Properties

Label 164.5.d.a
Level $164$
Weight $5$
Character orbit 164.d
Self dual yes
Analytic conductor $16.953$
Analytic rank $0$
Dimension $2$
CM discriminant -164
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [164,5,Mod(163,164)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(164, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("164.163");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 164 = 2^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 164.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.9526739458\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{41}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + ( - \beta - 11) q^{3} + 16 q^{4} + 6 \beta q^{5} + (4 \beta + 44) q^{6} + ( - \beta + 69) q^{7} - 64 q^{8} + (22 \beta + 81) q^{9} - 24 \beta q^{10} + ( - \beta - 171) q^{11} + ( - 16 \beta - 176) q^{12} + \cdots + ( - 3843 \beta - 14753) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 22 q^{3} + 32 q^{4} + 88 q^{6} + 138 q^{7} - 128 q^{8} + 162 q^{9} - 342 q^{11} - 352 q^{12} - 552 q^{14} - 492 q^{15} + 512 q^{16} - 648 q^{18} + 138 q^{19} - 1436 q^{21} + 1368 q^{22}+ \cdots - 29506 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/164\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(129\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
163.1
3.70156
−2.70156
−4.00000 −17.4031 16.0000 38.4187 69.6125 62.5969 −64.0000 221.869 −153.675
163.2 −4.00000 −4.59688 16.0000 −38.4187 18.3875 75.4031 −64.0000 −59.8687 153.675
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
164.d odd 2 1 CM by \(\Q(\sqrt{-41}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 164.5.d.a 2
4.b odd 2 1 164.5.d.c yes 2
41.b even 2 1 164.5.d.c yes 2
164.d odd 2 1 CM 164.5.d.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
164.5.d.a 2 1.a even 1 1 trivial
164.5.d.a 2 164.d odd 2 1 CM
164.5.d.c yes 2 4.b odd 2 1
164.5.d.c yes 2 41.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 22T_{3} + 80 \) acting on \(S_{5}^{\mathrm{new}}(164, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 22T + 80 \) Copy content Toggle raw display
$5$ \( T^{2} - 1476 \) Copy content Toggle raw display
$7$ \( T^{2} - 138T + 4720 \) Copy content Toggle raw display
$11$ \( T^{2} + 342T + 29200 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 138T - 251120 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 5858244 \) Copy content Toggle raw display
$41$ \( (T - 1681)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 5898 T + 7633840 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T - 5842)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 3222 T - 35111600 \) Copy content Toggle raw display
$71$ \( T^{2} - 11658 T + 17131120 \) Copy content Toggle raw display
$73$ \( T^{2} - 69503364 \) Copy content Toggle raw display
$79$ \( T^{2} + 6582 T - 56238800 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less