Properties

Label 164.5.d.b.163.1
Level $164$
Weight $5$
Character 164.163
Analytic conductor $16.953$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [164,5,Mod(163,164)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("164.163"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(164, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 164 = 2^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 164.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,0,32,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.9526739458\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 3\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 163.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 164.163
Dual form 164.5.d.b.163.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} +14.0000 q^{5} -64.0000 q^{8} -81.0000 q^{9} -56.0000 q^{10} -240.000i q^{13} +256.000 q^{16} +480.000i q^{17} +324.000 q^{18} +224.000 q^{20} -429.000 q^{25} +960.000i q^{26} -1680.00i q^{29} -1024.00 q^{32} -1920.00i q^{34} -1296.00 q^{36} -2162.00 q^{37} -896.000 q^{40} +(-1519.00 + 720.000i) q^{41} -1134.00 q^{45} -2401.00 q^{49} +1716.00 q^{50} -3840.00i q^{52} -5040.00i q^{53} +6720.00i q^{58} -6958.00 q^{61} +4096.00 q^{64} -3360.00i q^{65} +7680.00i q^{68} +5184.00 q^{72} -1442.00 q^{73} +8648.00 q^{74} +3584.00 q^{80} +6561.00 q^{81} +(6076.00 - 2880.00i) q^{82} +6720.00i q^{85} +12480.0i q^{89} +4536.00 q^{90} -18720.0i q^{97} +9604.00 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} + 28 q^{5} - 128 q^{8} - 162 q^{9} - 112 q^{10} + 512 q^{16} + 648 q^{18} + 448 q^{20} - 858 q^{25} - 2048 q^{32} - 2592 q^{36} - 4324 q^{37} - 1792 q^{40} - 3038 q^{41} - 2268 q^{45}+ \cdots + 19208 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/164\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(129\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −1.00000
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 16.0000 1.00000
\(5\) 14.0000 0.560000 0.280000 0.960000i \(-0.409666\pi\)
0.280000 + 0.960000i \(0.409666\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −64.0000 −1.00000
\(9\) −81.0000 −1.00000
\(10\) −56.0000 −0.560000
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 240.000i 1.42012i −0.704142 0.710059i \(-0.748668\pi\)
0.704142 0.710059i \(-0.251332\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 1.00000
\(17\) 480.000i 1.66090i 0.557093 + 0.830450i \(0.311917\pi\)
−0.557093 + 0.830450i \(0.688083\pi\)
\(18\) 324.000 1.00000
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 224.000 0.560000
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −429.000 −0.686400
\(26\) 960.000i 1.42012i
\(27\) 0 0
\(28\) 0 0
\(29\) 1680.00i 1.99762i −0.0487515 0.998811i \(-0.515524\pi\)
0.0487515 0.998811i \(-0.484476\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −1024.00 −1.00000
\(33\) 0 0
\(34\) 1920.00i 1.66090i
\(35\) 0 0
\(36\) −1296.00 −1.00000
\(37\) −2162.00 −1.57925 −0.789627 0.613587i \(-0.789726\pi\)
−0.789627 + 0.613587i \(0.789726\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −896.000 −0.560000
\(41\) −1519.00 + 720.000i −0.903629 + 0.428316i
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) −1134.00 −0.560000
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −2401.00 −1.00000
\(50\) 1716.00 0.686400
\(51\) 0 0
\(52\) 3840.00i 1.42012i
\(53\) 5040.00i 1.79423i −0.441794 0.897116i \(-0.645658\pi\)
0.441794 0.897116i \(-0.354342\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 6720.00i 1.99762i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) −6958.00 −1.86993 −0.934964 0.354743i \(-0.884568\pi\)
−0.934964 + 0.354743i \(0.884568\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 4096.00 1.00000
\(65\) 3360.00i 0.795266i
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 7680.00i 1.66090i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 5184.00 1.00000
\(73\) −1442.00 −0.270595 −0.135297 0.990805i \(-0.543199\pi\)
−0.135297 + 0.990805i \(0.543199\pi\)
\(74\) 8648.00 1.57925
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 3584.00 0.560000
\(81\) 6561.00 1.00000
