 198514.i 1.07864i
\(430\) 2918.21 395.497i 0.0157826 0.00213898i
\(431\) 299523.i 1.61241i 0.591637 + 0.806205i \(0.298482\pi\)
−0.591637 + 0.806205i \(0.701518\pi\)
\(432\) 66124.4 39531.4i 0.354319 0.211824i
\(433\) −187164. −0.998267 −0.499134 0.866525i \(-0.666348\pi\)
−0.499134 + 0.866525i \(0.666348\pi\)
\(434\) −464588. + 62964.2i −2.46654 + 0.334283i
\(435\) 453.553i 0.00239690i
\(436\) −28431.0 102964.i −0.149561 0.541641i
\(437\) 1116.17i 0.00584476i
\(438\) −659.795 4868.36i −0.00343923 0.0253767i
\(439\) −51995.5 −0.269797 −0.134898 0.990859i \(-0.543071\pi\)
−0.134898 + 0.990859i \(0.543071\pi\)
\(440\) 655.770 + 1533.40i 0.00338724 + 0.00792046i
\(441\) 295906. 1.52151
\(442\) 9799.58 + 72307.1i 0.0501606 + 0.370115i
\(443\) 97151.4i 0.495041i −0.968883 0.247521i \(-0.920384\pi\)
0.968883 0.247521i \(-0.0796158\pi\)
\(444\) −236343. + 65260.6i −1.19889 + 0.331043i
\(445\) 2127.18i 0.0107420i
\(446\) 72111.6 9773.08i 0.362523 0.0491317i
\(447\) 167114.i 0.836371i
\(448\) −249247. + 260901.i −1.24186 + 1.29993i
\(449\) −70090.7 −0.347670 −0.173835 0.984775i \(-0.555616\pi\)
−0.173835 + 0.984775i \(0.555616\pi\)
\(450\) −18536.0 136770.i −0.0915359 0.675407i
\(451\) 89947.0 + 125416.i 0.442215 + 0.616597i
\(452\) −118153. + 32625.1i −0.578319 + 0.159689i
\(453\) −162261. −0.790712
\(454\) 37010.0 + 273082.i 0.179559 + 1.32489i
\(455\) 4631.90i 0.0223736i
\(456\) −2724.23 6370.13i −0.0131013 0.0306350i
\(457\) 238633.i 1.14261i −0.820738 0.571305i \(-0.806437\pi\)
0.820738 0.571305i \(-0.193563\pi\)
\(458\) 238421. 32312.6i 1.13662 0.154042i
\(459\) 29632.8i 0.140652i
\(460\) −145.452 526.761i −0.000687393 0.00248942i
\(461\) 113261. 0.532940 0.266470 0.963843i \(-0.414143\pi\)
0.266470 + 0.963843i \(0.414143\pi\)
\(462\) −50708.7 374159.i −0.237574 1.75296i
\(463\) 52810.6 0.246354 0.123177 0.992385i \(-0.460692\pi\)
0.123177 + 0.992385i \(0.460692\pi\)
\(464\) −17986.0 30085.2i −0.0835406 0.139739i
\(465\) 4407.43i 0.0203835i
\(466\) 236069. 31993.7i 1.08709 0.147330i
\(467\) 63325.7i 0.290366i −0.989405 0.145183i \(-0.953623\pi\)
0.989405 0.145183i \(-0.0463772\pi\)
\(468\) −43562.0 157761.i −0.198892 0.720293i
\(469\) −472182. −2.14666
\(470\) −192.490 1420.31i −0.000871391 0.00642965i
\(471\) 39083.6i 0.176178i
\(472\) −113075. + 48357.4i −0.507555 + 0.217060i
\(473\) 238157.i 1.06449i
\(474\) −38577.8 284650.i −0.171704 1.26694i
\(475\) 5796.31 0.0256900
\(476\) 36940.4 + 133781.i 0.163038 + 0.590447i
\(477\) 211336.i 0.928832i
\(478\) 51832.5 + 382451.i 0.226854 + 1.67386i
\(479\) −418037. −1.82198 −0.910990 0.412428i \(-0.864681\pi\)
−0.910990 + 0.412428i \(0.864681\pi\)
\(480\) 2115.78 + 2651.29i 0.00918308 + 0.0115073i
\(481\) 243245.i 1.05137i
\(482\) −5761.04 42508.4i −0.0247974 0.182970i
\(483\) 123723.i 0.530341i
\(484\) 95799.0 26452.6i 0.408950 0.112922i
\(485\) 4270.75i 0.0181560i
\(486\) 36967.1 + 272765.i 0.156510 + 1.15482i
\(487\) 157518.i 0.664159i 0.943251 + 0.332080i \(0.107750\pi\)
−0.943251 + 0.332080i \(0.892250\pi\)
\(488\) 43870.0 + 102582.i 0.184216 + 0.430757i
\(489\) 425243.i 1.77836i
\(490\) −817.101 6029.06i −0.00340317 0.0251106i
\(491\) 242531.i 1.00602i −0.864282 0.503008i \(-0.832227\pi\)
0.864282 0.503008i \(-0.167773\pi\)
\(492\) 244240. + 197191.i 1.00899 + 0.814622i
\(493\) −13482.3 −0.0554715
\(494\) 6811.04 923.080i 0.0279100 0.00378256i
\(495\) −1438.82 −0.00587214
\(496\) 174780. + 292355.i 0.710441 + 1.18836i
\(497\) 376560. 1.52448
\(498\) 571934. 77512.6i 2.30615 0.312546i
