Properties

Label 164.5.d.f.163.10
Level $164$
Weight $5$
Character 164.163
Analytic conductor $16.953$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [164,5,Mod(163,164)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("164.163"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(164, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 164 = 2^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 164.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,6,0,-162,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.9526739458\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 163.10
Character \(\chi\) \(=\) 164.163
Dual form 164.5.d.f.163.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.33380 - 2.21038i) q^{2} +5.00494 q^{3} +(6.22840 + 14.7379i) q^{4} +38.7793 q^{5} +(-16.6855 - 11.0629i) q^{6} -50.6913 q^{7} +(11.8123 - 62.9005i) q^{8} -55.9505 q^{9} +(-129.282 - 85.7171i) q^{10} -167.503 q^{11} +(31.1728 + 73.7626i) q^{12} -87.0973i q^{13} +(168.994 + 112.047i) q^{14} +194.088 q^{15} +(-178.414 + 183.588i) q^{16} -509.403i q^{17} +(186.528 + 123.672i) q^{18} +346.056 q^{19} +(241.533 + 571.527i) q^{20} -253.707 q^{21} +(558.420 + 370.245i) q^{22} -887.511i q^{23} +(59.1200 - 314.813i) q^{24} +878.832 q^{25} +(-192.519 + 290.365i) q^{26} -685.430 q^{27} +(-315.725 - 747.085i) q^{28} -788.499i q^{29} +(-647.050 - 429.009i) q^{30} +511.217i q^{31} +(1000.60 - 217.680i) q^{32} -838.341 q^{33} +(-1125.98 + 1698.24i) q^{34} -1965.77 q^{35} +(-348.482 - 824.596i) q^{36} +880.083 q^{37} +(-1153.68 - 764.918i) q^{38} -435.917i q^{39} +(458.073 - 2439.23i) q^{40} +(652.427 + 1549.23i) q^{41} +(845.808 + 560.790i) q^{42} -966.706i q^{43} +(-1043.27 - 2468.64i) q^{44} -2169.72 q^{45} +(-1961.74 + 2958.78i) q^{46} -1475.89 q^{47} +(-892.953 + 918.846i) q^{48} +168.606 q^{49} +(-2929.85 - 1942.56i) q^{50} -2549.53i q^{51} +(1283.63 - 542.476i) q^{52} -5118.39i q^{53} +(2285.08 + 1515.06i) q^{54} -6495.63 q^{55} +(-598.782 + 3188.51i) q^{56} +1731.99 q^{57} +(-1742.89 + 2628.70i) q^{58} +3552.21i q^{59} +(1208.86 + 2860.46i) q^{60} +6423.69 q^{61} +(1129.99 - 1704.29i) q^{62} +2836.20 q^{63} +(-3816.94 - 1486.00i) q^{64} -3377.57i q^{65} +(2794.86 + 1853.06i) q^{66} -3522.24 q^{67} +(7507.55 - 3172.76i) q^{68} -4441.94i q^{69} +(6553.48 + 4345.11i) q^{70} +1513.35 q^{71} +(-660.906 + 3519.31i) q^{72} -7337.90 q^{73} +(-2934.02 - 1945.32i) q^{74} +4398.51 q^{75} +(2155.38 + 5100.16i) q^{76} +8490.92 q^{77} +(-963.544 + 1453.26i) q^{78} -7740.71 q^{79} +(-6918.77 + 7119.39i) q^{80} +1101.45 q^{81} +(1249.33 - 6606.92i) q^{82} -3440.14i q^{83} +(-1580.19 - 3739.12i) q^{84} -19754.3i q^{85} +(-2136.79 + 3222.80i) q^{86} -3946.39i q^{87} +(-1978.60 + 10536.0i) q^{88} +5342.23i q^{89} +(7233.41 + 4795.92i) q^{90} +4415.07i q^{91} +(13080.1 - 5527.77i) q^{92} +2558.61i q^{93} +(4920.30 + 3262.28i) q^{94} +13419.8 q^{95} +(5007.93 - 1089.47i) q^{96} +11673.9i q^{97} +(-562.099 - 372.685i) q^{98} +9371.86 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 6 q^{2} - 162 q^{4} - 8 q^{5} + 162 q^{8} + 1728 q^{9} - 272 q^{10} - 2842 q^{16} - 298 q^{18} - 584 q^{20} + 280 q^{21} + 4264 q^{25} + 66 q^{32} + 3512 q^{33} - 11338 q^{36} + 5720 q^{37} - 4648 q^{40}+ \cdots + 2902 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/164\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(129\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.33380 2.21038i −0.833449 0.552596i
\(3\) 5.00494 0.556105 0.278052 0.960566i \(-0.410311\pi\)
0.278052 + 0.960566i \(0.410311\pi\)
\(4\) 6.22840 + 14.7379i 0.389275 + 0.921122i
\(5\) 38.7793 1.55117 0.775586 0.631242i \(-0.217455\pi\)
0.775586 + 0.631242i \(0.217455\pi\)
\(6\) −16.6855 11.0629i −0.463485 0.307301i
\(7\) −50.6913 −1.03452 −0.517258 0.855830i \(-0.673047\pi\)
−0.517258 + 0.855830i \(0.673047\pi\)
\(8\) 11.8123 62.9005i 0.184568 0.982820i
\(9\) −55.9505 −0.690747
\(10\) −129.282 85.7171i −1.29282 0.857171i
\(11\) −167.503 −1.38432 −0.692160 0.721744i \(-0.743341\pi\)
−0.692160 + 0.721744i \(0.743341\pi\)
\(12\) 31.1728 + 73.7626i 0.216478 + 0.512240i
\(13\) 87.0973i 0.515368i −0.966229 0.257684i \(-0.917041\pi\)
0.966229 0.257684i \(-0.0829594\pi\)
\(14\) 168.994 + 112.047i 0.862216 + 0.571670i
\(15\) 194.088 0.862614
\(16\) −178.414 + 183.588i −0.696930 + 0.717139i
\(17\) 509.403i 1.76264i −0.472521 0.881319i \(-0.656656\pi\)
0.472521 0.881319i \(-0.343344\pi\)
\(18\) 186.528 + 123.672i 0.575703 + 0.381704i
\(19\) 346.056 0.958605 0.479302 0.877650i \(-0.340890\pi\)
0.479302 + 0.877650i \(0.340890\pi\)
\(20\) 241.533 + 571.527i 0.603832 + 1.42882i
\(21\) −253.707 −0.575299
\(22\) 558.420 + 370.245i 1.15376 + 0.764970i
\(23\) 887.511i 1.67771i −0.544351 0.838857i \(-0.683224\pi\)
0.544351 0.838857i \(-0.316776\pi\)
\(24\) 59.1200 314.813i 0.102639 0.546551i
\(25\) 878.832 1.40613
\(26\) −192.519 + 290.365i −0.284791 + 0.429533i
\(27\) −685.430 −0.940233
\(28\) −315.725 747.085i −0.402711 0.952915i
\(29\) 788.499i 0.937573i −0.883311 0.468787i \(-0.844691\pi\)
0.883311 0.468787i \(-0.155309\pi\)
\(30\) −647.050 429.009i −0.718945 0.476677i
\(31\) 511.217i 0.531964i 0.963978 + 0.265982i \(0.0856961\pi\)
−0.963978 + 0.265982i \(0.914304\pi\)
\(32\) 1000.60 217.680i 0.977144 0.212578i
\(33\) −838.341 −0.769827
\(34\) −1125.98 + 1698.24i −0.974027 + 1.46907i
\(35\) −1965.77 −1.60471
\(36\) −348.482 824.596i −0.268891 0.636262i
\(37\) 880.083 0.642866 0.321433 0.946932i \(-0.395836\pi\)
0.321433 + 0.946932i \(0.395836\pi\)
\(38\) −1153.68 764.918i −0.798948 0.529721i
\(39\) 435.917i 0.286599i
\(40\) 458.073 2439.23i 0.286296 1.52452i
\(41\) 652.427 + 1549.23i 0.388118 + 0.921610i
\(42\) 845.808 + 560.790i 0.479483 + 0.317908i
\(43\) 966.706i 0.522826i −0.965227 0.261413i \(-0.915811\pi\)
0.965227 0.261413i \(-0.0841885\pi\)
\(44\) −1043.27 2468.64i −0.538881 1.27513i
\(45\) −2169.72 −1.07147
\(46\) −1961.74 + 2958.78i −0.927099 + 1.39829i
\(47\) −1475.89 −0.668124 −0.334062 0.942551i \(-0.608420\pi\)
−0.334062 + 0.942551i \(0.608420\pi\)
\(48\) −892.953 + 918.846i −0.387566 + 0.398805i
\(49\) 168.606 0.0702233
\(50\) −2929.85 1942.56i −1.17194 0.777023i
\(51\) 2549.53i 0.980212i
\(52\) 1283.63 542.476i 0.474717 0.200620i
\(53\) 5118.39i 1.82214i −0.412253 0.911069i \(-0.635258\pi\)
0.412253 0.911069i \(-0.364742\pi\)
\(54\) 2285.08 + 1515.06i 0.783636 + 0.519569i
\(55\) −6495.63 −2.14732
\(56\) −598.782 + 3188.51i −0.190938 + 1.01674i
\(57\) 1731.99 0.533085
\(58\) −1742.89 + 2628.70i −0.518099 + 0.781420i
\(59\) 3552.21i 1.02046i 0.860039 + 0.510228i \(0.170439\pi\)
−0.860039 + 0.510228i \(0.829561\pi\)
\(60\) 1208.86 + 2860.46i 0.335794 + 0.794572i
