Properties

Label 1638.4.a.g.1.1
Level $1638$
Weight $4$
Character 1638.1
Self dual yes
Analytic conductor $96.645$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,4,Mod(1,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1638.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,0,4,12,0,7,-8,0,-24,50] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(96.6451285894\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1638.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +12.0000 q^{5} +7.00000 q^{7} -8.00000 q^{8} -24.0000 q^{10} +50.0000 q^{11} -13.0000 q^{13} -14.0000 q^{14} +16.0000 q^{16} +58.0000 q^{17} -40.0000 q^{19} +48.0000 q^{20} -100.000 q^{22} +64.0000 q^{23} +19.0000 q^{25} +26.0000 q^{26} +28.0000 q^{28} +110.000 q^{29} +124.000 q^{31} -32.0000 q^{32} -116.000 q^{34} +84.0000 q^{35} -50.0000 q^{37} +80.0000 q^{38} -96.0000 q^{40} -84.0000 q^{41} -12.0000 q^{43} +200.000 q^{44} -128.000 q^{46} +82.0000 q^{47} +49.0000 q^{49} -38.0000 q^{50} -52.0000 q^{52} +442.000 q^{53} +600.000 q^{55} -56.0000 q^{56} -220.000 q^{58} +618.000 q^{59} -278.000 q^{61} -248.000 q^{62} +64.0000 q^{64} -156.000 q^{65} +20.0000 q^{67} +232.000 q^{68} -168.000 q^{70} +390.000 q^{71} -2.00000 q^{73} +100.000 q^{74} -160.000 q^{76} +350.000 q^{77} -680.000 q^{79} +192.000 q^{80} +168.000 q^{82} -322.000 q^{83} +696.000 q^{85} +24.0000 q^{86} -400.000 q^{88} -968.000 q^{89} -91.0000 q^{91} +256.000 q^{92} -164.000 q^{94} -480.000 q^{95} +1022.00 q^{97} -98.0000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 12.0000 1.07331 0.536656 0.843801i \(-0.319687\pi\)
0.536656 + 0.843801i \(0.319687\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −24.0000 −0.758947
\(11\) 50.0000 1.37051 0.685253 0.728305i \(-0.259692\pi\)
0.685253 + 0.728305i \(0.259692\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) −14.0000 −0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 58.0000 0.827474 0.413737 0.910396i \(-0.364223\pi\)
0.413737 + 0.910396i \(0.364223\pi\)
\(18\) 0 0
\(19\) −40.0000 −0.482980 −0.241490 0.970403i \(-0.577636\pi\)
−0.241490 + 0.970403i \(0.577636\pi\)
\(20\) 48.0000 0.536656
\(21\) 0 0
\(22\) −100.000 −0.969094
\(23\) 64.0000 0.580214 0.290107 0.956994i \(-0.406309\pi\)
0.290107 + 0.956994i \(0.406309\pi\)
\(24\) 0 0
\(25\) 19.0000 0.152000
\(26\) 26.0000 0.196116
\(27\) 0 0
\(28\) 28.0000 0.188982
\(29\) 110.000 0.704362 0.352181 0.935932i \(-0.385440\pi\)
0.352181 + 0.935932i \(0.385440\pi\)
\(30\) 0 0
\(31\) 124.000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −116.000 −0.585113
\(35\) 84.0000 0.405674
\(36\) 0 0
\(37\) −50.0000 −0.222161 −0.111080 0.993811i \(-0.535431\pi\)
−0.111080 + 0.993811i \(0.535431\pi\)