\(499\) −231613. −0.930169 −0.465085 0.885266i \(-0.653976\pi\)
−0.465085 + 0.885266i \(0.653976\pi\)
\(500\) −5471.34 + 1510.78i −0.0218853 + 0.00604311i
\(501\) −341768. −1.36162
\(502\) 373120. 50567.9i 1.48061 0.200663i
\(503\) −135731. −0.536468 −0.268234 0.963354i \(-0.586440\pi\)
−0.268234 + 0.963354i \(0.586440\pi\)
\(504\) −122404. 286221.i −0.481876 1.12678i
\(505\) 942.740i 0.00369666i
\(506\) 43793.6 5935.22i 0.171045 0.0231812i
\(507\) 67221.7 0.261513
\(508\) 101821. + 368749.i 0.394558 + 1.42890i
\(509\) 137853.i 0.532083i −0.963962 0.266041i \(-0.914284\pi\)
0.963962 0.266041i \(-0.0857158\pi\)
\(510\) 1292.90 175.222i 0.00497076 0.000673673i
\(511\) 9270.37 0.0355022
\(512\) 245484. + 91963.5i 0.936446 + 0.350813i
\(513\) −2791.28 −0.0106064
\(514\) −77761.2 + 10538.7i −0.294331 + 0.0398899i
\(515\) 2961.44i 0.0111658i
\(516\) 128928. + 466916.i 0.484225 + 1.75364i
\(517\) 115912. 0.433658
\(518\) −62134.8 458468.i −0.231566 1.70864i
\(519\) 334326. 1.24118
\(520\) −3094.09 + 1323.21i −0.0114426 + 0.00489352i
\(521\) 507650.i 1.87020i −0.354381 0.935101i \(-0.615308\pi\)
0.354381 0.935101i \(-0.384692\pi\)
\(522\) 29966.4 4061.26i 0.109975 0.0149046i
\(523\) 366767.i 1.34087i −0.741967 0.670436i \(-0.766107\pi\)
0.741967 0.670436i \(-0.233893\pi\)
\(524\) −82759.0 299715.i −0.301406 1.09155i
\(525\) 642498. 2.33106
\(526\) 7566.74 + 55831.9i 0.0273487 + 0.201795i
\(527\) 131015. 0.471737
\(528\) −235450. + 140760.i −0.844561 + 0.504907i
\(529\) 265360. 0.948252
\(530\) 4305.96 583.574i 0.0153292 0.00207752i
\(531\) 106101.i 0.376296i
\(532\) 12601.6 3479.64i 0.0445249 0.0122945i
\(533\) −253065. + 181495.i −0.890793 + 0.638865i
\(534\) 346719. 46989.8i 1.21589 0.164786i
\(535\) 3998.90i 0.0139712i
\(536\) 134890. + 315415.i 0.469514 + 1.09787i
\(537\) 21268.4 0.0737542
\(538\) −23155.4 170855.i −0.0799997 0.590285i
\(539\) 492034. 1.69363
\(540\) 1317.31 363.744i 0.00451752 0.00124741i
\(541\) −525108. −1.79413 −0.897065 0.441899i \(-0.854305\pi\)
−0.897065 + 0.441899i \(0.854305\pi\)
\(542\) 287688. 38989.6i 0.979318 0.132724i
\(543\) 203535.i 0.690304i
\(544\) 78812.2 62893.6i 0.266315 0.212524i
\(545\) 1894.82i 0.00637932i
\(546\) 754976. 102320.i 2.53249 0.343221i
\(547\) 203702. 0.680803 0.340401 0.940280i \(-0.389437\pi\)
0.340401 + 0.940280i \(0.389437\pi\)
\(548\) −56700.7 205344.i −0.188811 0.683786i
\(549\) −96255.0 −0.319359
\(550\) −30821.9 227422.i −0.101890 0.751808i
\(551\) 1269.98i 0.00418304i
\(552\) 82646.1 35344.2i 0.271234 0.115995i
\(553\) 542032. 1.77245
\(554\) 17793.7 + 131293.i 0.0579758 + 0.427780i
\(555\) −4349.37 −0.0141202
\(556\) 123951. + 448894.i 0.400961 + 1.45209i
\(557\) 327375.i 1.05520i −0.849493 0.527600i \(-0.823092\pi\)
0.849493 0.527600i \(-0.176908\pi\)
\(558\) −291200. + 39465.5i −0.935240 + 0.126750i
\(559\) −480551. −1.53786
\(560\) −5493.72 + 3284.34i −0.0175183 + 0.0104730i
\(561\) 105514.i 0.335261i
\(562\) 269105. 36471.0i 0.852018 0.115472i
\(563\) 402306. 1.26923 0.634613 0.772830i \(-0.281159\pi\)
0.634613 + 0.772830i \(0.281159\pi\)
\(564\) 227251. 62749.8i 0.714409 0.197267i
\(565\) −2174.34 −0.00681131
\(566\) −154399. + 20925.2i −0.481960 + 0.0653186i
\(567\) −703386. −2.18790
\(568\) −107573. 251540.i −0.333431 0.779669i
\(569\) −278769. −0.861034 −0.430517 0.902582i \(-0.641669\pi\)
−0.430517 + 0.902582i \(0.641669\pi\)
\(570\) −16.5052 121.785i −5.08010e−5 0.000374840i
\(571\) −490581. −1.50466 −0.752331 0.658786i \(-0.771070\pi\)
−0.752331 + 0.658786i \(0.771070\pi\)
\(572\) −72435.3 262327.i −0.221390 0.801772i