\(61\) 6423.69 1.72633 0.863167 0.504919i \(-0.168478\pi\)
0.863167 + 0.504919i \(0.168478\pi\)
\(62\) 1129.99 1704.29i 0.293961 0.443365i
\(63\) 2836.20 0.714589
\(64\) −3816.94 1486.00i −0.931870 0.362793i
\(65\) 3377.57i 0.799425i
\(66\) 2794.86 + 1853.06i 0.641611 + 0.425403i
\(67\) −3522.24 −0.784638 −0.392319 0.919829i \(-0.628327\pi\)
−0.392319 + 0.919829i \(0.628327\pi\)
\(68\) 7507.55 3172.76i 1.62360 0.686151i
\(69\) 4441.94i 0.932985i
\(70\) 6553.48 + 4345.11i 1.33745 + 0.886757i
\(71\) 1513.35 0.300209 0.150104 0.988670i \(-0.452039\pi\)
0.150104 + 0.988670i \(0.452039\pi\)
\(72\) −660.906 + 3519.31i −0.127490 + 0.678880i
\(73\) −7337.90 −1.37698 −0.688488 0.725248i \(-0.741725\pi\)
−0.688488 + 0.725248i \(0.741725\pi\)
\(74\) −2934.02 1945.32i −0.535796 0.355245i
\(75\) 4398.51 0.781957
\(76\) 2155.38 + 5100.16i 0.373161 + 0.882992i
\(77\) 8490.92 1.43210
\(78\) −963.544 + 1453.26i −0.158374 + 0.238866i
\(79\) −7740.71 −1.24030 −0.620150 0.784483i \(-0.712928\pi\)
−0.620150 + 0.784483i \(0.712928\pi\)
\(80\) −6918.77 + 7119.39i −1.08106 + 1.11241i
\(81\) 1101.45 0.167879
\(82\) 1249.33 6606.92i 0.185801 0.982587i
\(83\) 3440.14i 0.499367i −0.968327 0.249684i \(-0.919673\pi\)
0.968327 0.249684i \(-0.0803266\pi\)
\(84\) −1580.19 3739.12i −0.223950 0.529921i
\(85\) 19754.3i 2.73415i
\(86\) −2136.79 + 3222.80i −0.288912 + 0.435749i
\(87\) 3946.39i 0.521389i
\(88\) −1978.60 + 10536.0i −0.255500 + 1.36054i
\(89\) 5342.23i 0.674439i 0.941426 + 0.337219i \(0.109486\pi\)
−0.941426 + 0.337219i \(0.890514\pi\)
\(90\) 7233.41 + 4795.92i 0.893013 + 0.592089i
\(91\) 4415.07i 0.533157i
\(92\) 13080.1 5527.77i 1.54538 0.653092i
\(93\) 2558.61i 0.295828i
\(94\) 4920.30 + 3262.28i 0.556847 + 0.369203i
\(95\) 13419.8 1.48696
\(96\) 5007.93 1089.47i 0.543395 0.118216i
\(97\) 11673.9i 1.24072i 0.784317 + 0.620360i \(0.213014\pi\)
−0.784317 + 0.620360i \(0.786986\pi\)
\(98\) −562.099 372.685i −0.0585276 0.0388051i
\(99\) 9371.86 0.956215
\(100\) 5473.72 + 12952.2i 0.547372 + 1.29522i
\(101\) 6091.71i 0.597168i 0.954383 + 0.298584i \(0.0965142\pi\)
−0.954383 + 0.298584i \(0.903486\pi\)
\(102\) −5635.45 + 8499.62i −0.541661 + 0.816957i
\(103\) 10382.3i 0.978632i 0.872107 + 0.489316i \(0.162754\pi\)
−0.872107 + 0.489316i \(0.837246\pi\)
\(104\) −5478.46 1028.82i −0.506514 0.0951203i
\(105\) −9838.58 −0.892388
\(106\) −11313.6 + 17063.7i −1.00691 + 1.51866i
\(107\) 7278.87i 0.635765i 0.948130 + 0.317882i \(0.102972\pi\)
−0.948130 + 0.317882i \(0.897028\pi\)
\(108\) −4269.13 10101.8i −0.366009 0.866069i
\(109\) 4093.19i 0.344516i 0.985052 + 0.172258i \(0.0551062\pi\)
−0.985052 + 0.172258i \(0.944894\pi\)
\(110\) 21655.1 + 14357.8i 1.78968 + 1.18660i
\(111\) 4404.77 0.357501
\(112\) 9044.04 9306.29i 0.720985 0.741892i
\(113\) −5981.01 −0.468401 −0.234200 0.972188i \(-0.575247\pi\)
−0.234200 + 0.972188i \(0.575247\pi\)
\(114\) −5774.11 3828.37i −0.444299 0.294581i
\(115\) 34417.0i 2.60242i
\(116\) 11620.9 4911.09i 0.863619 0.364974i
\(117\) 4873.14i 0.355989i
\(118\) 7851.75 11842.3i 0.563900 0.850498i
\(119\) 25822.3i 1.82348i
\(120\) 2292.63 12208.2i 0.159211 0.847794i
\(121\) 13416.1 0.916340
\(122\) −21415.3 14198.8i −1.43881 0.953965i
\(123\) 3265.36 + 7753.79i 0.215835 + 0.512512i
\(124\) −7534.29 + 3184.06i −0.490003 + 0.207080i
\(125\) 9843.44 0.629980
\(126\) −9455.33 6269.10i −0.595574 0.394879i
\(127\) 8185.66i 0.507512i 0.967268 + 0.253756i \(0.0816660\pi\)
−0.967268 + 0.253756i \(0.918334\pi\)
\(128\) 9440.26 + 13390.9i 0.576188 + 0.817317i
\(129\) 4838.31i 0.290746i
\(130\) −7465.73 + 11260.1i −0.441759 + 0.666280i
\(131\) 15034.8i 0.876100i −0.898951 0.438050i \(-0.855669\pi\)
0.898951 0.438050i \(-0.144331\pi\)
\(132\) −5221.52 12355.4i −0.299674 0.709104i
\(133\) −17542.0 −0.991692
\(134\) 11742.4 + 7785.50i 0.653955 + 0.433588i
\(135\) −26580.5 −1.45846
\(136\) −32041.7 6017.23i −1.73236 0.325326i
\(137\) 11240.6i 0.598893i −0.954113 0.299446i \(-0.903198\pi\)
0.954113 0.299446i \(-0.0968020\pi\)
\(138\) −9818.40 + 14808.5i −0.515564 + 0.777596i
\(139\) 36382.1i 1.88304i −0.336964 0.941518i \(-0.609400\pi\)
0.336964 0.941518i \(-0.390600\pi\)
\(140\) −12243.6 28971.4i −0.624674 1.47813i
\(141\) −7386.73 −0.371547
\(142\) −5045.21 3345.09i −0.250209 0.165894i
\(143\) 14589.0i 0.713434i
\(144\) 9982.37 10271.8i 0.481403 0.495362i
\(145\) 30577.4i 1.45434i
\(146\) 24463.1 + 16219.6i 1.14764 + 0.760911i
\(147\) 843.865 0.0390515
\(148\) 5481.51 + 12970.6i 0.250251 + 0.592157i
\(149\) 10985.0i 0.494798i 0.968914 + 0.247399i \(0.0795759\pi\)
−0.968914 + 0.247399i \(0.920424\pi\)
\(150\) −14663.7 9722.39i −0.651721 0.432106i
\(151\) −18669.0 −0.818780 −0.409390 0.912359i \(-0.634258\pi\)
−0.409390 + 0.912359i \(0.634258\pi\)
\(152\) 4087.73 21767.1i 0.176927 0.942136i
\(153\) 28501.3i 1.21754i
\(154\) −28307.0 18768.2i −1.19358 0.791373i
\(155\) 19824.6i 0.825167i
\(156\) 6424.52 2715.06i 0.263993 0.111566i
\(157\) 43640.6i 1.77048i −0.465135 0.885240i \(-0.653994\pi\)
0.465135 0.885240i \(-0.346006\pi\)
\(158\) 25805.9 + 17109.9i 1.03373 + 0.685385i
\(159\) 25617.2i 1.01330i
\(160\) 38802.4 8441.46i 1.51572 0.329745i
\(161\) 44989.1i 1.73562i
\(162\) −3672.03 2434.64i −0.139919 0.0927694i
\(163\) 23765.1i 0.894467i −0.894417 0.447233i \(-0.852409\pi\)
0.894417 0.447233i \(-0.147591\pi\)
\(164\) −18768.8 + 19264.6i −0.697830 + 0.716264i
\(165\) −32510.3 −1.19413
\(166\) −7604.04 + 11468.7i −0.275949 + 0.416197i
\(167\) 33492.2 1.20091 0.600455 0.799659i \(-0.294986\pi\)
0.600455 + 0.799659i \(0.294986\pi\)
\(168\) −2996.87 + 15958.3i −0.106182 + 0.565416i
\(169\) 20975.1 0.734395
\(170\) −43664.5 + 65856.7i −1.51088 + 2.27878i
\(171\) −19362.0 −0.662154
\(172\) 14247.3 6021.03i 0.481587 0.203523i
\(173\) −428.561 −0.0143192 −0.00715962 0.999974i \(-0.502279\pi\)
−0.00715962 + 0.999974i \(0.502279\pi\)
\(174\) −8723.05 + 13156.5i −0.288118 + 0.434551i
\(175\) −44549.1 −1.45467
\(176\) 29884.8 30751.4i 0.964774 0.992749i
\(177\) 17778.6i 0.567481i
\(178\) 11808.4 17809.9i 0.372692 0.562111i
\(179\) 3930.10 0.122658 0.0613292 0.998118i \(-0.480466\pi\)
0.0613292 + 0.998118i \(0.480466\pi\)
\(180\) −13513.9 31977.2i −0.417095 0.986952i
\(181\) 15195.0i 0.463813i 0.972738 + 0.231907i \(0.0744964\pi\)
−0.972738 + 0.231907i \(0.925504\pi\)
\(182\) 9759.01 14719.0i 0.294621 0.444359i
\(183\) 32150.2 0.960022
\(184\) −55824.9 10483.6i −1.64889 0.309652i
\(185\) 34129.0 0.997195
\(186\) 5655.52 8529.90i 0.163473 0.246557i
\(187\) 85326.3i 2.44005i
\(188\) −9192.41 21751.5i −0.260084 0.615424i
\(189\) 34745.3 0.972686
\(190\) −44738.9 29663.0i −1.23931 0.821689i