\(82\) 6076.00 2880.00i 0.903629 0.428316i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 6720.00i 0.930104i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12480.0i 1.57556i 0.615958 + 0.787779i \(0.288769\pi\)
−0.615958 + 0.787779i \(0.711231\pi\)
\(90\) 4536.00 0.560000
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 18720.0i 1.98958i −0.101924 0.994792i \(-0.532500\pi\)
0.101924 0.994792i \(-0.467500\pi\)
\(98\) 9604.00 1.00000
\(99\) 0 0
\(100\) −6864.00 −0.686400
\(101\) 7920.00i 0.776394i 0.921576 + 0.388197i \(0.126902\pi\)
−0.921576 + 0.388197i \(0.873098\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 15360.0i 1.42012i
\(105\) 0 0
\(106\) 20160.0i 1.79423i
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 21840.0i 1.83823i −0.393990 0.919115i \(-0.628906\pi\)
0.393990 0.919115i \(-0.371094\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 24638.0 1.92952 0.964758 0.263137i \(-0.0847572\pi\)
0.964758 + 0.263137i \(0.0847572\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 26880.0i 1.99762i
\(117\) 19440.0i 1.42012i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −14641.0 −1.00000
\(122\) 27832.0 1.86993
\(123\) 0 0
\(124\) 0 0
\(125\) −14756.0 −0.944384
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −16384.0 −1.00000
\(129\) 0 0
\(130\) 13440.0i 0.795266i
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 30720.0i 1.66090i
\(137\) 36960.0i 1.96920i 0.174810 + 0.984602i \(0.444069\pi\)
−0.174810 + 0.984602i \(0.555931\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −20736.0 −1.00000
\(145\) 23520.0i 1.11867i
\(146\) 5768.00 0.270595
\(147\) 0 0
\(148\) −34592.0 −1.57925
\(149\) 28560.0i 1.28643i −0.765686 0.643214i \(-0.777600\pi\)
0.765686 0.643214i \(-0.222400\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 38880.0i 1.66090i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 44880.0i 1.82076i 0.413769 + 0.910382i \(0.364212\pi\)
−0.413769 + 0.910382i \(0.635788\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −14336.0 −0.560000
\(161\) 0 0
\(162\) −26244.0 −1.00000
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) −24304.0 + 11520.0i −0.903629 + 0.428316i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −29039.0 −1.01674
\(170\) 26880.0i 0.930104i
\(171\) 0 0
\(172\) 0 0
\(173\) 49042.0 1.63861 0.819306 0.573357i \(-0.194359\pi\)
0.819306 + 0.573357i \(0.194359\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 49920.0i 1.57556i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −18144.0 −0.560000
\(181\) 13680.0i 0.417570i −0.977962 0.208785i \(-0.933049\pi\)
0.977962 0.208785i \(-0.0669508\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −30268.0 −0.884383
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 63840.0i 1.71387i 0.515423 + 0.856936i \(0.327635\pi\)
−0.515423 + 0.856936i \(0.672365\pi\)
\(194\) 74880.0i 1.98958i
\(195\) 0 0
\(196\) −38416.0 −1.00000
\(197\) 74482.0 1.91919 0.959597 0.281378i \(-0.0907915\pi\)
0.959597 + 0.281378i \(0.0907915\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 27456.0 0.686400
\(201\) 0 0
\(202\) 31680.0i 0.776394i
\(203\) 0 0
\(204\) 0 0
\(205\) −21266.0 + 10080.0i −0.506032 + 0.239857i
\(206\) 0 0
\(207\) 0 0
\(208\) 61440.0i 1.42012i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 80640.0i 1.79423i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 87360.0i 1.83823i
\(219\) 0 0
\(220\) 0 0
\(221\) 115200. 2.35867
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 34749.0 0.686400
\(226\) −98552.0 −1.92952
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 53040.0i 1.01142i −0.862703 0.505711i \(-0.831230\pi\)
0.862703 0.505711i \(-0.168770\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 107520.i 1.99762i
\(233\) 87360.0i 1.60917i 0.593840 + 0.804583i \(0.297611\pi\)
−0.593840 + 0.804583i \(0.702389\pi\)
\(234\) 77760.0i 1.42012i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 58562.0 1.00828 0.504141 0.863621i \(-0.331809\pi\)
0.504141 + 0.863621i \(0.331809\pi\)
\(242\) 58564.0 1.00000
\(243\) 0 0
\(244\) −111328. −1.86993
\(245\) −33614.0 −0.560000
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 59024.0 0.944384
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 65536.0 1.00000