\(573\) 480734. 1.46419
\(574\) −430614. + 406724.i −1.30697 + 1.23446i
\(575\) 75201.4i 0.227452i
\(576\) −156226. + 163531.i −0.470879 + 0.492895i
\(577\) 435516.i 1.30813i −0.756436 0.654067i \(-0.773061\pi\)
0.756436 0.654067i \(-0.226939\pi\)
\(578\) 39658.6 + 292625.i 0.118709 + 0.875902i
\(579\) 608237.i 1.81433i
\(580\) −165.496 599.348i −0.000491961 0.00178165i
\(581\) 1.08908e6i 3.22632i
\(582\) −696109. + 94341.7i −2.05509 + 0.278521i
\(583\) 351411.i 1.03390i
\(584\) −2648.29 6192.56i −0.00776498 0.0181570i
\(585\) 2903.24i 0.00848344i
\(586\) 384136. 52060.9i 1.11864 0.151606i
\(587\) 376666. 1.09315 0.546576 0.837410i \(-0.315931\pi\)
0.546576 + 0.837410i \(0.315931\pi\)
\(588\) 964654. 266366.i 2.79008 0.770415i
\(589\) 12341.1i 0.0355731i
\(590\) −2161.79 + 292.982i −0.00621027 + 0.000841660i
\(591\) −704500. −2.01700
\(592\) −288504. + 172478.i −0.823205 + 0.492140i
\(593\) 326481.i 0.928427i −0.885723 0.464214i \(-0.846337\pi\)
0.885723 0.464214i \(-0.153663\pi\)
\(594\) 14842.6 + 109518.i 0.0420667 + 0.310393i
\(595\) 2461.94i 0.00695414i
\(596\) −60978.0 220834.i −0.171664 0.621689i
\(597\) 414900. 1.16411
\(598\) 11976.1 + 88366.4i 0.0334897 + 0.247107i
\(599\) 436674.i 1.21704i 0.793540 + 0.608518i \(0.208236\pi\)
−0.793540 + 0.608518i \(0.791764\pi\)
\(600\) −183544. 429185.i −0.509845 1.19218i
\(601\) 431142.i 1.19363i 0.802378 + 0.596817i \(0.203568\pi\)
−0.802378 + 0.596817i \(0.796432\pi\)
\(602\) −905741. + 122752.i −2.49926 + 0.338717i
\(603\) −295960. −0.813952
\(604\) −214421. + 59207.1i −0.587750 + 0.162293i
\(605\) 1762.97 0.00481652
\(606\) −153662. + 20825.3i −0.418427 + 0.0567083i
\(607\) 678351.i 1.84110i 0.390627 + 0.920549i \(0.372258\pi\)
−0.390627 + 0.920549i \(0.627742\pi\)
\(608\) −5924.32 7423.78i −0.0160262 0.0200825i
\(609\) 140772.i 0.379560i
\(610\) 265.794 + 1961.19i 0.000714309 + 0.00527060i
\(611\) 233887.i 0.626503i
\(612\) 23154.0 + 83853.0i 0.0618192 + 0.223880i
\(613\) −207691. −0.552709 −0.276355 0.961056i \(-0.589126\pi\)
−0.276355 + 0.961056i \(0.589126\pi\)
\(614\) −46719.9 + 6331.82i −0.123927 + 0.0167954i
\(615\) 3245.23 + 4524.95i 0.00858017 + 0.0119636i
\(616\) −203535. 475930.i −0.536386 1.25424i
\(617\) 136128. 0.357584 0.178792 0.983887i \(-0.442781\pi\)
0.178792 + 0.983887i \(0.442781\pi\)
\(618\) −482698. + 65418.7i −1.26386 + 0.171287i
\(619\) 349654.i 0.912550i −0.889839 0.456275i \(-0.849183\pi\)
0.889839 0.456275i \(-0.150817\pi\)
\(620\) 1608.21 + 5824.21i 0.00418370 + 0.0151514i
\(621\) 36214.2i 0.0939064i
\(622\) −43795.1 323146.i −0.113199 0.835253i
\(623\) 660224.i 1.70104i
\(624\) −284025. 475090.i −0.729436 1.22013i
\(625\) 390474. 0.999613
\(626\) −569650. + 77203.0i −1.45365 + 0.197009i
\(627\) 9938.97 0.0252817
\(628\) −14261.1 51647.1i −0.0361605 0.130956i
\(629\) 129289.i 0.326784i
\(630\) −741.608 5472.03i −0.00186850 0.0137869i
\(631\) 642980.i 1.61488i −0.589953 0.807438i \(-0.700854\pi\)
0.589953 0.807438i \(-0.299146\pi\)
\(632\) −154844. 362075.i −0.387668 0.906492i
\(633\) 468607. 1.16950
\(634\) −288788. + 39138.6i −0.718457 + 0.0973704i
\(635\) 6786.00i 0.0168293i
\(636\) 190239. + 688957.i 0.470311 + 1.70325i
\(637\) 992824.i 2.44677i
\(638\) 49828.3 6753.09i 0.122415 0.0165906i
\(639\) 236025. 0.578037
\(640\) 3763.33 + 2731.53i 0.00918781 + 0.00666878i
\(641\) 333773.i 0.812335i −0.913799 0.406168i \(-0.866865\pi\)
0.913799 0.406168i \(-0.133135\pi\)
\(642\) 651799. 88336.4i 1.58141 0.214323i
\(643\) −558445. −1.35070 −0.675349 0.737498i \(-0.736007\pi\)