\(191\) 35493.8 0.972940 0.486470 0.873697i \(-0.338284\pi\)
0.486470 + 0.873697i \(0.338284\pi\)
\(192\) −19103.6 7437.36i −0.518217 0.201751i
\(193\) 7354.72i 0.197447i 0.995115 + 0.0987237i \(0.0314760\pi\)
−0.995115 + 0.0987237i \(0.968524\pi\)
\(194\) 25803.9 38918.5i 0.685617 1.03408i
\(195\) 16904.5i 0.444564i
\(196\) 1050.15 + 2484.91i 0.0273362 + 0.0646842i
\(197\) 1913.10 0.0492952 0.0246476 0.999696i \(-0.492154\pi\)
0.0246476 + 0.999696i \(0.492154\pi\)
\(198\) −31243.9 20715.4i −0.796956 0.528401i
\(199\) −43549.9 −1.09972 −0.549858 0.835258i \(-0.685318\pi\)
−0.549858 + 0.835258i \(0.685318\pi\)
\(200\) 10381.1 55279.0i 0.259526 1.38197i
\(201\) −17628.6 −0.436341
\(202\) 13465.0 20308.5i 0.329993 0.497709i
\(203\) 39970.0i 0.969935i
\(204\) 37574.9 15879.5i 0.902894 0.381572i
\(205\) 25300.7 + 60077.9i 0.602038 + 1.42957i
\(206\) 22948.9 34612.5i 0.540788 0.815640i
\(207\) 49656.7i 1.15888i
\(208\) 15990.0 + 15539.4i 0.369591 + 0.359176i
\(209\) −57965.3 −1.32702
\(210\) 32799.8 + 21747.0i 0.743760 + 0.493130i
\(211\) 67812.3 1.52315 0.761577 0.648075i \(-0.224426\pi\)
0.761577 + 0.648075i \(0.224426\pi\)
\(212\) 75434.5 31879.4i 1.67841 0.709313i
\(213\) 7574.25 0.166948
\(214\) 16089.1 24266.3i 0.351321 0.529878i
\(215\) 37488.2i 0.810993i
\(216\) −8096.52 + 43113.9i −0.173537 + 0.924080i
\(217\) 25914.3i 0.550325i
\(218\) 9047.53 13645.9i 0.190378 0.287136i
\(219\) −36725.8 −0.765743
\(220\) −40457.4 95732.3i −0.835896 1.97794i
\(221\) −44367.6 −0.908408
\(222\) −14684.6 9736.23i −0.297959 0.197554i
\(223\) 23135.1i 0.465224i −0.972570 0.232612i \(-0.925273\pi\)
0.972570 0.232612i \(-0.0747272\pi\)
\(224\) −50721.5 + 11034.5i −1.01087 + 0.219915i
\(225\) −49171.1 −0.971282
\(226\) 19939.5 + 13220.3i 0.390388 + 0.258837i
\(227\) 83756.8 1.62543 0.812715 0.582662i \(-0.197989\pi\)
0.812715 + 0.582662i \(0.197989\pi\)
\(228\) 10787.5 + 25526.0i 0.207517 + 0.491036i
\(229\) 56551.7i 1.07839i 0.842182 + 0.539194i \(0.181271\pi\)
−0.842182 + 0.539194i \(0.818729\pi\)
\(230\) −76074.9 + 114739.i −1.43809 + 2.16899i
\(231\) 42496.6 0.796398
\(232\) −49597.0 9314.01i −0.921466 0.173046i
\(233\) 22216.7i 0.409229i −0.978843 0.204615i \(-0.934406\pi\)
0.978843 0.204615i \(-0.0655942\pi\)
\(234\) 10771.5 16246.1i 0.196718 0.296699i
\(235\) −57233.8 −1.03637
\(236\) −52352.2 + 22124.6i −0.939964 + 0.397238i
\(237\) −38741.8 −0.689737
\(238\) 57077.2 86086.2i 1.00765 1.51978i
\(239\) 20085.7 0.351634 0.175817 0.984423i \(-0.443743\pi\)
0.175817 + 0.984423i \(0.443743\pi\)
\(240\) −34628.1 + 35632.2i −0.601182 + 0.618614i
\(241\) 60909.8 1.04870 0.524352 0.851502i \(-0.324308\pi\)
0.524352 + 0.851502i \(0.324308\pi\)
\(242\) −44726.6 29654.8i −0.763722 0.506366i
\(243\) 61032.5 1.03359
\(244\) 40009.3 + 94671.9i 0.672018 + 1.59016i
\(245\) 6538.43 0.108928
\(246\) 6252.81 33067.3i 0.103325 0.546422i
\(247\) 30140.6i 0.494035i
\(248\) 32155.8 + 6038.66i 0.522825 + 0.0981833i
\(249\) 17217.7i 0.277701i
\(250\) −32816.0 21757.8i −0.525056 0.348125i
\(251\) 21076.2i 0.334537i 0.985911 + 0.167268i \(0.0534947\pi\)
−0.985911 + 0.167268i \(0.946505\pi\)
\(252\) 17665.0 + 41799.8i 0.278172 + 0.658224i
\(253\) 148660.i 2.32249i
\(254\) 18093.5 27289.3i 0.280449 0.422985i
\(255\) 98869.0i 1.52048i
\(256\) −1872.79 65509.2i −0.0285765 0.999592i
\(257\) 50287.9i 0.761373i 0.924704 + 0.380687i \(0.124312\pi\)
−0.924704 + 0.380687i \(0.875688\pi\)
\(258\) −10694.5 + 16129.9i −0.160665 + 0.242322i
\(259\) −44612.5 −0.665055
\(260\) 49778.4 21036.8i 0.736367 0.311196i
\(261\) 44116.9i 0.647626i
\(262\) −33232.6 + 50122.8i −0.484130 + 0.730185i
\(263\) 110188. 1.59303 0.796513 0.604621i \(-0.206675\pi\)
0.796513 + 0.604621i \(0.206675\pi\)
\(264\) −9902.76 + 52732.1i −0.142085 + 0.756601i
\(265\) 198487.i 2.82645i
\(266\) 58481.6 + 38774.7i 0.826525 + 0.548005i
\(267\) 26737.6i 0.375059i
\(268\) −21937.9 51910.6i −0.305440 0.722747i
\(269\) −97639.5 −1.34934 −0.674669 0.738120i \(-0.735714\pi\)
−0.674669 + 0.738120i \(0.735714\pi\)
\(270\) 88613.9 + 58753.1i 1.21555 + 0.805941i
\(271\) 52918.2i 0.720554i 0.932845 + 0.360277i \(0.117318\pi\)
−0.932845 + 0.360277i \(0.882682\pi\)
\(272\) 93520.0 + 90884.6i 1.26406 + 1.22844i
\(273\) 22097.2i 0.296491i
\(274\) −24846.1 + 37473.9i −0.330946 + 0.499147i
\(275\) −147207. −1.94654
\(276\) 65465.1 27666.2i 0.859393 0.363188i
\(277\) 30238.9 0.394100 0.197050 0.980393i \(-0.436864\pi\)
0.197050 + 0.980393i \(0.436864\pi\)
\(278\) −80418.5 + 121291.i −1.04056 + 1.56941i
\(279\) 28602.9i 0.367453i
\(280\) −23220.3 + 123648.i −0.296178 + 1.57714i
\(281\) 130615.i 1.65417i −0.562077 0.827085i \(-0.689998\pi\)
0.562077 0.827085i \(-0.310002\pi\)
\(282\) 24625.9 + 16327.5i 0.309666 + 0.205316i
\(283\) 77168.6i 0.963535i −0.876299 0.481768i \(-0.839995\pi\)
0.876299 0.481768i \(-0.160005\pi\)
\(284\) 9425.76 + 22303.7i 0.116864 + 0.276529i
\(285\) 67165.4 0.826906
\(286\) 32247.4 48636.8i 0.394241 0.594611i
\(287\) −33072.4 78532.2i −0.401515 0.953420i
\(288\) −55983.9 + 12179.3i −0.674960 + 0.146838i
\(289\) −175970. −2.10689
\(290\) −67587.9 + 101939.i −0.803661 + 1.21212i
\(291\) 58427.4i 0.689971i
\(292\) −45703.4 108146.i −0.536022 1.26836i
\(293\) 63139.5i 0.735472i −0.929930 0.367736i \(-0.880133\pi\)
0.929930 0.367736i \(-0.119867\pi\)
\(294\) −2813.27 1865.27i −0.0325475 0.0215797i
\(295\) 137752.i 1.58290i
\(296\) 10395.8 55357.6i 0.118652 0.631821i
\(297\) 114811. 1.30158
\(298\) 24281.1 36621.8i 0.273424 0.412389i
\(299\) −77299.8 −0.864641
\(300\) 27395.7 + 64825.0i 0.304396 + 0.720277i
\(301\) 49003.6i 0.540872i
\(302\) 62238.7 + 41265.7i 0.682412 + 0.452455i
\(303\) 30488.7i 0.332088i
\(304\) −61741.3 + 63531.6i −0.668081 + 0.687453i
\(305\) 249106. 2.67784
\(306\) 62998.9 95017.7i 0.672807 1.01476i
\(307\) 27136.9i 0.287928i −0.989583 0.143964i \(-0.954015\pi\)
0.989583 0.143964i \(-0.0459849\pi\)
\(308\) 52884.8 + 125139.i 0.557481 + 1.31914i
\(309\) 51962.9i 0.544222i
\(310\) 43820.1 66091.3i 0.455984 0.687735i
\(311\) −81392.4 −0.841518 −0.420759 0.907173i \(-0.638236\pi\)
−0.420759 + 0.907173i \(0.638236\pi\)
\(312\) −27419.4 5149.19i −0.281675 0.0528969i
\(313\) 12220.3i 0.124737i −0.998053 0.0623683i \(-0.980135\pi\)
0.998053 0.0623683i \(-0.0198654\pi\)
\(314\) −96462.4 + 145489.i −0.978361 + 1.47560i
\(315\) 109986. 1.10845
\(316\) −48212.2 114082.i −0.482817 1.14247i
\(317\) 11570.1i 0.115138i −0.998342 0.0575688i \(-0.981665\pi\)
0.998342 0.0575688i \(-0.0183348\pi\)
\(318\) −56624.0 + 85402.7i −0.559946 + 0.844534i
\(319\) 132076.i 1.29790i
\(320\) −148018. 57626.1i −1.44549 0.562755i
\(321\) 36430.4i 0.353552i
\(322\) 99443.2 149984.i 0.959098 1.44655i