\(257\) 32640.0i 0.494179i −0.968993 0.247089i \(-0.920526\pi\)
0.968993 0.247089i \(-0.0794741\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 53760.0i 0.795266i
\(261\) 136080.i 1.99762i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 70560.0i 1.00477i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −125678. −1.73682 −0.868410 0.495847i \(-0.834858\pi\)
−0.868410 + 0.495847i \(0.834858\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 122880.i 1.66090i
\(273\) 0 0
\(274\) 147840.i 1.96920i
\(275\) 0 0
\(276\) 0 0
\(277\) 100558. 1.31056 0.655280 0.755386i \(-0.272551\pi\)
0.655280 + 0.755386i \(0.272551\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 147840.i 1.87232i −0.351579 0.936158i \(-0.614355\pi\)
0.351579 0.936158i \(-0.385645\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 82944.0 1.00000
\(289\) −146879. −1.75859
\(290\) 94080.0i 1.11867i
\(291\) 0 0
\(292\) −23072.0 −0.270595
\(293\) 77520.0i 0.902981i 0.892276 + 0.451490i \(0.149107\pi\)
−0.892276 + 0.451490i \(0.850893\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 138368. 1.57925
\(297\) 0 0
\(298\) 114240.i 1.28643i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −97412.0 −1.04716
\(306\) 155520.i 1.66090i
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 31200.0i 0.318468i −0.987241 0.159234i \(-0.949098\pi\)
0.987241 0.159234i \(-0.0509024\pi\)
\(314\) 179520.i 1.82076i
\(315\) 0 0
\(316\) 0 0
\(317\) 92400.0i 0.919504i −0.888047 0.459752i \(-0.847938\pi\)
0.888047 0.459752i \(-0.152062\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 57344.0 0.560000
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 104976. 1.00000
\(325\) 102960.i 0.974769i
\(326\) 0 0
\(327\) 0 0
\(328\) 97216.0 46080.0i 0.903629 0.428316i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 175122. 1.57925
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 104638. 0.921361 0.460680 0.887566i \(-0.347605\pi\)
0.460680 + 0.887566i \(0.347605\pi\)
\(338\) 116156. 1.01674
\(339\) 0 0
\(340\) 107520.i 0.930104i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −196168. −1.63861
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −114002. −0.935969 −0.467985 0.883737i \(-0.655020\pi\)
−0.467985 + 0.883737i \(0.655020\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 46718.0 0.374917 0.187458 0.982273i \(-0.439975\pi\)
0.187458 + 0.982273i \(0.439975\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 199680.i 1.57556i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 72576.0 0.560000
\(361\) −130321. −1.00000
\(362\) 54720.0i 0.417570i
\(363\) 0 0
\(364\) 0 0
\(365\) −20188.0 −0.151533
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 123039. 58320.0i 0.903629 0.428316i
\(370\) 121072. 0.884383
\(371\) 0 0
\(372\) 0 0
\(373\) 24242.0 0.174241 0.0871206 0.996198i \(-0.472233\pi\)
0.0871206 + 0.996198i \(0.472233\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −403200. −2.83686
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 255360.i 1.71387i
\(387\) 0 0
\(388\) 299520.i 1.98958i
\(389\) −159758. −1.05576 −0.527878 0.849320i \(-0.677012\pi\)
−0.527878 + 0.849320i \(0.677012\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 153664. 1.00000
\(393\) 0 0
\(394\) −297928. −1.91919
\(395\) 0 0
\(396\) 0 0
\(397\) 296400.i 1.88060i −0.340342 0.940302i \(-0.610543\pi\)
0.340342 0.940302i \(-0.389457\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −109824. −0.686400
\(401\) −315202. −1.96020 −0.980100 0.198506i \(-0.936391\pi\)
−0.980100 + 0.198506i \(0.936391\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 126720.i 0.776394i
\(405\) 91854.0 0.560000
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −276962. −1.65567 −0.827835 0.560972i \(-0.810427\pi\)
−0.827835 + 0.560972i \(0.810427\pi\)
\(410\) 85064.0 40320.0i 0.506032 0.239857i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 245760.i 1.42012i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 48720.0i 0.274880i −0.990510 0.137440i \(-0.956113\pi\)
0.990510 0.137440i \(-0.0438874\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 322560.i 1.79423i
\(425\) 205920.i 1.14004i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −290878. −1.55144 −0.775720 0.631077i \(-0.782613\pi\)