−0.675349 + 0.737498i \(0.736007\pi\)
\(644\) 45144.8 + 163494.i 0.108852 + 0.394211i
\(645\) 8592.54i 0.0206539i
\(646\) −3620.19 + 490.634i −0.00867493 + 0.00117569i
\(647\) 69092.9i 0.165053i 0.996589 + 0.0825267i \(0.0262990\pi\)
−0.996589 + 0.0825267i \(0.973701\pi\)
\(648\) 200938. + 469858.i 0.478534 + 1.11897i
\(649\) 176425.i 0.418862i
\(650\) 458891. 62192.2i 1.08613 0.147200i
\(651\) 1.36796e6i 3.22783i
\(652\) −155166. 561938.i −0.365006 1.32188i
\(653\) 797489.i 1.87024i −0.354325 0.935122i \(-0.615289\pi\)
0.354325 0.935122i \(-0.384711\pi\)
\(654\) 308845. 41856.9i 0.722080 0.0978615i
\(655\) 5515.57i 0.0128561i
\(656\) 394704. + 171458.i 0.917199 + 0.398428i
\(657\) 5810.60 0.0134614
\(658\) 59744.3 + 440829.i 0.137989 + 1.01817i
\(659\) 90553.6 0.208514 0.104257 0.994550i \(-0.466754\pi\)
0.104257 + 0.994550i \(0.466754\pi\)
\(660\) −4690.56 + 1295.19i −0.0107681 + 0.00297334i
\(661\) −359808. −0.823508 −0.411754 0.911295i \(-0.635084\pi\)
−0.411754 + 0.911295i \(0.635084\pi\)
\(662\) 97052.4 + 716110.i 0.221457 + 1.63404i
\(663\) −212905. −0.484350
\(664\) 727500. 311121.i 1.65005 0.705655i
\(665\) 231.905 0.000524404
\(666\) −38945.7 287364.i −0.0878033 0.647865i
\(667\) −16476.7 −0.0370355
\(668\) −451630. + 124707.i −1.01211 + 0.279471i
\(669\) 212329.i 0.474415i
\(670\) 817.252 + 6030.17i 0.00182057 + 0.0134332i
\(671\) −160054. −0.355484
\(672\) −656687. 822896.i −1.45419 1.82224i
\(673\) 8719.05i 0.0192504i 0.999954 + 0.00962519i \(0.00306384\pi\)
−0.999954 + 0.00962519i \(0.996936\pi\)
\(674\) 105967. + 781890.i 0.233266 + 1.72118i
\(675\) −188062. −0.412756
\(676\) 88830.3 24528.3i 0.194387 0.0536754i
\(677\) −353177. −0.770575 −0.385287 0.922797i \(-0.625898\pi\)
−0.385287 + 0.922797i \(0.625898\pi\)
\(678\) −48031.6 354406.i −0.104488 0.770977i
\(679\) 1.32554e6i 2.87509i
\(680\) 1644.56 703.309i 0.00355658 0.00152100i
\(681\) −804077. −1.73382
\(682\) −484210. + 65623.6i −1.04103 + 0.141088i
\(683\) 518404. 1.11129 0.555644 0.831420i \(-0.312472\pi\)
0.555644 + 0.831420i \(0.312472\pi\)
\(684\) 7898.61 2181.01i 0.0168826 0.00466172i
\(685\) 3778.89i 0.00805347i
\(686\) 139987. + 1.03290e6i 0.297467 + 2.19489i
\(687\) 702021.i 1.48743i
\(688\) 340744. + 569963.i 0.719865 + 1.20412i
\(689\) −709076. −1.49367
\(690\) 1580.05 214.139i 0.00331873 0.000449777i
\(691\) 468201. 0.980565 0.490282 0.871564i \(-0.336894\pi\)
0.490282 + 0.871564i \(0.336894\pi\)
\(692\) 441795. 121991.i 0.922590 0.254751i
\(693\) 446575. 0.929882
\(694\) 103342. + 762516.i 0.214564 + 1.58318i
\(695\) 8260.90i 0.0171024i
\(696\) 94034.7 40214.6i 0.194120 0.0830167i
\(697\) 134508. 96467.6i 0.276875 0.198571i
\(698\) −66388.6 489854.i −0.136264 1.00544i
\(699\) 695094.i 1.42262i
\(700\) 849030. 234439.i 1.73271 0.478447i
\(701\) −726853. −1.47914 −0.739572 0.673078i \(-0.764972\pi\)
−0.739572 + 0.673078i \(0.764972\pi\)
\(702\) −220985. + 29949.4i −0.448423 + 0.0607735i
\(703\) 12178.5 0.0246424
\(704\) −259774. + 271920.i −0.524144 + 0.548652i
\(705\) 4182.04 0.00841414
\(706\) −83719.1 617729.i −0.167963 1.23933i
\(707\) 292604.i 0.585384i
\(708\) −95508.9 345889.i −0.190536 0.690033i
\(709\) 442762.i 0.880800i −0.897802 0.440400i \(-0.854837\pi\)
0.897802 0.440400i \(-0.145163\pi\)
\(710\) −651.749 4808.99i −0.00129290 0.00953975i
\(711\) 339742. 0.672063
\(712\) 441026. 188608.i 0.869970 0.372049i
\(713\) 160113. 0.314955
\(714\) −401283. + 54384.7i −0.787144 + 0.106679i
\(715\) 4827.54i 0.00944308i
\(716\) 28105.2 7760.58i 0.0548228 0.0151380i
\(717\) −1.12611e6 −2.19050