\(323\) 176282.i 1.68967i
\(324\) 6860.30 + 16233.2i 0.0653511 + 0.154637i
\(325\) 76543.9i 0.724676i
\(326\) −52530.0 + 79228.0i −0.494279 + 0.745493i
\(327\) 20486.2i 0.191587i
\(328\) 105154. 22738.0i 0.977410 0.211351i
\(329\) 74814.6 0.691185
\(330\) 108383. + 71860.2i 0.995249 + 0.659873i
\(331\) 101137. 0.923110 0.461555 0.887111i \(-0.347292\pi\)
0.461555 + 0.887111i \(0.347292\pi\)
\(332\) 50700.6 21426.6i 0.459978 0.194391i
\(333\) −49241.1 −0.444058
\(334\) −111656. 74030.5i −1.00090 0.663618i
\(335\) −136590. −1.21711
\(336\) 45264.9 46577.5i 0.400944 0.412570i
\(337\) −122847. −1.08169 −0.540847 0.841121i \(-0.681896\pi\)
−0.540847 + 0.841121i \(0.681896\pi\)
\(338\) −69926.6 46363.0i −0.612081 0.405824i
\(339\) −29934.6 −0.260480
\(340\) 291137. 123037.i 2.51849 1.06434i
\(341\) 85630.2i 0.736408i
\(342\) 64549.1 + 42797.6i 0.551871 + 0.365904i
\(343\) 113163. 0.961869
\(344\) −60806.3 11419.0i −0.513844 0.0964968i
\(345\) 172255.i 1.44722i
\(346\) 1428.73 + 947.284i 0.0119344 + 0.00791276i
\(347\) 71706.0 0.595521 0.297760 0.954641i \(-0.403760\pi\)
0.297760 + 0.954641i \(0.403760\pi\)
\(348\) 58161.7 24579.7i 0.480263 0.202964i
\(349\) 85944.2 0.705612 0.352806 0.935697i \(-0.385228\pi\)
0.352806 + 0.935697i \(0.385228\pi\)
\(350\) 148518. + 98470.8i 1.21239 + 0.803843i
\(351\) 59699.1i 0.484566i
\(352\) −167602. + 36461.9i −1.35268 + 0.294276i
\(353\) 78698.5 0.631564 0.315782 0.948832i \(-0.397733\pi\)
0.315782 + 0.948832i \(0.397733\pi\)
\(354\) 39297.5 59270.2i 0.313588 0.472966i
\(355\) 58686.7 0.465675
\(356\) −78733.5 + 33273.5i −0.621240 + 0.262542i
\(357\) 129239.i 1.01404i
\(358\) −13102.1 8687.03i −0.102230 0.0677806i
\(359\) 136146.i 1.05637i −0.849128 0.528186i \(-0.822872\pi\)
0.849128 0.528186i \(-0.177128\pi\)
\(360\) −25629.5 + 136476.i −0.197758 + 1.05306i
\(361\) −10566.0 −0.0810768
\(362\) 33586.8 50657.0i 0.256302 0.386565i
\(363\) 67147.0 0.509581
\(364\) −65069.1 + 27498.8i −0.491102 + 0.207545i
\(365\) −284559. −2.13592
\(366\) −107182. 71064.3i −0.800130 0.530505i
\(367\) 30125.9i 0.223670i 0.993727 + 0.111835i \(0.0356729\pi\)
−0.993727 + 0.111835i \(0.964327\pi\)
\(368\) 162936. + 158345.i 1.20315 + 1.16925i
\(369\) −36503.6 86680.0i −0.268092 0.636599i
\(370\) −113779. 75438.2i −0.831111 0.551046i
\(371\) 259458.i 1.88503i
\(372\) −37708.7 + 15936.1i −0.272493 + 0.115158i
\(373\) −173268. −1.24538 −0.622688 0.782470i \(-0.713960\pi\)
−0.622688 + 0.782470i \(0.713960\pi\)
\(374\) 188604. 284460.i 1.34836 2.03366i
\(375\) 49265.9 0.350335
\(376\) −17433.7 + 92833.9i −0.123314 + 0.656646i
\(377\) −68676.1 −0.483196
\(378\) −115834. 76800.5i −0.810684 0.537503i
\(379\) 228441.i 1.59036i −0.606373 0.795180i \(-0.707376\pi\)
0.606373 0.795180i \(-0.292624\pi\)
\(380\) 83583.9 + 197781.i 0.578836 + 1.36967i
\(381\) 40968.8i 0.282230i
\(382\) −118329. 78455.0i −0.810896 0.537643i
\(383\) −5588.45 −0.0380973 −0.0190487 0.999819i \(-0.506064\pi\)
−0.0190487 + 0.999819i \(0.506064\pi\)
\(384\) 47248.0 + 67020.9i 0.320421 + 0.454514i
\(385\) 329272. 2.22143
\(386\) 16256.8 24519.1i 0.109109 0.164562i
\(387\) 54087.7i 0.361141i
\(388\) −172050. + 72709.9i −1.14285 + 0.482981i
\(389\) 194859. 1.28772 0.643860 0.765143i \(-0.277332\pi\)
0.643860 + 0.765143i \(0.277332\pi\)
\(390\) −37365.6 + 56356.3i −0.245664 + 0.370522i
\(391\) −452100. −2.95720
\(392\) 1991.63 10605.4i 0.0129610 0.0690169i
\(393\) 75248.1i 0.487204i
\(394\) −6377.87 4228.68i −0.0410850 0.0272403i
\(395\) −300179. −1.92392
\(396\) 58371.7 + 138122.i 0.372230 + 0.880790i
\(397\) 146045.i 0.926630i 0.886194 + 0.463315i \(0.153340\pi\)
−0.886194 + 0.463315i \(0.846660\pi\)
\(398\) 145186. + 96262.0i 0.916558 + 0.607699i
\(399\) −87796.9 −0.551485
\(400\) −156796. + 161343.i −0.979976 + 1.00839i
\(401\) 209088. 1.30029 0.650147 0.759809i \(-0.274707\pi\)
0.650147 + 0.759809i \(0.274707\pi\)
\(402\) 58770.2 + 38966.0i 0.363668 + 0.241120i
\(403\) 44525.6 0.274157
\(404\) −89779.2 + 37941.6i −0.550064 + 0.232462i
\(405\) 42713.6 0.260409
\(406\) 88349.2 133252.i 0.535982 0.808391i
\(407\) −147416. −0.889931
\(408\) −160367. 30115.9i −0.963372 0.180915i
\(409\) 9946.03 0.0594570 0.0297285 0.999558i \(-0.490536\pi\)
0.0297285 + 0.999558i \(0.490536\pi\)
\(410\) 48448.0 256211.i 0.288209 1.52416i
\(411\) 56258.7i 0.333047i
\(412\) −153014. + 64665.1i −0.901439 + 0.380957i
\(413\) 180066.i 1.05568i
\(414\) 109760. 165545.i 0.640391 0.965865i
\(415\) 133406.i 0.774604i
\(416\) −18959.3 87149.2i −0.109556 0.503589i
\(417\) 182090.i 1.04717i
\(418\) 193245. + 128126.i 1.10600 + 0.733304i
\(419\) 298912.i 1.70261i −0.524670 0.851306i \(-0.675811\pi\)
0.524670 0.851306i \(-0.324189\pi\)
\(420\) −61278.6 145000.i −0.347384 0.821998i
\(421\) 98837.3i 0.557643i 0.960343 + 0.278822i \(0.0899439\pi\)
−0.960343 + 0.278822i \(0.910056\pi\)
\(422\) −226072. 149891.i −1.26947 0.841689i
\(423\) 82576.6 0.461505
\(424\) −321949. 60460.1i −1.79083 0.336308i
\(425\) 447679.i 2.47850i
\(426\) −25251.0 16742.0i −0.139142 0.0922546i
\(427\) −325625. −1.78592
\(428\) −107276. + 45335.7i −0.585617 + 0.247487i
\(429\) 73017.2i 0.396744i
\(430\) −82863.3 + 124978.i −0.448152 + 0.675922i
\(431\) 69477.1i 0.374013i 0.982359 + 0.187007i \(0.0598786\pi\)
−0.982359 + 0.187007i \(0.940121\pi\)
\(432\) 122290. 125836.i 0.655277 0.674278i
\(433\) −107332. −0.572469 −0.286235 0.958160i \(-0.592404\pi\)
−0.286235 + 0.958160i \(0.592404\pi\)
\(434\) −57280.5 + 86392.8i −0.304108 + 0.458668i
\(435\) 153038.i 0.808764i
\(436\) −60325.2 + 25494.0i −0.317341 + 0.134111i
\(437\) 307129.i 1.60827i
\(438\) 122436. + 81178.1i 0.638208 + 0.423147i
\(439\) 134157. 0.696118 0.348059 0.937473i \(-0.386841\pi\)
0.348059 + 0.937473i \(0.386841\pi\)
\(440\) −76728.5 + 408578.i −0.396325 + 2.11042i
\(441\) −9433.61 −0.0485066
\(442\) 147912. + 98069.4i 0.757112 + 0.501983i
\(443\) 194105.i 0.989074i 0.869157 + 0.494537i \(0.164662\pi\)
−0.869157 + 0.494537i \(0.835338\pi\)
\(444\) 27434.6 + 64917.2i 0.139166 + 0.329302i
\(445\) 207168.i 1.04617i
\(446\) −51137.5 + 77127.8i −0.257081 + 0.387741i
\(447\) 54979.4i 0.275160i
\(448\) 193485. + 75327.3i 0.964034 + 0.375316i
\(449\) −39666.9 −0.196759 −0.0983797 0.995149i \(-0.531366\pi\)
−0.0983797 + 0.995149i \(0.531366\pi\)
\(450\) 163927. + 108687.i 0.809514 + 0.536727i
\(451\) −109283. 259499.i −0.537280 1.27580i
\(452\) −37252.1 88147.8i −0.182337 0.431454i
\(453\) −93437.4 −0.455328
\(454\) −279228. 185135.i −1.35471 0.898206i
\(455\) 171213.i 0.827018i
\(456\) 20458.9 108943.i 0.0983902 0.523926i
\(457\) 59953.7i 0.287067i −0.989645 0.143534i \(-0.954153\pi\)