−0.775720 + 0.631077i \(0.782613\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 349440.i 1.83823i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 194481. 1.00000
\(442\) −460800. −2.35867
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 174720.i 0.882313i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 89602.0 0.444452 0.222226 0.974995i \(-0.428668\pi\)
0.222226 + 0.974995i \(0.428668\pi\)
\(450\) −138996. −0.686400
\(451\) 0 0
\(452\) 394208. 1.92952
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 285600.i 1.36750i −0.729719 0.683748i \(-0.760349\pi\)
0.729719 0.683748i \(-0.239651\pi\)
\(458\) 212160.i 1.01142i
\(459\) 0 0
\(460\) 0 0
\(461\) 152558. 0.717849 0.358925 0.933367i \(-0.383144\pi\)
0.358925 + 0.933367i \(0.383144\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 430080.i 1.99762i
\(465\) 0 0
\(466\) 349440.i 1.60917i
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 311040.i 1.42012i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 408240.i 1.79423i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 518880.i 2.24273i
\(482\) −234248. −1.00828
\(483\) 0 0
\(484\) −234256. −1.00000
\(485\) 262080.i 1.11417i
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 445312. 1.86993
\(489\) 0 0
\(490\) 134456. 0.560000
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 806400. 3.31785
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) −236096. −0.944384
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 110880.i 0.434781i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 403920.i 1.55905i 0.626372 + 0.779525i \(0.284539\pi\)
−0.626372 + 0.779525i \(0.715461\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −262144. −1.00000
\(513\) 0 0
\(514\) 130560.i 0.494179i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 215040.i 0.795266i
\(521\) 491040.i 1.80901i −0.426461 0.904506i \(-0.640240\pi\)
0.426461 0.904506i \(-0.359760\pi\)
\(522\) 544320.i 1.99762i
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 279841. 1.00000
\(530\) 282240.i 1.00477i
\(531\) 0 0
\(532\) 0 0
\(533\) 172800. + 364560.i 0.608260 + 1.28326i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 502712. 1.73682
\(539\) 0 0
\(540\) 0 0
\(541\) 120238. 0.410816 0.205408 0.978676i \(-0.434148\pi\)
0.205408 + 0.978676i \(0.434148\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 491520.i 1.66090i
\(545\) 305760.i 1.02941i
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 591360.i 1.96920i
\(549\) 563598. 1.86993
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −402232. −1.31056
\(555\) 0 0
\(556\) 0 0
\(557\) 351120.i 1.13174i 0.824496 + 0.565868i \(0.191459\pi\)
−0.824496 + 0.565868i \(0.808541\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 591360.i 1.87232i
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 344932. 1.08053
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 434078. 1.34074 0.670368 0.742029i \(-0.266136\pi\)
0.670368 + 0.742029i \(0.266136\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −331776. −1.00000
\(577\) 110400.i 0.331602i −0.986159 0.165801i \(-0.946979\pi\)
0.986159 0.165801i \(-0.0530210\pi\)
\(578\) 587516. 1.75859
\(579\) 0 0
\(580\) 376320.i 1.11867i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 92288.0 0.270595
\(585\) 272160.i 0.795266i
\(586\) 310080.i 0.902981i
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −553472. −1.57925
\(593\) 684480.i 1.94649i 0.229777 + 0.973243i \(0.426200\pi\)
−0.229777 + 0.973243i \(0.573800\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 456960.i 1.28643i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 528960.i 1.46445i 0.681064 + 0.732224i \(0.261518\pi\)
−0.681064 + 0.732224i \(0.738482\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −204974. −0.560000
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 389648. 1.04716
\(611\) 0 0
\(612\) 622080.i 1.66090i
\(613\) 746638. 1.98696 0.993480 0.114006i \(-0.0363684\pi\)
0.993480 + 0.114006i \(0.0363684\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −717278. −1.88416 −0.942079 0.335392i \(-0.891131\pi\)