\(718\) −175632. + 23802.9i −0.340687 + 0.0461723i
\(719\) 129677. 0.250845 0.125422 0.992103i \(-0.459971\pi\)
0.125422 + 0.992103i \(0.459971\pi\)
\(720\) −3443.43 + 2058.60i −0.00664241 + 0.00397106i
\(721\) 919157.i 1.76815i
\(722\) −69961.9 516221.i −0.134211 0.990287i
\(723\) 125164. 0.239444
\(724\) −74267.5 268962.i −0.141684 0.513115i
\(725\) 85564.2i 0.162786i
\(726\) 38944.3 + 287354.i 0.0738874 + 0.545185i
\(727\) 249631. 0.472312 0.236156 0.971715i \(-0.424112\pi\)
0.236156 + 0.971715i \(0.424112\pi\)
\(728\) 960329. 410692.i 1.81200 0.774913i
\(729\) −156383. −0.294262
\(730\) −16.0451 118.391i −3.01091e−5 0.000222163i
\(731\) 255421. 0.477994
\(732\) −313792. + 86646.1i −0.585625 + 0.161706i
\(733\) 478223. 0.890067 0.445033 0.895514i \(-0.353192\pi\)
0.445033 + 0.895514i \(0.353192\pi\)
\(734\) 1.00414e6 136089.i 1.86382 0.252598i
\(735\) 17752.3 0.0328609
\(736\) 96316.2 76862.2i 0.177805 0.141892i
\(737\) −492125. −0.906026
\(738\) −269906. + 254931.i −0.495564 + 0.468070i
\(739\) 19146.5i 0.0350590i 0.999846 + 0.0175295i \(0.00558010\pi\)
−0.999846 + 0.0175295i \(0.994420\pi\)
\(740\) −5747.49 + 1587.03i −0.0104958 + 0.00289816i
\(741\) 20054.8i 0.0365243i
\(742\) −1.33646e6 + 181127.i −2.42745 + 0.328985i
\(743\) 804197.i 1.45675i 0.685179 + 0.728374i \(0.259724\pi\)
−0.685179 + 0.728374i \(0.740276\pi\)
\(744\) −913789. + 390788.i −1.65082 + 0.705985i
\(745\) 4063.95i 0.00732210i
\(746\) 23149.8 + 170813.i 0.0415977 + 0.306932i
\(747\) 682628.i 1.22333i
\(748\) 38500.6 + 139431.i 0.0688121 + 0.249205i
\(749\) 1.24116e6i 2.21240i
\(750\) −2224.21 16411.6i −0.00395415 0.0291761i
\(751\) −114539. −0.203083 −0.101542 0.994831i \(-0.532378\pi\)
−0.101542 + 0.994831i \(0.532378\pi\)
\(752\) 277404. 165842.i 0.490543 0.293264i
\(753\) 1.09864e6i 1.93760i
\(754\) 13626.4 + 100543.i 0.0239683 + 0.176852i
\(755\) −3945.93 −0.00692238
\(756\) −408861. + 112897.i −0.715372 + 0.197533i
\(757\) 189862.i 0.331318i 0.986183 + 0.165659i \(0.0529752\pi\)
−0.986183 + 0.165659i \(0.947025\pi\)
\(758\) −326074. + 44191.9i −0.567516 + 0.0769138i
\(759\) 128948.i 0.223837i
\(760\) −66.2488 154.911i −0.000114697 0.000268198i
\(761\) −499225. −0.862039 −0.431019 0.902343i \(-0.641846\pi\)
−0.431019 + 0.902343i \(0.641846\pi\)
\(762\) −1.10608e6 + 149904.i −1.90492 + 0.258169i
\(763\) 588105.i 1.01020i
\(764\) 635268. 175414.i 1.08835 0.300523i
\(765\) 1543.13i 0.00263681i
\(766\) 87763.2 + 647569.i 0.149574 + 1.10364i
\(767\) 355990. 0.605127
\(768\) −362093. + 673742.i −0.613900 + 1.14228i
\(769\) 217831. 0.368355 0.184177 0.982893i \(-0.441038\pi\)
0.184177 + 0.982893i \(0.441038\pi\)
\(770\) −1233.15 9098.93i −0.00207986 0.0153465i
\(771\) 228964.i 0.385176i
\(772\) −221938. 803757.i −0.372389 1.34862i
\(773\) 23677.9i 0.0396264i −0.999804 0.0198132i \(-0.993693\pi\)
0.999804 0.0198132i \(-0.00630715\pi\)
\(774\) −567712. + 76940.4i −0.947646 + 0.128432i
\(775\) 831475.i 1.38435i
\(776\) −885451. + 378670.i −1.47042 + 0.628835i
\(777\) 1.34994e6 2.23600
\(778\) 26189.3 + 193240.i 0.0432677 + 0.319255i
\(779\) −9086.86 12670.1i −0.0149740 0.0208788i
\(780\) −2613.42 9464.60i −0.00429556 0.0155565i
\(781\) 392464. 0.643425
\(782\) −6365.48 46968.3i −0.0104092 0.0768054i
\(783\) 41204.5i 0.0672080i
\(784\) 1.17755e6 703980.i 1.91579 1.14532i
\(785\) 950.450i 0.00154237i
\(786\) 899009. 121840.i 1.45519 0.197217i
\(787\) 849966.i 1.37231i 0.727455 + 0.686155i \(0.240703\pi\)
−0.727455 + 0.686155i \(0.759297\pi\)
\(788\) −930963. + 257063.i −1.49927 + 0.413988i