\(38\) 80.0000 0.341519
\(39\) 0 0
\(40\) −96.0000 −0.379473
\(41\) −84.0000 −0.319966 −0.159983 0.987120i \(-0.551144\pi\)
−0.159983 + 0.987120i \(0.551144\pi\)
\(42\) 0 0
\(43\) −12.0000 −0.0425577 −0.0212789 0.999774i \(-0.506774\pi\)
−0.0212789 + 0.999774i \(0.506774\pi\)
\(44\) 200.000 0.685253
\(45\) 0 0
\(46\) −128.000 −0.410273
\(47\) 82.0000 0.254488 0.127244 0.991871i \(-0.459387\pi\)
0.127244 + 0.991871i \(0.459387\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −38.0000 −0.107480
\(51\) 0 0
\(52\) −52.0000 −0.138675
\(53\) 442.000 1.14554 0.572768 0.819718i \(-0.305870\pi\)
0.572768 + 0.819718i \(0.305870\pi\)
\(54\) 0 0
\(55\) 600.000 1.47098
\(56\) −56.0000 −0.133631
\(57\) 0 0
\(58\) −220.000 −0.498059
\(59\) 618.000 1.36367 0.681837 0.731504i \(-0.261181\pi\)
0.681837 + 0.731504i \(0.261181\pi\)
\(60\) 0 0
\(61\) −278.000 −0.583512 −0.291756 0.956493i \(-0.594240\pi\)
−0.291756 + 0.956493i \(0.594240\pi\)
\(62\) −248.000 −0.508001
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −156.000 −0.297683
\(66\) 0 0
\(67\) 20.0000 0.0364685 0.0182342 0.999834i \(-0.494196\pi\)
0.0182342 + 0.999834i \(0.494196\pi\)
\(68\) 232.000 0.413737
\(69\) 0 0
\(70\) −168.000 −0.286855
\(71\) 390.000 0.651894 0.325947 0.945388i \(-0.394317\pi\)
0.325947 + 0.945388i \(0.394317\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.00320661 −0.00160330 0.999999i \(-0.500510\pi\)
−0.00160330 + 0.999999i \(0.500510\pi\)
\(74\) 100.000 0.157091
\(75\) 0 0
\(76\) −160.000 −0.241490
\(77\) 350.000 0.518003
\(78\) 0 0
\(79\) −680.000 −0.968430 −0.484215 0.874949i \(-0.660895\pi\)
−0.484215 + 0.874949i \(0.660895\pi\)
\(80\) 192.000 0.268328
\(81\) 0 0
\(82\) 168.000 0.226250
\(83\) −322.000 −0.425832 −0.212916 0.977070i \(-0.568296\pi\)
−0.212916 + 0.977070i \(0.568296\pi\)
\(84\) 0 0
\(85\) 696.000 0.888139
\(86\) 24.0000 0.0300929
\(87\) 0 0
\(88\) −400.000 −0.484547
\(89\) −968.000 −1.15290 −0.576448 0.817134i \(-0.695562\pi\)
−0.576448 + 0.817134i \(0.695562\pi\)
\(90\) 0 0
\(91\) −91.0000 −0.104828
\(92\) 256.000 0.290107
\(93\) 0 0
\(94\) −164.000 −0.179950
\(95\) −480.000 −0.518389
\(96\) 0 0
\(97\) 1022.00 1.06978 0.534889 0.844923i \(-0.320354\pi\)
0.534889 + 0.844923i \(0.320354\pi\)
\(98\) −98.0000 −0.101015
\(99\) 0 0
\(100\) 76.0000 0.0760000
\(101\) −54.0000 −0.0532000 −0.0266000 0.999646i \(-0.508468\pi\)
−0.0266000 + 0.999646i \(0.508468\pi\)
\(102\) 0 0
\(103\) 1416.00 1.35459 0.677294 0.735712i \(-0.263152\pi\)
0.677294 + 0.735712i \(0.263152\pi\)
\(104\) 104.000 0.0980581
\(105\) 0 0
\(106\) −884.000 −0.810016
\(107\) −1252.00 −1.13117 −0.565586 0.824689i \(-0.691350\pi\)
−0.565586 + 0.824689i \(0.691350\pi\)