−0.942079 + 0.335392i \(0.891131\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 61541.0 0.157545
\(626\) 124800.i 0.318468i
\(627\) 0 0
\(628\) 718080.i 1.82076i
\(629\) 1.03776e6i 2.62298i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 369600.i 0.919504i
\(635\) 0 0
\(636\) 0 0
\(637\) 576240.i 1.42012i
\(638\) 0 0
\(639\) 0 0
\(640\) −229376. −0.560000
\(641\) 487200.i 1.18574i −0.805296 0.592872i \(-0.797994\pi\)
0.805296 0.592872i \(-0.202006\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −419904. −1.00000
\(649\) 0 0
\(650\) 411840.i 0.974769i
\(651\) 0 0
\(652\) 0 0
\(653\) 720720.i 1.69021i −0.534602 0.845104i \(-0.679538\pi\)
0.534602 0.845104i \(-0.320462\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −388864. + 184320.i −0.903629 + 0.428316i
\(657\) 116802. 0.270595
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −513842. −1.17605 −0.588026 0.808842i \(-0.700095\pi\)
−0.588026 + 0.808842i \(0.700095\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −700488. −1.57925
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 850080.i 1.87685i −0.345482 0.938425i \(-0.612285\pi\)
0.345482 0.938425i \(-0.387715\pi\)
\(674\) −418552. −0.921361
\(675\) 0 0
\(676\) −464624. −1.01674
\(677\) −905842. −1.97640 −0.988201 0.153165i \(-0.951053\pi\)
−0.988201 + 0.153165i \(0.951053\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 430080.i 0.930104i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 517440.i 1.10275i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.20960e6 −2.54802
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 784672. 1.63861
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −345600. 729120.i −0.711391 1.50084i
\(698\) 456008. 0.935969
\(699\) 0 0
\(700\) 0 0
\(701\) −712402. −1.44974 −0.724868 0.688887i \(-0.758099\pi\)
−0.724868 + 0.688887i \(0.758099\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −186872. −0.374917
\(707\) 0 0
\(708\) 0 0
\(709\) 683760.i 1.36023i 0.733107 + 0.680113i \(0.238069\pi\)
−0.733107 + 0.680113i \(0.761931\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 798720.i 1.57556i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −290304. −0.560000
\(721\) 0 0
\(722\) 521284. 1.00000
\(723\) 0 0
\(724\) 218880.i 0.417570i
\(725\) 720720.i 1.37117i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −531441. −1.00000
\(730\) 80752.0 0.151533
\(731\) 0 0
\(732\) 0 0
\(733\) 1.02792e6 1.91316 0.956582 0.291463i \(-0.0941421\pi\)
0.956582 + 0.291463i \(0.0941421\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −492156. + 233280.i −0.903629 + 0.428316i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) −484288. −0.884383
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 399840.i 0.720400i
\(746\) −96968.0 −0.174241
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 1.61280e6 2.83686
\(755\) 0 0
\(756\) 0 0
\(757\) 1.11384e6i 1.94371i −0.235584 0.971854i \(-0.575700\pi\)
0.235584 0.971854i \(-0.424300\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.15216e6 1.98949 0.994747 0.102362i \(-0.0326400\pi\)
0.994747 + 0.102362i \(0.0326400\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 544320.i 0.930104i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −257278. −0.435061 −0.217530 0.976054i \(-0.569800\pi\)
−0.217530 + 0.976054i \(0.569800\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.02144e6i 1.71387i
\(773\) 583440.i 0.976421i 0.872726 + 0.488211i \(0.162350\pi\)
−0.872726 + 0.488211i \(0.837650\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.19808e6i 1.98958i
\(777\) 0 0
\(778\) 639032. 1.05576
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −614656. −1.00000
\(785\) 628320.i 1.01963i
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 1.19171e6 1.91919
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.66992e6i 2.65552i
\(794\) 1.18560e6i 1.88060i
\(795\) 0 0
\(796\) 0 0
\(797\) −38318.0 −0.0603235 −0.0301617 0.999545i \(-0.509602\pi\)
−0.0301617 + 0.999545i \(0.509602\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 439296. 0.686400
\(801\) 1.01088e6i 1.57556i
\(802\) 1.26081e6 1.96020
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 506880.i 0.776394i