\(789\) −164395. −0.264079
\(790\) −938.149 6922.22i −0.00150320 0.0110915i
\(791\) 674862. 1.07860
\(792\) −127574. 298310.i −0.203382 0.475573i
\(793\) 322955.i 0.513566i
\(794\) −51375.6 + 6962.78i −0.0814921 + 0.0110444i
\(795\) 12678.7i 0.0200605i
\(796\) 548271. 151392.i 0.865305 0.238933i
\(797\) 330393. 0.520133 0.260066 0.965591i \(-0.416256\pi\)
0.260066 + 0.965591i \(0.416256\pi\)
\(798\) 5122.82 + 37799.2i 0.00804458 + 0.0593577i
\(799\) 124315.i 0.194729i
\(800\) −399149. 500175.i −0.623670 0.781523i
\(801\) 413824.i 0.644986i
\(802\) 89912.8 + 663430.i 0.139789 + 1.03145i
\(803\) 9661.91 0.0149841
\(804\) −964832. + 266415.i −1.49259 + 0.412142i
\(805\) 3008.73i 0.00464293i
\(806\) −132415. 977036.i −0.203829 1.50398i
\(807\) 503074. 0.772475
\(808\) −195458. + 83588.9i −0.299385 + 0.128034i
\(809\) 373647.i 0.570906i −0.958393 0.285453i \(-0.907856\pi\)
0.958393 0.285453i \(-0.0921440\pi\)
\(810\) 1217.42 + 8982.85i 0.00185554 + 0.0136913i
\(811\) 266226.i 0.404770i 0.979306 + 0.202385i \(0.0648693\pi\)
−0.979306 + 0.202385i \(0.935131\pi\)
\(812\) 51365.8 + 186023.i 0.0779044 + 0.282134i
\(813\) 847086.i 1.28158i
\(814\) −64759.2 477832.i −0.0977355 0.721151i
\(815\) 10341.2i 0.0155688i
\(816\) 150964. + 252519.i 0.226722 + 0.379239i
\(817\) 24059.7i 0.0360450i
\(818\) −144469. 1.06598e6i −0.215908 1.59310i
\(819\) 901096.i 1.34339i
\(820\) 5939.52 + 4795.36i 0.00883331 + 0.00713170i
\(821\) −1.13571e6 −1.68493 −0.842467 0.538748i \(-0.818897\pi\)
−0.842467 + 0.538748i \(0.818897\pi\)
\(822\) 615939. 83476.4i 0.911578 0.123544i
\(823\) 1.04247e6 1.53910 0.769548 0.638589i \(-0.220482\pi\)
0.769548 + 0.638589i \(0.220482\pi\)
\(824\) −613992. + 262578.i −0.904292 + 0.386727i
\(825\) 669634. 0.983852
\(826\) 670968. 90934.4i 0.983426 0.133281i
\(827\) 80496.1 0.117697 0.0588483 0.998267i \(-0.481257\pi\)
0.0588483 + 0.998267i \(0.481257\pi\)
\(828\) 28296.5 + 102477.i 0.0412735 + 0.149474i
\(829\) −320934. −0.466989 −0.233494 0.972358i \(-0.575016\pi\)
−0.233494 + 0.972358i \(0.575016\pi\)
\(830\) 13908.5 1884.98i 0.0201894 0.00273622i
\(831\) −386585. −0.559813
\(832\) −548680. 524171.i −0.792633 0.757228i
\(833\) 527704.i 0.760502i
\(834\) −1.34648e6 + 182485.i −1.93584 + 0.262358i
\(835\) −8311.23 −0.0119204
\(836\) 13133.9 3626.60i 0.0187923 0.00518905i
\(837\) 400407.i 0.571545i
\(838\) 1.06411e6 144215.i 1.51529 0.205364i
\(839\) 884020. 1.25585 0.627925 0.778274i \(-0.283904\pi\)
0.627925 + 0.778274i \(0.283904\pi\)
\(840\) −7343.41 17171.3i −0.0104073 0.0243357i
\(841\) 688534. 0.973494
\(842\) −368257. + 49908.8i −0.519430 + 0.0703968i
\(843\) 792367.i 1.11499i
\(844\) 619242. 170989.i 0.869311 0.240039i
\(845\) 1634.72 0.00228945
\(846\) 37447.3 + 276309.i 0.0523215 + 0.386059i
\(847\) −547182. −0.762719
\(848\) 502784. + 841008.i 0.699181 + 1.16952i
\(849\) 454620.i 0.630715i
\(850\) −243909. + 33056.3i −0.337590 + 0.0457526i
\(851\) 158004.i 0.218177i
\(852\) 769442. 212463.i 1.05998 0.292688i
\(853\) 667015. 0.916721 0.458361 0.888766i \(-0.348437\pi\)
0.458361 + 0.888766i \(0.348437\pi\)
\(854\) −82496.1 608705.i −0.113114 0.834625i
\(855\) 145.356 0.000198839
\(856\) 829088. 354566.i 1.13150 0.483893i
\(857\) 94572.6 0.128767 0.0643834 0.997925i \(-0.479492\pi\)
0.0643834 + 0.997925i \(0.479492\pi\)
\(858\) 786863. 106641.i 1.06887 0.144861i
\(859\) 464186.i 0.629080i 0.949244 + 0.314540i \(0.101850\pi\)
−0.949244 + 0.314540i \(0.898150\pi\)
\(860\) 3135.31 + 11354.6i 0.00423920 + 0.0153524i
\(861\) −1.00724e6 1.40443e6i −1.35871 1.89450i