\(108\) 0 0
\(109\) 930.000 0.817228 0.408614 0.912707i \(-0.366012\pi\)
0.408614 + 0.912707i \(0.366012\pi\)
\(110\) −1200.00 −1.04014
\(111\) 0 0
\(112\) 112.000 0.0944911
\(113\) 1034.00 0.860801 0.430401 0.902638i \(-0.358372\pi\)
0.430401 + 0.902638i \(0.358372\pi\)
\(114\) 0 0
\(115\) 768.000 0.622751
\(116\) 440.000 0.352181
\(117\) 0 0
\(118\) −1236.00 −0.964263
\(119\) 406.000 0.312756
\(120\) 0 0
\(121\) 1169.00 0.878287
\(122\) 556.000 0.412606
\(123\) 0 0
\(124\) 496.000 0.359211
\(125\) −1272.00 −0.910169
\(126\) 0 0
\(127\) −2280.00 −1.59305 −0.796525 0.604606i \(-0.793331\pi\)
−0.796525 + 0.604606i \(0.793331\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 312.000 0.210494
\(131\) 1552.00 1.03511 0.517553 0.855651i \(-0.326843\pi\)
0.517553 + 0.855651i \(0.326843\pi\)
\(132\) 0 0
\(133\) −280.000 −0.182549
\(134\) −40.0000 −0.0257871
\(135\) 0 0
\(136\) −464.000 −0.292556
\(137\) −48.0000 −0.0299337 −0.0149668 0.999888i \(-0.504764\pi\)
−0.0149668 + 0.999888i \(0.504764\pi\)
\(138\) 0 0
\(139\) 28.0000 0.0170858 0.00854291 0.999964i \(-0.497281\pi\)
0.00854291 + 0.999964i \(0.497281\pi\)
\(140\) 336.000 0.202837
\(141\) 0 0
\(142\) −780.000 −0.460959
\(143\) −650.000 −0.380110
\(144\) 0 0
\(145\) 1320.00 0.756000
\(146\) 4.00000 0.00226741
\(147\) 0 0
\(148\) −200.000 −0.111080
\(149\) −2596.00 −1.42733 −0.713666 0.700486i \(-0.752967\pi\)
−0.713666 + 0.700486i \(0.752967\pi\)
\(150\) 0 0
\(151\) −2052.00 −1.10589 −0.552945 0.833218i \(-0.686496\pi\)
−0.552945 + 0.833218i \(0.686496\pi\)
\(152\) 320.000 0.170759
\(153\) 0 0
\(154\) −700.000 −0.366283
\(155\) 1488.00 0.771091
\(156\) 0 0
\(157\) −2522.00 −1.28202 −0.641011 0.767532i \(-0.721485\pi\)
−0.641011 + 0.767532i \(0.721485\pi\)
\(158\) 1360.00 0.684783
\(159\) 0 0
\(160\) −384.000 −0.189737
\(161\) 448.000 0.219300
\(162\) 0 0
\(163\) −848.000 −0.407488 −0.203744 0.979024i \(-0.565311\pi\)
−0.203744 + 0.979024i \(0.565311\pi\)
\(164\) −336.000 −0.159983
\(165\) 0 0
\(166\) 644.000 0.301109
\(167\) −854.000 −0.395716 −0.197858 0.980231i \(-0.563398\pi\)
−0.197858 + 0.980231i \(0.563398\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) −1392.00 −0.628009
\(171\) 0 0
\(172\) −48.0000 −0.0212789
\(173\) −2046.00 −0.899159 −0.449579 0.893240i \(-0.648426\pi\)
−0.449579 + 0.893240i \(0.648426\pi\)
\(174\) 0 0
\(175\) 133.000 0.0574506
\(176\) 800.000 0.342627
\(177\) 0 0
\(178\) 1936.00 0.815221
\(179\) 1688.00 0.704844 0.352422 0.935841i \(-0.385358\pi\)
0.352422 + 0.935841i \(0.385358\pi\)
\(180\) 0 0
\(181\) −266.000 −0.109235 −0.0546177 0.998507i \(-0.517394\pi\)
−0.0546177 + 0.998507i \(0.517394\pi\)
\(182\) 182.000 0.0741249
\(183\) 0 0