0.989645 0.143534i \(-0.0458465\pi\)
\(458\) 125001. 188532.i 0.595913 0.898781i
\(459\) 349160.i 1.65729i
\(460\) 507236. 214363.i 2.39715 1.01306i
\(461\) 16349.7 0.0769323 0.0384661 0.999260i \(-0.487753\pi\)
0.0384661 + 0.999260i \(0.487753\pi\)
\(462\) −141675. 93933.8i −0.663757 0.440087i
\(463\) 67510.9 0.314928 0.157464 0.987525i \(-0.449668\pi\)
0.157464 + 0.987525i \(0.449668\pi\)
\(464\) 144759. + 140679.i 0.672370 + 0.653423i
\(465\) 99221.2i 0.458879i
\(466\) −49107.4 + 74065.8i −0.226139 + 0.341072i
\(467\) 245639.i 1.12632i −0.826347 0.563162i \(-0.809585\pi\)
0.826347 0.563162i \(-0.190415\pi\)
\(468\) −71820.1 + 30351.8i −0.327910 + 0.138578i
\(469\) 178547. 0.811720
\(470\) 190806. + 126509.i 0.863766 + 0.572697i
\(471\) 218419.i 0.984573i
\(472\) 223435. + 41959.8i 1.00292 + 0.188343i
\(473\) 161926.i 0.723759i
\(474\) 129157. + 85634.3i 0.574860 + 0.381146i
\(475\) 304126. 1.34792
\(476\) −380567. + 160831.i −1.67964 + 0.709834i
\(477\) 286377.i 1.25864i
\(478\) −66961.6 44397.1i −0.293069 0.194312i
\(479\) −124581. −0.542978 −0.271489 0.962442i \(-0.587516\pi\)
−0.271489 + 0.962442i \(0.587516\pi\)
\(480\) 194204. 42249.0i 0.842898 0.183373i
\(481\) 76652.8i 0.331313i
\(482\) −203061. 134634.i −0.874042 0.579510i
\(483\) 225168.i 0.965188i
\(484\) 83561.0 + 197726.i 0.356708 + 0.844060i
\(485\) 452707.i 1.92457i
\(486\) −203470. 134905.i −0.861446 0.571159i
\(487\) 251905.i 1.06213i −0.847330 0.531066i \(-0.821792\pi\)
0.847330 0.531066i \(-0.178208\pi\)
\(488\) 75878.7 404053.i 0.318625 1.69667i
\(489\) 118943.i 0.497417i
\(490\) −21797.8 14452.4i −0.0907863 0.0601934i
\(491\) 383498.i 1.59074i 0.606123 + 0.795371i \(0.292724\pi\)
−0.606123 + 0.795371i \(0.707276\pi\)
\(492\) −93936.9 + 96418.4i −0.388067 + 0.398318i
\(493\) −401663. −1.65260
\(494\) −66622.2 + 100483.i −0.273002 + 0.411753i
\(495\) 363434. 1.48325
\(496\) −93853.1 91208.4i −0.381492 0.370742i
\(497\) −76713.8 −0.310571
\(498\) −38057.8 + 57400.4i −0.153456 + 0.231449i
\(499\) 16542.9 0.0664369 0.0332185 0.999448i \(-0.489424\pi\)
0.0332185 + 0.999448i \(0.489424\pi\)
\(500\) 61308.8 + 145072.i 0.245235 + 0.580288i
\(501\) 167626. 0.667831
\(502\) 46586.4 70263.6i 0.184864 0.278820i
\(503\) 248213. 0.981045 0.490523 0.871428i \(-0.336806\pi\)
0.490523 + 0.871428i \(0.336806\pi\)
\(504\) 33502.2 178399.i 0.131890 0.702312i
\(505\) 236232.i 0.926309i
\(506\) 328597. 495604.i 1.28340 1.93568i
\(507\) 104979. 0.408401
\(508\) −120640. + 50983.6i −0.467480 + 0.197562i
\(509\) 284051.i 1.09638i 0.836354 + 0.548190i \(0.184683\pi\)
−0.836354 + 0.548190i \(0.815317\pi\)
\(510\) −218539. + 329609.i −0.840210 + 1.26724i
\(511\) 371968. 1.42450
\(512\) −138557. + 222534.i −0.528553 + 0.848900i
\(513\) −237197. −0.901312
\(514\) 111156. 167650.i 0.420732 0.634566i
\(515\) 402618.i 1.51803i
\(516\) 71306.8 30134.9i 0.267813 0.113180i
\(517\) 247215. 0.924897
\(518\) 148729. + 98610.9i 0.554289 + 0.367507i
\(519\) −2144.92 −0.00796300
\(520\) −212451. 39897.0i −0.785690 0.147548i
\(521\) 23341.8i 0.0859922i −0.999075 0.0429961i \(-0.986310\pi\)
0.999075 0.0429961i \(-0.0136903\pi\)
\(522\) 97515.4 147077.i 0.357876 0.539763i
\(523\) 153104.i 0.559736i −0.960038 0.279868i \(-0.909709\pi\)
0.960038 0.279868i \(-0.0902908\pi\)
\(524\) 221581. 93642.4i 0.806995 0.341044i
\(525\) −222966. −0.808947
\(526\) −367345. 243558.i −1.32771 0.880301i
\(527\) 260415. 0.937660
\(528\) 149572. 153909.i 0.536516 0.552073i
\(529\) −507835. −1.81473
\(530\) −438734. + 661717.i −1.56189 + 2.35570i
\(531\) 198748.i 0.704877i
\(532\) −109259. 258534.i −0.386041 0.913469i
\(533\) 134933. 56824.6i 0.474969 0.200024i
\(534\) 59100.3 89137.6i 0.207256 0.312592i
\(535\) 282269.i 0.986180i
\(536\) −41605.8 + 221550.i −0.144819 + 0.771157i
\(537\) 19669.9 0.0682110
\(538\) 325510. + 215821.i 1.12461 + 0.745639i
\(539\) −28242.0 −0.0972115
\(540\) −165554. 391742.i −0.567743 1.34342i
\(541\) −134041. −0.457976 −0.228988 0.973429i \(-0.573542\pi\)
−0.228988 + 0.973429i \(0.573542\pi\)
\(542\) 116970. 176418.i 0.398175 0.600545i
\(543\) 76050.1i 0.257929i
\(544\) −110887. 509706.i −0.374698 1.72235i
\(545\) 158731.i 0.534403i
\(546\) 48843.3 73667.5i 0.163840 0.247110i
\(547\) −12489.2 −0.0417406 −0.0208703 0.999782i \(-0.506644\pi\)
−0.0208703 + 0.999782i \(0.506644\pi\)
\(548\) 165664. 70011.1i 0.551653 0.233134i
\(549\) −359409. −1.19246
\(550\) 490757. + 325384.i 1.62234 + 1.07565i
\(551\) 272865.i 0.898762i
\(552\) −279400. 52469.7i −0.916956 0.172199i
\(553\) 392387. 1.28311
\(554\) −100810. 66839.6i −0.328462 0.217778i
\(555\) 170814. 0.554545
\(556\) 536198. 226602.i 1.73450 0.733018i
\(557\) 28716.3i 0.0925589i 0.998929 + 0.0462794i \(0.0147365\pi\)
−0.998929 + 0.0462794i \(0.985264\pi\)
\(558\) −63223.4 + 95356.1i −0.203053 + 0.306253i
\(559\) −84197.5 −0.269448
\(560\) 350721. 360891.i 1.11837 1.15080i
\(561\) 427053.i 1.35693i
\(562\) −288709. + 435443.i −0.914088 + 1.37867i
\(563\) 367469. 1.15932 0.579662 0.814857i \(-0.303185\pi\)
0.579662 + 0.814857i \(0.303185\pi\)
\(564\) −46007.5 108865.i −0.144634 0.342240i
\(565\) −231939. −0.726570
\(566\) −170572. + 257264.i −0.532446 + 0.803057i
\(567\) −55834.2 −0.173674
\(568\) 17876.2 95190.6i 0.0554088 0.295051i
\(569\) 46051.4 0.142239 0.0711195 0.997468i \(-0.477343\pi\)
0.0711195 + 0.997468i \(0.477343\pi\)
\(570\) −223916. 148461.i −0.689184 0.456945i
\(571\) 535306. 1.64184 0.820918 0.571046i \(-0.193462\pi\)
0.820918 + 0.571046i \(0.193462\pi\)
\(572\) −215012. + 90866.2i −0.657160 + 0.277722i
\(573\) 177645. 0.541057
\(574\) −63329.9 + 334913.i −0.192214 + 1.01650i
\(575\) 779973.i 2.35909i
\(576\) 213560. + 83142.6i 0.643686 + 0.250599i
\(577\) 189694.i 0.569774i −0.958561 0.284887i \(-0.908044\pi\)
0.958561 0.284887i \(-0.0919560\pi\)
\(578\) 586648. + 388961.i 1.75599 + 1.16426i
\(579\) 36809.9i 0.109801i
\(580\) 450648. 190448.i 1.33962 0.566137i
\(581\) 174385.i 0.516604i
\(582\) 129147. 194785.i 0.381275 0.575055i
\(583\) 857343.i 2.52242i
\(584\) −86677.7 + 461558.i −0.254145 + 1.35332i
\(585\) 188977.i 0.552200i
\(586\) −139563. + 210494.i −0.406419 + 0.612978i
\(587\) −414832. −1.20392 −0.601958 0.798527i \(-0.705613\pi\)
−0.601958 + 0.798527i \(0.705613\pi\)
\(588\) 5255.92 + 12436.8i 0.0152018 + 0.0359712i
\(589\) 176910.i 0.509943i
\(590\) 304485. 459237.i 0.874706 1.31927i
\(591\) 9574.94 0.0274133
\(592\) −157019. + 161572.i −0.448032 + 0.461024i
\(593\) 73691.7i 0.209560i 0.994495 + 0.104780i \(0.0334139\pi\)
−0.994495 + 0.104780i \(0.966586\pi\)
\(594\) −382757. 253777.i −1.08480 0.719250i
\(595\) 1.00137e6i 2.82853i
\(596\) −161897. + 68419.1i −0.455770 + 0.192613i