\(862\) −1.18724e6 + 160903.i −1.59780 + 0.216546i
\(863\) 60774.7i 0.0816020i 0.999167 + 0.0408010i \(0.0129910\pi\)
−0.999167 + 0.0408010i \(0.987009\pi\)
\(864\) 192215. + 240865.i 0.257490 + 0.322661i
\(865\) 8130.25 0.0108660
\(866\) −100544. 741874.i −0.134067 0.989224i
\(867\) −861621. −1.14625
\(868\) −499151. 1.80769e6i −0.662509 2.39930i
\(869\) 564926. 0.748086
\(870\) 1797.78 243.647i 0.00237518 0.000321902i
\(871\) 993008.i 1.30893i
\(872\) 392851. 168006.i 0.516649 0.220948i
\(873\) 830837.i 1.09015i
\(874\) −4424.23 + 599.603i −0.00579181 + 0.000784947i
\(875\) 31251.0 0.0408176
\(876\) 18942.6 5230.54i 0.0246849 0.00681614i
\(877\) −505825. −0.657660 −0.328830 0.944389i \(-0.606654\pi\)
−0.328830 + 0.944389i \(0.606654\pi\)
\(878\) −27931.8 206098.i −0.0362335 0.267352i
\(879\) 1.13107e6i 1.46390i
\(880\) −5725.76 + 3423.06i −0.00739380 + 0.00442027i
\(881\) 1.41764e6 1.82648 0.913240 0.407421i \(-0.133572\pi\)
0.913240 + 0.407421i \(0.133572\pi\)
\(882\) 158960. + 1.17290e6i 0.204338 + 1.50773i
\(883\) −538491. −0.690649 −0.345324 0.938483i \(-0.612231\pi\)
−0.345324 + 0.938483i \(0.612231\pi\)
\(884\) −281344. + 77686.4i −0.360025 + 0.0994124i
\(885\) 6365.31i 0.00812705i
\(886\) 385085. 52189.5i 0.490557 0.0664837i
\(887\) 932748. 1.18554 0.592771 0.805371i \(-0.298034\pi\)
0.592771 + 0.805371i \(0.298034\pi\)
\(888\) −385641. 901752.i −0.489054 1.14357i
\(889\) 2.10621e6i 2.66500i
\(890\) 8431.63 1142.71i 0.0106447 0.00144264i
\(891\) −733095. −0.923431
\(892\) 77476.3 + 280583.i 0.0973732 + 0.352640i
\(893\) −11710.0 −0.0146843
\(894\) 662402. 89773.5i 0.828794 0.112324i
\(895\) 517.214 0.000645690
\(896\) −1.16804e6 847801.i −1.45493 1.05603i
\(897\) −260191. −0.323376
\(898\) −37652.5 277823.i −0.0466919 0.344521i
\(899\) 182177. 0.225410
\(900\) 532166. 146945.i 0.656995 0.181413i
\(901\) 376887. 0.464260
\(902\) −448802. + 423902.i −0.551622 + 0.521018i
\(903\) 2.66692e6i 3.27065i
\(904\) −192790. 450804.i −0.235910 0.551634i
\(905\) 4949.65i 0.00604334i
\(906\) −87166.3 643165.i −0.106192 0.783549i
\(907\) 153251.i 0.186290i 0.995653 + 0.0931448i \(0.0296920\pi\)
−0.995653 + 0.0931448i \(0.970308\pi\)
\(908\) −1.06255e6 + 293398.i −1.28878 + 0.355865i
\(909\) 183402.i 0.221961i
\(910\) 18359.8 2488.25i 0.0221710 0.00300477i
\(911\) 338709.i 0.408122i −0.978958 0.204061i \(-0.934586\pi\)
0.978958 0.204061i \(-0.0654141\pi\)
\(912\) 23786.2 14220.2i 0.0285980 0.0170969i
\(913\) 1.13508e6i 1.36171i
\(914\) 945884. 128193.i 1.13226 0.153452i
\(915\) −5774.64 −0.00689735
\(916\) 256159. + 927687.i 0.305294 + 1.10563i
\(917\) 1.71190e6i 2.03582i
\(918\) 117457. 15918.6i 0.139378 0.0188895i
\(919\) 714838. 0.846402 0.423201 0.906036i \(-0.360906\pi\)
0.423201 + 0.906036i \(0.360906\pi\)
\(920\) 2009.82 859.513i 0.00237455 0.00101549i
\(921\) 137565.i 0.162176i
\(922\) 60843.5 + 448940.i 0.0715735 + 0.528112i
\(923\) 791912.i 0.929551i
\(924\) 1.45584e6 401994.i 1.70517 0.470843i
\(925\) 820523. 0.958975
\(926\) 28369.7 + 209329.i 0.0330852 + 0.244122i
\(927\) 576121.i 0.670432i
\(928\) 109589. 87453.8i 0.127253 0.101551i
\(929\) 914438.i 1.05955i 0.848137 + 0.529777i \(0.177724\pi\)
−0.848137 + 0.529777i \(0.822276\pi\)
\(930\) −17470.0 + 2367.66i −0.0201989 + 0.00273749i
\(931\) −49707.5 −0.0573486
\(932\) 253631. + 918533.i 0.291992 + 1.05746i
\(933\) 951489. 1.09305
\(934\) 251008. 34018.4i 0.287736 0.0389960i
\(935\) 2565.92i 0.00293508i
\(936\) 601927. 257419.i 0.687057 0.293825i
\(937\) 435078.i 0.495550i 0.968818 + 0.247775i \(0.0796994\pi\)