\(184\) −512.000 −0.205137
\(185\) −600.000 −0.238448
\(186\) 0 0
\(187\) 2900.00 1.13406
\(188\) 328.000 0.127244
\(189\) 0 0
\(190\) 960.000 0.366556
\(191\) −2876.00 −1.08953 −0.544765 0.838589i \(-0.683381\pi\)
−0.544765 + 0.838589i \(0.683381\pi\)
\(192\) 0 0
\(193\) 3058.00 1.14052 0.570258 0.821466i \(-0.306843\pi\)
0.570258 + 0.821466i \(0.306843\pi\)
\(194\) −2044.00 −0.756447
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) 2952.00 1.06762 0.533810 0.845604i \(-0.320760\pi\)
0.533810 + 0.845604i \(0.320760\pi\)
\(198\) 0 0
\(199\) 3064.00 1.09146 0.545732 0.837960i \(-0.316252\pi\)
0.545732 + 0.837960i \(0.316252\pi\)
\(200\) −152.000 −0.0537401
\(201\) 0 0
\(202\) 108.000 0.0376181
\(203\) 770.000 0.266224
\(204\) 0 0
\(205\) −1008.00 −0.343423
\(206\) −2832.00 −0.957839
\(207\) 0 0
\(208\) −208.000 −0.0693375
\(209\) −2000.00 −0.661928
\(210\) 0 0
\(211\) 604.000 0.197067 0.0985334 0.995134i \(-0.468585\pi\)
0.0985334 + 0.995134i \(0.468585\pi\)
\(212\) 1768.00 0.572768
\(213\) 0 0
\(214\) 2504.00 0.799859
\(215\) −144.000 −0.0456778
\(216\) 0 0
\(217\) 868.000 0.271538
\(218\) −1860.00 −0.577867
\(219\) 0 0
\(220\) 2400.00 0.735491
\(221\) −754.000 −0.229500
\(222\) 0 0
\(223\) 5628.00 1.69004 0.845020 0.534735i \(-0.179589\pi\)
0.845020 + 0.534735i \(0.179589\pi\)
\(224\) −224.000 −0.0668153
\(225\) 0 0
\(226\) −2068.00 −0.608678
\(227\) 1122.00 0.328061 0.164030 0.986455i \(-0.447551\pi\)
0.164030 + 0.986455i \(0.447551\pi\)
\(228\) 0 0
\(229\) 4426.00 1.27720 0.638599 0.769540i \(-0.279514\pi\)
0.638599 + 0.769540i \(0.279514\pi\)
\(230\) −1536.00 −0.440351
\(231\) 0 0
\(232\) −880.000 −0.249029
\(233\) −2190.00 −0.615758 −0.307879 0.951425i \(-0.599619\pi\)
−0.307879 + 0.951425i \(0.599619\pi\)
\(234\) 0 0
\(235\) 984.000 0.273145
\(236\) 2472.00 0.681837
\(237\) 0 0
\(238\) −812.000 −0.221152
\(239\) 1230.00 0.332896 0.166448 0.986050i \(-0.446770\pi\)
0.166448 + 0.986050i \(0.446770\pi\)
\(240\) 0 0
\(241\) −786.000 −0.210086 −0.105043 0.994468i \(-0.533498\pi\)
−0.105043 + 0.994468i \(0.533498\pi\)
\(242\) −2338.00 −0.621043
\(243\) 0 0
\(244\) −1112.00 −0.291756
\(245\) 588.000 0.153330
\(246\) 0 0
\(247\) 520.000 0.133955
\(248\) −992.000 −0.254000
\(249\) 0 0
\(250\) 2544.00 0.643587
\(251\) 280.000 0.0704121 0.0352061 0.999380i \(-0.488791\pi\)
0.0352061 + 0.999380i \(0.488791\pi\)
\(252\) 0 0
\(253\) 3200.00 0.795187
\(254\) 4560.00 1.12646
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 3806.00 0.923781 0.461891 0.886937i \(-0.347171\pi\)
0.461891 + 0.886937i \(0.347171\pi\)
\(258\) 0 0
\(259\) −350.000 −0.0839689
\(260\) −624.000 −0.148842
\(261\) 0 0
\(262\) −3104.00 −0.731930