\(597\) −217965. −0.611558
\(598\) 257702. + 170862.i 0.720634 + 0.477797i
\(599\) 52213.5i 0.145522i 0.997349 + 0.0727611i \(0.0231811\pi\)
−0.997349 + 0.0727611i \(0.976819\pi\)
\(600\) 51956.6 276668.i 0.144324 0.768523i
\(601\) 269687.i 0.746639i −0.927703 0.373320i \(-0.878219\pi\)
0.927703 0.373320i \(-0.121781\pi\)
\(602\) 108317. 163368.i 0.298884 0.450790i
\(603\) 197071. 0.541986
\(604\) −116278. 275143.i −0.318731 0.754196i
\(605\) 520268. 1.42140
\(606\) 67391.7 101643.i 0.183510 0.276778i
\(607\) 526578.i 1.42918i 0.699546 + 0.714588i \(0.253386\pi\)
−0.699546 + 0.714588i \(0.746614\pi\)
\(608\) 346262. 75329.4i 0.936695 0.203778i
\(609\) 200048.i 0.539385i
\(610\) −830468. 550620.i −2.23184 1.47976i
\(611\) 128546.i 0.344330i
\(612\) −420051. + 177518.i −1.12150 + 0.473957i
\(613\) 667438. 1.77619 0.888097 0.459657i \(-0.152028\pi\)
0.888097 + 0.459657i \(0.152028\pi\)
\(614\) −59983.0 + 90469.0i −0.159108 + 0.239973i
\(615\) 126628. + 300686.i 0.334796 + 0.794993i
\(616\) 100298. 534083.i 0.264319 1.40750i
\(617\) 148685. 0.390569 0.195285 0.980747i \(-0.437437\pi\)
0.195285 + 0.980747i \(0.437437\pi\)
\(618\) 114858. 173234.i 0.300735 0.453581i
\(619\) 399732.i 1.04325i −0.853175 0.521625i \(-0.825326\pi\)
0.853175 0.521625i \(-0.174674\pi\)
\(620\) −292174. + 123476.i −0.760079 + 0.321217i
\(621\) 608326.i 1.57744i
\(622\) 271346. + 179909.i 0.701362 + 0.465020i
\(623\) 270805.i 0.697718i
\(624\) 80028.9 + 77773.8i 0.205531 + 0.199739i
\(625\) −167549. −0.428925
\(626\) −27011.6 + 40740.1i −0.0689290 + 0.103962i
\(627\) −290113. −0.737960
\(628\) 643172. 271811.i 1.63083 0.689203i
\(629\) 448316.i 1.13314i
\(630\) −366671. 243111.i −0.923837 0.612525i
\(631\) 513864.i 1.29059i −0.763932 0.645297i \(-0.776734\pi\)
0.763932 0.645297i \(-0.223266\pi\)
\(632\) −91435.8 + 486894.i −0.228919 + 1.21899i
\(633\) 339397. 0.847033
\(634\) −25574.3 + 38572.2i −0.0636246 + 0.0959613i
\(635\) 317434.i 0.787238i
\(636\) 377546. 159554.i 0.933373 0.394452i
\(637\) 14685.1i 0.0361909i
\(638\) 291938. 440313.i 0.717215 1.08173i
\(639\) −84672.9 −0.207368
\(640\) 366086. + 519291.i 0.893766 + 1.26780i
\(641\) 422816.i 1.02905i −0.857476 0.514523i \(-0.827969\pi\)
0.857476 0.514523i \(-0.172031\pi\)
\(642\) 80525.1 121451.i 0.195371 0.294668i
\(643\) −150514. −0.364045 −0.182023 0.983294i \(-0.558264\pi\)
−0.182023 + 0.983294i \(0.558264\pi\)
\(644\) −663047. + 280210.i −1.59872 + 0.675634i
\(645\) 187626.i 0.450997i
\(646\) −389651. + 587688.i −0.933707 + 1.40826i
\(647\) 154976.i 0.370216i −0.982718 0.185108i \(-0.940737\pi\)
0.982718 0.185108i \(-0.0592635\pi\)
\(648\) 13010.7 69282.0i 0.0309850 0.164995i
\(649\) 595004.i 1.41264i
\(650\) −169192. + 255182.i −0.400453 + 0.603981i
\(651\) 129699.i 0.306038i
\(652\) 350249. 148018.i 0.823913 0.348193i
\(653\) 28177.1i 0.0660799i 0.999454 + 0.0330399i \(0.0105189\pi\)
−0.999454 + 0.0330399i \(0.989481\pi\)
\(654\) 45282.4 68296.8i 0.105870 0.159678i
\(655\) 583037.i 1.35898i
\(656\) −400821. 156626.i −0.931414 0.363963i
\(657\) 410560. 0.951142
\(658\) −249417. 165369.i −0.576068 0.381946i
\(659\) −44942.2 −0.103487 −0.0517433 0.998660i \(-0.516478\pi\)
−0.0517433 + 0.998660i \(0.516478\pi\)
\(660\) −202487. 479135.i −0.464846 1.09994i
\(661\) −756780. −1.73207 −0.866037 0.499979i \(-0.833341\pi\)
−0.866037 + 0.499979i \(0.833341\pi\)
\(662\) −337170. 223551.i −0.769366 0.510107i
\(663\) −222057. −0.505170
\(664\) −216387. 40636.1i −0.490788 0.0921670i
\(665\) −680268. −1.53828
\(666\) 164160. + 108842.i 0.370099 + 0.245385i
\(667\) −699802. −1.57298
\(668\) 208602. + 493606.i 0.467484 + 1.10618i
\(669\) 115790.i 0.258713i
\(670\) 455363. + 301916.i 1.01440 + 0.672569i
\(671\) −1.07598e6 −2.38980
\(672\) −253858. + 55226.9i −0.562150 + 0.122296i
\(673\) 828245.i 1.82864i 0.404990 + 0.914321i \(0.367275\pi\)
−0.404990 + 0.914321i \(0.632725\pi\)
\(674\) 409547. + 271539.i 0.901537 + 0.597740i
\(675\) −602378. −1.32209
\(676\) 130641. + 309129.i 0.285882 + 0.676467i
\(677\) −649862. −1.41789 −0.708947 0.705261i \(-0.750830\pi\)
−0.708947 + 0.705261i \(0.750830\pi\)
\(678\) 99796.0 + 66167.1i 0.217097 + 0.143940i
\(679\) 591767.i 1.28354i
\(680\) −1.24255e6 233344.i −2.68718 0.504636i
\(681\) 419198. 0.903909
\(682\) −189276. + 285474.i −0.406936 + 0.613758i
\(683\) 117208. 0.251255 0.125627 0.992078i \(-0.459906\pi\)
0.125627 + 0.992078i \(0.459906\pi\)
\(684\) −120594. 285357.i −0.257760 0.609924i
\(685\) 435903.i 0.928985i
\(686\) −377262. 250134.i −0.801669 0.531525i
\(687\) 283038.i 0.599697i
\(688\) 177475. + 172474.i 0.374939 + 0.364374i
\(689\) −445798. −0.939073
\(690\) −380751. + 574264.i −0.799728 + 1.20618i
\(691\) 215585. 0.451504 0.225752 0.974185i \(-0.427516\pi\)
0.225752 + 0.974185i \(0.427516\pi\)
\(692\) −2669.25 6316.10i −0.00557412 0.0131898i
\(693\) −475072. −0.989219
\(694\) −239053. 158498.i −0.496336 0.329082i
\(695\) 1.41087e6i 2.92091i
\(696\) −248230. 46616.1i −0.512432 0.0962315i
\(697\) 789179. 332348.i 1.62446 0.684112i
\(698\) −286521. 189970.i −0.588092 0.389918i
\(699\) 111193.i 0.227575i
\(700\) −277470. 656563.i −0.566265 1.33992i
\(701\) −342937. −0.697877 −0.348938 0.937146i \(-0.613458\pi\)
−0.348938 + 0.937146i \(0.613458\pi\)
\(702\) 131958. 199025.i 0.267770 0.403861i
\(703\) 304558. 0.616254
\(704\) 639347. + 248909.i 1.29000 + 0.502222i
\(705\) −286452. −0.576333
\(706\) −262365. 173954.i −0.526376 0.349000i
\(707\) 308796.i 0.617779i
\(708\) −262020. + 110732.i −0.522719 + 0.220906i
\(709\) 617009.i 1.22744i 0.789525 + 0.613718i \(0.210327\pi\)
−0.789525 + 0.613718i \(0.789673\pi\)
\(710\) −195650. 129720.i −0.388117 0.257330i
\(711\) 433097. 0.856734
\(712\) 336029. + 63104.2i 0.662852 + 0.124480i
\(713\) 453711. 0.892483
\(714\) 285668. 430857.i 0.560357 0.845155i
\(715\) 565752.i 1.10666i
\(716\) 24478.2 + 57921.6i 0.0477478 + 0.112983i
\(717\) 100528. 0.195545
\(718\) −300936. + 453884.i −0.583748 + 0.880433i
\(719\) −9869.50 −0.0190914 −0.00954569 0.999954i \(-0.503039\pi\)
−0.00954569 + 0.999954i \(0.503039\pi\)
\(720\) 387109. 398334.i 0.746738 0.768391i
\(721\) 526292.i 1.01241i
\(722\) 35224.9 + 23354.9i 0.0675734 + 0.0448027i
\(723\) 304850. 0.583190
\(724\) −223943. + 94640.4i −0.427229 + 0.180551i
\(725\) 692959.i 1.31835i
\(726\) −223854. 148421.i −0.424710 0.281593i
\(727\) 572649. 1.08348 0.541738 0.840547i \(-0.317766\pi\)
0.541738 + 0.840547i \(0.317766\pi\)
\(728\) 277710. + 52152.3i 0.523997 + 0.0984035i
\(729\) 216247. 0.406906
\(730\) 948660. + 628984.i 1.78018 + 1.18030i
\(731\) −492443. −0.921554
\(732\) 200244. + 473828.i 0.373713 + 0.884297i