\(809\) 850080.i 1.29886i −0.760421 0.649431i \(-0.775007\pi\)
0.760421 0.649431i \(-0.224993\pi\)
\(810\) −367416. −0.560000
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 1.10785e6 1.65567
\(819\) 0 0
\(820\) −340256. + 161280.i −0.506032 + 0.239857i
\(821\) 611918. 0.907835 0.453917 0.891044i \(-0.350026\pi\)
0.453917 + 0.891044i \(0.350026\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −208082. −0.302779 −0.151389 0.988474i \(-0.548375\pi\)
−0.151389 + 0.988474i \(0.548375\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 983040.i 1.42012i
\(833\) 1.15248e6i 1.66090i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −2.11512e6 −2.99049
\(842\) 194880.i 0.274880i
\(843\) 0 0
\(844\) 0 0
\(845\) −406546. −0.569372
\(846\) 0 0
\(847\) 0 0
\(848\) 1.29024e6i 1.79423i
\(849\) 0 0
\(850\) 823680.i 1.14004i
\(851\) 0 0
\(852\) 0 0
\(853\) −1.28712e6 −1.76897 −0.884485 0.466569i \(-0.845490\pi\)
−0.884485 + 0.466569i \(0.845490\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.25360e6 −1.70686 −0.853430 0.521207i \(-0.825482\pi\)
−0.853430 + 0.521207i \(0.825482\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 686588. 0.917622
\(866\) 1.16351e6 1.55144
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 1.39776e6i 1.83823i
\(873\) 1.51632e6i 1.98958i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.05384e6 1.37018 0.685088 0.728460i \(-0.259764\pi\)
0.685088 + 0.728460i \(0.259764\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.00768e6 −1.29828 −0.649142 0.760667i \(-0.724872\pi\)
−0.649142 + 0.760667i \(0.724872\pi\)
\(882\) −777924. −1.00000
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 1.84320e6 2.35867
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 698880.i 0.882313i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −358408. −0.444452
\(899\) 0 0
\(900\) 555984. 0.686400
\(901\) 2.41920e6 2.98004
\(902\) 0 0
\(903\) 0 0
\(904\) −1.57683e6 −1.92952
\(905\) 191520.i 0.233839i
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 641520.i 0.776394i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.14240e6i 1.36750i
\(915\) 0 0
\(916\) 848640.i 1.01142i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −610232. −0.717849
\(923\) 0 0
\(924\) 0 0
\(925\) 927498. 1.08400
\(926\) 0 0
\(927\) 0 0
\(928\) 1.72032e6i 1.99762i
\(929\) 474720.i 0.550055i −0.961436 0.275027i \(-0.911313\pi\)
0.961436 0.275027i \(-0.0886870\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.39776e6i 1.60917i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 1.24416e6i 1.42012i
\(937\) 784320.i 0.893335i −0.894700 0.446667i \(-0.852611\pi\)
0.894700 0.446667i \(-0.147389\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 425362. 0.480374 0.240187 0.970727i \(-0.422791\pi\)
0.240187 + 0.970727i \(0.422791\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 346080.i 0.384277i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 303518. 0.334194 0.167097 0.985940i \(-0.446561\pi\)
0.167097 + 0.985940i \(0.446561\pi\)
\(954\) 1.63296e6i 1.79423i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 923521. 1.00000
\(962\) 2.07552e6i 2.24273i
\(963\) 0 0
\(964\) 936992. 1.00828
\(965\) 893760.i 0.959768i
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 937024. 1.00000
\(969\) 0 0
\(970\) 1.04832e6i 1.11417i
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −1.78125e6 −1.86993
\(977\) 937440.i 0.982097i 0.871132 + 0.491048i \(0.163386\pi\)
−0.871132 + 0.491048i \(0.836614\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −537824. −0.560000
\(981\) 1.76904e6i 1.83823i
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 1.04275e6 1.07475
\(986\) −3.22560e6 −3.31785
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.37640e6i 1.38470i 0.721564 + 0.692348i \(0.243424\pi\)
−0.721564 + 0.692348i \(0.756576\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 164.5.d.b.163.1 2
4.3 odd 2 CM 164.5.d.b.163.1 2
41.40 even 2 inner 164.5.d.b.163.2 yes 2
164.163 odd 2 inner 164.5.d.b.163.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
164.5.d.b.163.1 2 1.1 even 1 trivial
164.5.d.b.163.1 2 4.3 odd 2 CM
164.5.d.b.163.2 yes 2 41.40 even 2 inner
164.5.d.b.163.2 yes 2 164.163 odd 2 inner