\(263\) 3816.00 0.894694 0.447347 0.894360i \(-0.352369\pi\)
0.447347 + 0.894360i \(0.352369\pi\)
\(264\) 0 0
\(265\) 5304.00 1.22952
\(266\) 560.000 0.129082
\(267\) 0 0
\(268\) 80.0000 0.0182342
\(269\) 3026.00 0.685868 0.342934 0.939360i \(-0.388579\pi\)
0.342934 + 0.939360i \(0.388579\pi\)
\(270\) 0 0
\(271\) 2480.00 0.555901 0.277951 0.960595i \(-0.410345\pi\)
0.277951 + 0.960595i \(0.410345\pi\)
\(272\) 928.000 0.206869
\(273\) 0 0
\(274\) 96.0000 0.0211663
\(275\) 950.000 0.208317
\(276\) 0 0
\(277\) 3590.00 0.778708 0.389354 0.921088i \(-0.372698\pi\)
0.389354 + 0.921088i \(0.372698\pi\)
\(278\) −56.0000 −0.0120815
\(279\) 0 0
\(280\) −672.000 −0.143427
\(281\) −4832.00 −1.02581 −0.512906 0.858445i \(-0.671431\pi\)
−0.512906 + 0.858445i \(0.671431\pi\)
\(282\) 0 0
\(283\) −5700.00 −1.19728 −0.598639 0.801019i \(-0.704292\pi\)
−0.598639 + 0.801019i \(0.704292\pi\)
\(284\) 1560.00 0.325947
\(285\) 0 0
\(286\) 1300.00 0.268778
\(287\) −588.000 −0.120936
\(288\) 0 0
\(289\) −1549.00 −0.315286
\(290\) −2640.00 −0.534573
\(291\) 0 0
\(292\) −8.00000 −0.00160330
\(293\) 6384.00 1.27289 0.636446 0.771321i \(-0.280404\pi\)
0.636446 + 0.771321i \(0.280404\pi\)
\(294\) 0 0
\(295\) 7416.00 1.46365
\(296\) 400.000 0.0785457
\(297\) 0 0
\(298\) 5192.00 1.00928
\(299\) −832.000 −0.160922
\(300\) 0 0
\(301\) −84.0000 −0.0160853
\(302\) 4104.00 0.781982
\(303\) 0 0
\(304\) −640.000 −0.120745
\(305\) −3336.00 −0.626291
\(306\) 0 0
\(307\) 3836.00 0.713134 0.356567 0.934270i \(-0.383947\pi\)
0.356567 + 0.934270i \(0.383947\pi\)
\(308\) 1400.00 0.259001
\(309\) 0 0
\(310\) −2976.00 −0.545243
\(311\) −6116.00 −1.11513 −0.557567 0.830132i \(-0.688265\pi\)
−0.557567 + 0.830132i \(0.688265\pi\)
\(312\) 0 0
\(313\) −642.000 −0.115936 −0.0579680 0.998318i \(-0.518462\pi\)
−0.0579680 + 0.998318i \(0.518462\pi\)
\(314\) 5044.00 0.906527
\(315\) 0 0
\(316\) −2720.00 −0.484215
\(317\) 9136.00 1.61870 0.809352 0.587325i \(-0.199819\pi\)
0.809352 + 0.587325i \(0.199819\pi\)
\(318\) 0 0
\(319\) 5500.00 0.965332
\(320\) 768.000 0.134164
\(321\) 0 0
\(322\) −896.000 −0.155069
\(323\) −2320.00 −0.399654
\(324\) 0 0
\(325\) −247.000 −0.0421572
\(326\) 1696.00 0.288137
\(327\) 0 0
\(328\) 672.000 0.113125
\(329\) 574.000 0.0961874
\(330\) 0 0
\(331\) −3060.00 −0.508135 −0.254068 0.967186i \(-0.581769\pi\)
−0.254068 + 0.967186i \(0.581769\pi\)
\(332\) −1288.00 −0.212916
\(333\) 0 0
\(334\) 1708.00 0.279813
\(335\) 240.000 0.0391421
\(336\) 0 0
\(337\) 4734.00 0.765215 0.382607 0.923911i \(-0.375026\pi\)
0.382607 + 0.923911i \(0.375026\pi\)
\(338\) −338.000 −0.0543928
\(339\) 0 0
\(340\) 2784.00 0.444069
\(341\) 6200.00 0.984601
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 96.0000 0.0150464