\(733\) 272369. 0.506933 0.253466 0.967344i \(-0.418429\pi\)
0.253466 + 0.967344i \(0.418429\pi\)
\(734\) 66589.9 100434.i 0.123599 0.186418i
\(735\) 32724.5 0.0605756
\(736\) −193193. 888040.i −0.356645 1.63937i
\(737\) 589984. 1.08619
\(738\) −69900.4 + 369661.i −0.128342 + 0.678720i
\(739\) 1.07792e6i 1.97378i −0.161398 0.986889i \(-0.551600\pi\)
0.161398 0.986889i \(-0.448400\pi\)
\(740\) 212569. + 502991.i 0.388183 + 0.918537i
\(741\) 150852.i 0.274735i
\(742\) 573501. 864979.i 1.04166 1.57108i
\(743\) 746967.i 1.35308i 0.736405 + 0.676540i \(0.236522\pi\)
−0.736405 + 0.676540i \(0.763478\pi\)
\(744\) 160938. + 30223.2i 0.290745 + 0.0546002i
\(745\) 425991.i 0.767517i
\(746\) 577640. + 382989.i 1.03796 + 0.688190i
\(747\) 192478.i 0.344937i
\(748\) −1.25753e6 + 531446.i −2.24759 + 0.949852i
\(749\) 368975.i 0.657709i
\(750\) −164242. 108897.i −0.291986 0.193594i
\(751\) −219919. −0.389926 −0.194963 0.980811i \(-0.562459\pi\)
−0.194963 + 0.980811i \(0.562459\pi\)
\(752\) 263319. 270954.i 0.465636 0.479138i
\(753\) 105485.i 0.186038i
\(754\) 228952. + 151801.i 0.402719 + 0.267012i
\(755\) −723971. −1.27007
\(756\) 216408. + 512075.i 0.378642 + 0.895962i
\(757\) 314602.i 0.548997i 0.961588 + 0.274498i \(0.0885118\pi\)
−0.961588 + 0.274498i \(0.911488\pi\)
\(758\) −504943. + 761576.i −0.878827 + 1.32548i
\(759\) 744037.i 1.29155i
\(760\) 158519. 844113.i 0.274445 1.46141i
\(761\) −582433. −1.00572 −0.502860 0.864368i \(-0.667719\pi\)
−0.502860 + 0.864368i \(0.667719\pi\)
\(762\) 90556.8 136582.i 0.155959 0.235224i
\(763\) 207489.i 0.356407i
\(764\) 221070. + 523106.i 0.378741 + 0.896196i
\(765\) 1.10526e6i 1.88861i
\(766\) 18630.8 + 12352.6i 0.0317522 + 0.0210524i
\(767\) 309388. 0.525911
\(768\) −9373.22 327870.i −0.0158916 0.555878i
\(769\) 378869. 0.640673 0.320336 0.947304i \(-0.396204\pi\)
0.320336 + 0.947304i \(0.396204\pi\)
\(770\) −1.09773e6 727818.i −1.85145 1.22756i
\(771\) 251688.i 0.423403i
\(772\) −108393. + 45808.1i −0.181873 + 0.0768613i
\(773\) 725572.i 1.21429i −0.794592 0.607144i \(-0.792315\pi\)
0.794592 0.607144i \(-0.207685\pi\)
\(774\) 119555. 180317.i 0.199565 0.300993i
\(775\) 449274.i 0.748011i
\(776\) 734296. + 137896.i 1.21940 + 0.228997i
\(777\) −223283. −0.369840
\(778\) −649621. 430714.i −1.07325 0.711590i
\(779\) 225777. + 536119.i 0.372052 + 0.883459i
\(780\) 249138. 105288.i 0.409498 0.173058i
\(781\) −253491. −0.415585
\(782\) 1.50721e6 + 999316.i 2.46468 + 1.63414i
\(783\) 540461.i 0.881537i
\(784\) −30081.7 + 30954.0i −0.0489408 + 0.0503599i
\(785\) 1.69235e6i 2.74632i
\(786\) −166327. + 250862.i −0.269227 + 0.406059i
\(787\) 490813.i 0.792441i 0.918155 + 0.396220i \(0.129678\pi\)
−0.918155 + 0.396220i \(0.870322\pi\)
\(788\) 11915.5 + 28195.1i 0.0191894 + 0.0454068i
\(789\) 551485. 0.885890
\(790\) 1.00074e6 + 663511.i 1.60349 + 1.06315i
\(791\) 303185. 0.484568
\(792\) 110703. 589494.i 0.176486 0.939787i
\(793\) 559486.i 0.889698i
\(794\) 322816. 486885.i 0.512052 0.772299i
\(795\) 993418.i 1.57180i
\(796\) −271246. 641836.i −0.428092 1.01297i
\(797\) 198660. 0.312748 0.156374 0.987698i \(-0.450020\pi\)
0.156374 + 0.987698i \(0.450020\pi\)
\(798\) 292697. + 194065.i 0.459635 + 0.304748i
\(799\) 751820.i 1.17766i
\(800\) 879356. 191304.i 1.37399 0.298912i
\(801\) 298901.i 0.465867i
\(802\) −697058. 462166.i −1.08373 0.718537i
\(803\) 1.22912e6 1.90617
\(804\) −109798. 259809.i −0.169856 0.401923i
\(805\) 1.74464e6i 2.69225i
\(806\) −148439. 98418.8i −0.228496 0.151498i
\(807\) −488680. −0.750374
\(808\) 383171. + 71957.2i 0.586908 + 0.110218i
\(809\) 1.13565e6i 1.73519i −0.497272 0.867595i \(-0.665665\pi\)
0.497272 0.867595i \(-0.334335\pi\)
\(810\) −142399. 94413.6i −0.217038 0.143901i
\(811\) 244636.i 0.371946i −0.982555 0.185973i \(-0.940456\pi\)
0.982555 0.185973i \(-0.0595436\pi\)
\(812\) −589076. + 248949.i −0.893428 + 0.377571i
\(813\) 264853.i 0.400704i
\(814\) 491456. + 325847.i 0.741712 + 0.491773i
\(815\) 921593.i 1.38747i
\(816\) 468062. + 454872.i 0.702948 + 0.683139i
\(817\) 334535.i 0.501184i
\(818\) −33158.0 21984.6i −0.0495544 0.0328557i
\(819\) 247026.i 0.368277i
\(820\) −727842. + 747068.i −1.08245 + 1.11105i
\(821\) 1.32452e6 1.96505 0.982525 0.186131i \(-0.0595948\pi\)
0.982525 + 0.186131i \(0.0595948\pi\)
\(822\) −124353. + 187555.i −0.184041 + 0.277578i
\(823\) −705312. −1.04131 −0.520657 0.853766i \(-0.674313\pi\)
−0.520657 + 0.853766i \(0.674313\pi\)
\(824\) 653052. + 122639.i 0.961819 + 0.180624i
\(825\) −736762. −1.08248
\(826\) −398015. + 600303.i −0.583364 + 0.879854i
\(827\) −528726. −0.773072 −0.386536 0.922274i \(-0.626328\pi\)
−0.386536 + 0.922274i \(0.626328\pi\)
\(828\) −731838. + 309282.i −1.06747 + 0.451122i
\(829\) −80601.3 −0.117282 −0.0586412 0.998279i \(-0.518677\pi\)
−0.0586412 + 0.998279i \(0.518677\pi\)
\(830\) −294879. + 444749.i −0.428043 + 0.645593i
\(831\) 151344. 0.219161
\(832\) −129427. + 332445.i −0.186972 + 0.480256i
\(833\) 85888.4i 0.123778i
\(834\) −402490. + 607053.i −0.578659 + 0.872759i
\(835\) 1.29880e6 1.86282
\(836\) −361031. 854290.i −0.516574 1.22234i
\(837\) 350403.i 0.500170i
\(838\) −660711. + 996513.i −0.940857 + 1.41904i
\(839\) −964790. −1.37059 −0.685297 0.728264i \(-0.740328\pi\)
−0.685297 + 0.728264i \(0.740328\pi\)
\(840\) −116216. + 618851.i −0.164706 + 0.877057i
\(841\) 85550.2 0.120956
\(842\) 218468. 329503.i 0.308152 0.464767i
\(843\) 653720.i 0.919892i
\(844\) 422362. + 999414.i 0.592925 + 1.40301i
\(845\) 813398. 1.13917
\(846\) −275294. 182526.i −0.384641 0.255026i
\(847\) −680081. −0.947968
\(848\) 939672. + 913193.i 1.30673 + 1.26990i
\(849\) 386224.i 0.535827i
\(850\) −989544. + 1.49247e6i −1.36961 + 2.06571i
\(851\) 781083.i 1.07854i
\(852\) 47175.4 + 111629.i 0.0649885 + 0.153779i
\(853\) −497645. −0.683945 −0.341972 0.939710i \(-0.611095\pi\)
−0.341972 + 0.939710i \(0.611095\pi\)
\(854\) 1.08557e6 + 719756.i 1.48847 + 0.986892i
\(855\) −750846. −1.02711
\(856\) 457844. + 85980.4i 0.624842 + 0.117342i
\(857\) 817172. 1.11263 0.556317 0.830970i \(-0.312214\pi\)
0.556317 + 0.830970i \(0.312214\pi\)
\(858\) 161396. 243425.i 0.219239 0.330666i
\(859\) 531482.i 0.720282i −0.932898 0.360141i \(-0.882729\pi\)
0.932898 0.360141i \(-0.117271\pi\)
\(860\) 552499. 233491.i 0.747024 0.315699i
\(861\) −165525. 393049.i −0.223284 0.530201i
\(862\) 153571. 231623.i 0.206678 0.311721i
\(863\) 963631.i 1.29387i 0.762547 + 0.646933i \(0.223949\pi\)
−0.762547 + 0.646933i \(0.776051\pi\)
\(864\) −685838. + 149204.i −0.918743 + 0.199873i
\(865\) −16619.3 −0.0222116
\(866\) 357822. + 237244.i 0.477124 + 0.316344i
\(867\) −880720. −1.17165
\(868\) 381923. 161404.i 0.506916 0.214228i