−0.968818 + 0.247775i \(0.920301\pi\)
\(938\) −253655. 1.87162e6i −0.288295 2.12722i
\(939\) 1.67731e6i 1.90231i
\(940\) 5526.36 1525.97i 0.00625437 0.00172699i
\(941\) −59621.3 −0.0673321 −0.0336660 0.999433i \(-0.510718\pi\)
−0.0336660 + 0.999433i \(0.510718\pi\)
\(942\) 154918. 20995.6i 0.174582 0.0236607i
\(943\) 164382. 117893.i 0.184855 0.132576i
\(944\) −252421. 422226.i −0.283258 0.473806i
\(945\) −7524.16 −0.00842548
\(946\) −943996. + 127937.i −1.05484 + 0.142960i
\(947\) 83654.3i 0.0932799i 0.998912 + 0.0466400i \(0.0148514\pi\)
−0.998912 + 0.0466400i \(0.985149\pi\)
\(948\) 1.10756e6 305826.i 1.23240 0.340297i
\(949\) 19495.8i 0.0216475i
\(950\) 3113.76 + 22975.2i 0.00345015 + 0.0254573i
\(951\) 850324.i 0.940207i
\(952\) −510432. + 218290.i −0.563202 + 0.240857i
\(953\) 1.40651e6 1.54866 0.774332 0.632779i \(-0.218086\pi\)
0.774332 + 0.632779i \(0.218086\pi\)
\(954\) −837687. + 113529.i −0.920417 + 0.124742i
\(955\) 11690.7 0.0128184
\(956\) −1.48810e6 + 410903.i −1.62823 + 0.449597i
\(957\) 146717.i 0.160198i
\(958\) −224568. 1.65700e6i −0.244691 1.80547i
\(959\) 1.17287e6i 1.27531i
\(960\) −9372.50 + 9810.72i −0.0101698 + 0.0106453i
\(961\) −846794. −0.916919
\(962\) 964167. 130671.i 1.04184 0.141198i
\(963\) 777950.i 0.838879i
\(964\) 165398. 45670.8i 0.177982 0.0491456i
\(965\) 14791.3i 0.0158837i
\(966\) −490407. + 66463.5i −0.525536 + 0.0712244i
\(967\) −589325. −0.630234 −0.315117 0.949053i \(-0.602044\pi\)
−0.315117 + 0.949053i \(0.602044\pi\)
\(968\) 156315. + 365514.i 0.166821 + 0.390080i
\(969\) 10659.5i 0.0113524i
\(970\) −16928.2 + 2294.24i −0.0179915 + 0.00243834i
\(971\) 1.68175e6 1.78371 0.891853 0.452326i \(-0.149406\pi\)
0.891853 + 0.452326i \(0.149406\pi\)
\(972\) −1.06132e6 + 293057.i −1.12334 + 0.310184i
\(973\) 2.56398e6i 2.70825i
\(974\) −624364. + 84618.2i −0.658142 + 0.0891961i
\(975\) 1.35118e6i 1.42136i
\(976\) −383045. + 228997.i −0.402115 + 0.240398i
\(977\) 1.79042e6i 1.87571i 0.347021 + 0.937857i \(0.387193\pi\)
−0.347021 + 0.937857i \(0.612807\pi\)
\(978\) 1.68556e6 228439.i 1.76225 0.238832i
\(979\) 688109.i 0.717946i
\(980\) 23458.8 6477.59i 0.0244261 0.00674468i
\(981\) 368620.i 0.383037i
\(982\) 961336. 130287.i 0.996901 0.135107i
\(983\) 1.35023e6i 1.39734i −0.715444 0.698670i \(-0.753776\pi\)
0.715444 0.698670i \(-0.246224\pi\)
\(984\) −650412. + 1.07404e6i −0.671736 + 1.10925i
\(985\) −17132.3 −0.0176581
\(986\) −7242.65 53440.6i −0.00744978 0.0549689i
\(987\) −1.29800e6 −1.33242
\(988\) 7317.74 + 26501.5i 0.00749658 + 0.0271491i
\(989\) 312150. 0.319133
\(990\) −772.931 5703.14i −0.000788624 0.00581894i
\(991\) −203565. −0.207280 −0.103640 0.994615i \(-0.533049\pi\)
−0.103640 + 0.994615i \(0.533049\pi\)
\(992\) −1.06493e6 + 849838.i −1.08218 + 0.863600i
\(993\) −2.10855e6 −2.13839
\(994\) 202287. + 1.49259e6i 0.204736 + 1.51067i
\(995\) 10089.7 0.0101914
\(996\) 614483. + 2.22537e6i 0.619429 + 2.24328i
\(997\) 1.61503e6i 1.62477i −0.583124 0.812383i \(-0.698170\pi\)
0.583124 0.812383i \(-0.301830\pi\)
\(998\) −124422. 918059.i −0.124921 0.921742i
\(999\) −395133. −0.395924
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 164.5.d.f.163.39 yes 72
4.3 odd 2 inner 164.5.d.f.163.38 yes 72
41.40 even 2 inner 164.5.d.f.163.40 yes 72
164.163 odd 2 inner 164.5.d.f.163.37 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
164.5.d.f.163.37 72 164.163 odd 2 inner
164.5.d.f.163.38 yes 72 4.3 odd 2 inner
164.5.d.f.163.39 yes 72 1.1 even 1 trivial
164.5.d.f.163.40 yes 72 41.40 even 2 inner