Properties

Label 164.1.j
Level $164$
Weight $1$
Character orbit 164.j
Rep. character $\chi_{164}(51,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $4$
Newform subspaces $1$
Sturm bound $21$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 164 = 2^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 164.j (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 164 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(21\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(164, [\chi])\).

Total New Old
Modular forms 12 12 0
Cusp forms 4 4 0
Eisenstein series 8 8 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - q^{2} - q^{4} - 2 q^{5} - q^{8} + 4 q^{9} - 2 q^{10} - 2 q^{13} - q^{16} - 2 q^{17} - q^{18} + 3 q^{20} - 3 q^{25} + 3 q^{26} - 2 q^{29} + 4 q^{32} + 3 q^{34} - q^{36} + 3 q^{37} - 2 q^{40}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(164, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
164.1.j.a 164.j 164.j $4$ $0.082$ \(\Q(\zeta_{10})\) $D_{5}$ \(\Q(\sqrt{-1}) \) None 164.1.j.a \(-1\) \(0\) \(-2\) \(0\) \(q-\zeta_{10}q^{2}+\zeta_{10}^{2}q^{4}+(-\zeta_{10}-\zeta_{10}^{3}+\cdots)q^{5}+\cdots\)