\(869\) 1.29659e6 1.71697
\(870\) −338274. + 510199.i −0.446920 + 0.674063i
\(871\) 306777.i 0.404377i
\(872\) 257464. + 48350.1i 0.338597 + 0.0635864i
\(873\) 653163.i 0.857024i
\(874\) −678873. + 1.02390e6i −0.888721 + 1.34041i
\(875\) −498977. −0.651724
\(876\) −228743. 541263.i −0.298084 0.705342i
\(877\) −316018. −0.410878 −0.205439 0.978670i \(-0.565862\pi\)
−0.205439 + 0.978670i \(0.565862\pi\)
\(878\) −447251. 296538.i −0.580179 0.384672i
\(879\) 316010.i 0.408999i
\(880\) 1.15891e6 1.19252e6i 1.49653 1.53992i
\(881\) −131632. −0.169594 −0.0847969 0.996398i \(-0.527024\pi\)
−0.0847969 + 0.996398i \(0.527024\pi\)
\(882\) 31449.7 + 20851.9i 0.0404278 + 0.0268046i
\(883\) −411683. −0.528009 −0.264005 0.964521i \(-0.585043\pi\)
−0.264005 + 0.964521i \(0.585043\pi\)
\(884\) −276339. 653887.i −0.353621 0.836755i
\(885\) 689441.i 0.880260i
\(886\) 429046. 647106.i 0.546559 0.824343i
\(887\) −30346.1 −0.0385705 −0.0192853 0.999814i \(-0.506139\pi\)
−0.0192853 + 0.999814i \(0.506139\pi\)
\(888\) 52030.5 277062.i 0.0659831 0.351359i
\(889\) 414942.i 0.525029i
\(890\) 457921. 690655.i 0.578110 0.871930i
\(891\) −184497. −0.232398
\(892\) 340964. 144095.i 0.428528 0.181100i
\(893\) −510740. −0.640467
\(894\) 121526. 183290.i 0.152052 0.229332i
\(895\) 152406. 0.190264
\(896\) −478539. 678803.i −0.596075 0.845528i
\(897\) −386881. −0.480831
\(898\) 132241. + 87679.1i 0.163989 + 0.108729i
\(899\) 403094. 0.498755
\(900\) −306257. 724682.i −0.378096 0.894669i
\(901\) −2.60732e6 −3.21177
\(902\) −209265. + 1.10668e6i −0.257208 + 1.36021i
\(903\) 245260.i 0.300782i
\(904\) −70649.7 + 376208.i −0.0864516 + 0.460354i
\(905\) 589251.i 0.719454i
\(906\) 311501. + 206533.i 0.379493 + 0.251612i
\(907\) 907731.i 1.10342i 0.834035 + 0.551712i \(0.186025\pi\)
−0.834035 + 0.551712i \(0.813975\pi\)
\(908\) 521670. + 1.23440e6i 0.632739 + 1.49722i
\(909\) 340834.i 0.412492i
\(910\) 378447. 570790.i 0.457007 0.689277i
\(911\) 728910.i 0.878288i −0.898417 0.439144i \(-0.855282\pi\)
0.898417 0.439144i \(-0.144718\pi\)
\(912\) −309012. + 317972.i −0.371523 + 0.382296i
\(913\) 576233.i 0.691284i
\(914\) −132521. + 199874.i −0.158632 + 0.239256i
\(915\) 1.24676e6 1.48916
\(916\) −833456. + 352227.i −0.993326 + 0.419789i
\(917\) 762131.i 0.906340i
\(918\) 771777. 1.16403e6i 0.915813 1.38127i
\(919\) 1.43903e6 1.70388 0.851942 0.523636i \(-0.175425\pi\)
0.851942 + 0.523636i \(0.175425\pi\)
\(920\) −2.16485e6 406545.i −2.55771 0.480323i
\(921\) 135819.i 0.160118i
\(922\) −54506.7 36139.2i −0.0641191 0.0425125i
\(923\) 131809.i 0.154718i
\(924\) 264686. + 626313.i 0.310018 + 0.733579i
\(925\) 773445. 0.903954
\(926\) −225068. 149225.i −0.262477 0.174028i
\(927\) 580896.i 0.675987i
\(928\) −171640. 788969.i −0.199307 0.916144i
\(929\) 1.10858e6i 1.28451i 0.766493 + 0.642253i \(0.222000\pi\)
−0.766493 + 0.642253i \(0.778000\pi\)
\(930\) 219317. 330783.i 0.253575 0.382453i
\(931\) 58347.3 0.0673164
\(932\) 327428. 138374.i 0.376950 0.159303i
\(933\) −407365. −0.467972
\(934\) −542956. + 818910.i −0.622402 + 0.938734i
\(935\) 3.30889e6i 3.78494i
\(936\) 306523. + 57563.1i 0.349873 + 0.0657041i
\(937\) 255343.i 0.290834i −0.989370 0.145417i \(-0.953548\pi\)
0.989370 0.145417i \(-0.0464524\pi\)
\(938\) −595239. 394657.i −0.676527 0.448553i
\(939\) 61162.1i 0.0693667i
\(940\) −356475. 843509.i −0.403435 0.954627i
\(941\) −110751. −0.125074 −0.0625372 0.998043i \(-0.519919\pi\)
−0.0625372 + 0.998043i \(0.519919\pi\)
\(942\) −482789. + 728163.i −0.544071 + 0.820591i
\(943\) 1.37495e6 579036.i 1.54620 0.651152i
\(944\) −652141. 633764.i −0.731809 0.711187i
\(945\) 1.34740e6 1.50880
\(946\) 357918. 539828.i 0.399946 0.603216i
\(947\) 427601.i 0.476803i 0.971167 + 0.238402i \(0.0766235\pi\)
−0.971167 + 0.238402i \(0.923377\pi\)
\(948\) −241299. 570975.i −0.268497 0.635331i
\(949\) 639111.i 0.709650i
\(950\) −1.01389e6 672234.i −1.12343 0.744858i
\(951\) 57907.5i 0.0640285i
\(952\) 1.62423e6 + 305021.i 1.79215 + 0.336555i
\(953\) −1.11045e6 −1.22268 −0.611340 0.791368i \(-0.709369\pi\)
−0.611340 + 0.791368i \(0.709369\pi\)
\(954\) 633002. 954721.i 0.695518 1.04901i
\(955\) 1.37643e6 1.50920
\(956\) 125102. + 296022.i 0.136882 + 0.323898i
\(957\) 661031.i 0.721769i
\(958\) 415329. + 275373.i 0.452544 + 0.300047i
\(959\) 569801.i 0.619564i
\(960\) −740822. 288415.i −0.803844 0.312951i
\(961\) 662178. 0.717015
\(962\) −169432. + 255545.i −0.183082 + 0.276132i
\(963\) 407257.i 0.439153i
\(964\) 379370. + 897685.i 0.408234 + 0.965984i
\(965\) 285211.i 0.306275i
\(966\) 497707. 750664.i 0.533359 0.804435i
\(967\) −1.00544e6 −1.07524 −0.537618 0.843188i \(-0.680676\pi\)
−0.537618 + 0.843188i \(0.680676\pi\)
\(968\) 158476. 843881.i 0.169127 0.900597i
\(969\) 882282.i 0.939636i
\(970\) 1.00066e6 1.50923e6i 1.06351 1.60403i
\(971\) 755235. 0.801021 0.400510 0.916292i \(-0.368833\pi\)
0.400510 + 0.916292i \(0.368833\pi\)
\(972\) 380135. + 899494.i 0.402351 + 0.952063i
\(973\) 1.84426e6i 1.94803i
\(974\) −556807. + 839799.i −0.586930 + 0.885233i
\(975\) 383098.i 0.402996i
\(976\) −1.14608e6 + 1.17931e6i −1.20313 + 1.23802i
\(977\) 625939.i 0.655757i −0.944720 0.327879i \(-0.893666\pi\)
0.944720 0.327879i \(-0.106334\pi\)
\(978\) −262910. + 396532.i −0.274871 + 0.414572i
\(979\) 894838.i 0.933639i
\(980\) 40723.9 + 96363.0i 0.0424031 + 0.100336i
\(981\) 229016.i 0.237973i
\(982\) 847677. 1.27850e6i 0.879038 1.32580i
\(983\) 21929.6i 0.0226947i −0.999936 0.0113473i \(-0.996388\pi\)
0.999936 0.0113473i \(-0.00361205\pi\)
\(984\) 526288. 113802.i 0.543543 0.117533i
\(985\) 74188.5 0.0764652
\(986\) 1.33906e6 + 887831.i 1.37736 + 0.913222i
\(987\) 374443. 0.384371
\(988\) 444210. 187727.i 0.455066 0.192315i
\(989\) −857962. −0.877154
\(990\) −1.21161e6 803329.i −1.23622 0.819640i
\(991\) −697516. −0.710243 −0.355122 0.934820i \(-0.615561\pi\)
−0.355122 + 0.934820i \(0.615561\pi\)
\(992\) 111282. + 511522.i 0.113084 + 0.519805i
\(993\) 506185. 0.513346
\(994\) 255748. + 169567.i 0.258845 + 0.171620i
\(995\) −1.68883e6 −1.70585
\(996\) 253754. 107239.i 0.255796 0.108102i
\(997\) 683726.i 0.687846i 0.938998 + 0.343923i \(0.111756\pi\)
−0.938998 + 0.343923i \(0.888244\pi\)
\(998\) −55150.5 36566.1i −0.0553718 0.0367128i
\(999\) −603235. −0.604443
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 164.5.d.f.163.10 yes 72
4.3 odd 2 inner 164.5.d.f.163.11 yes 72
41.40 even 2 inner 164.5.d.f.163.9 72
164.163 odd 2 inner 164.5.d.f.163.12 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
164.5.d.f.163.9 72 41.40 even 2 inner
164.5.d.f.163.10 yes 72 1.1 even 1 trivial
164.5.d.f.163.11 yes 72 4.3 odd 2 inner
164.5.d.f.163.12 yes 72 164.163 odd 2 inner