\(345\) 0 0
\(346\) 4092.00 0.635801
\(347\) 11096.0 1.71661 0.858306 0.513138i \(-0.171517\pi\)
0.858306 + 0.513138i \(0.171517\pi\)
\(348\) 0 0
\(349\) 2366.00 0.362891 0.181446 0.983401i \(-0.441922\pi\)
0.181446 + 0.983401i \(0.441922\pi\)
\(350\) −266.000 −0.0406237
\(351\) 0 0
\(352\) −1600.00 −0.242274
\(353\) 11076.0 1.67002 0.835008 0.550237i \(-0.185463\pi\)
0.835008 + 0.550237i \(0.185463\pi\)
\(354\) 0 0
\(355\) 4680.00 0.699686
\(356\) −3872.00 −0.576448
\(357\) 0 0
\(358\) −3376.00 −0.498400
\(359\) 6406.00 0.941771 0.470885 0.882194i \(-0.343935\pi\)
0.470885 + 0.882194i \(0.343935\pi\)
\(360\) 0 0
\(361\) −5259.00 −0.766730
\(362\) 532.000 0.0772412
\(363\) 0 0
\(364\) −364.000 −0.0524142
\(365\) −24.0000 −0.00344169
\(366\) 0 0
\(367\) 2000.00 0.284466 0.142233 0.989833i \(-0.454572\pi\)
0.142233 + 0.989833i \(0.454572\pi\)
\(368\) 1024.00 0.145054
\(369\) 0 0
\(370\) 1200.00 0.168608
\(371\) 3094.00 0.432972
\(372\) 0 0
\(373\) −3662.00 −0.508341 −0.254170 0.967159i \(-0.581802\pi\)
−0.254170 + 0.967159i \(0.581802\pi\)
\(374\) −5800.00 −0.801901
\(375\) 0 0
\(376\) −656.000 −0.0899750
\(377\) −1430.00 −0.195355
\(378\) 0 0
\(379\) 6008.00 0.814275 0.407138 0.913367i \(-0.366527\pi\)
0.407138 + 0.913367i \(0.366527\pi\)
\(380\) −1920.00 −0.259195
\(381\) 0 0
\(382\) 5752.00 0.770413
\(383\) −11202.0 −1.49451 −0.747253 0.664540i \(-0.768627\pi\)
−0.747253 + 0.664540i \(0.768627\pi\)
\(384\) 0 0
\(385\) 4200.00 0.555979
\(386\) −6116.00 −0.806467
\(387\) 0 0
\(388\) 4088.00 0.534889
\(389\) 10858.0 1.41522 0.707612 0.706601i \(-0.249772\pi\)
0.707612 + 0.706601i \(0.249772\pi\)
\(390\) 0 0
\(391\) 3712.00 0.480112
\(392\) −392.000 −0.0505076
\(393\) 0 0
\(394\) −5904.00 −0.754922
\(395\) −8160.00 −1.03943
\(396\) 0 0
\(397\) −5850.00 −0.739554 −0.369777 0.929120i \(-0.620566\pi\)
−0.369777 + 0.929120i \(0.620566\pi\)
\(398\) −6128.00 −0.771781
\(399\) 0 0
\(400\) 304.000 0.0380000
\(401\) 11404.0 1.42017 0.710086 0.704115i \(-0.248656\pi\)
0.710086 + 0.704115i \(0.248656\pi\)
\(402\) 0 0
\(403\) −1612.00 −0.199254
\(404\) −216.000 −0.0266000
\(405\) 0 0
\(406\) −1540.00 −0.188249
\(407\) −2500.00 −0.304473
\(408\) 0 0
\(409\) −10194.0 −1.23242 −0.616211 0.787581i \(-0.711333\pi\)
−0.616211 + 0.787581i \(0.711333\pi\)
\(410\) 2016.00 0.242837
\(411\) 0 0
\(412\) 5664.00 0.677294
\(413\) 4326.00 0.515420
\(414\) 0 0
\(415\) −3864.00 −0.457051
\(416\) 416.000 0.0490290
\(417\) 0 0
\(418\) 4000.00 0.468054
\(419\) −3192.00 −0.372170 −0.186085 0.982534i \(-0.559580\pi\)
−0.186085 + 0.982534i \(0.559580\pi\)
\(420\) 0 0
\(421\) 10474.0 1.21252 0.606261 0.795266i \(-0.292669\pi\)
0.606261 + 0.795266i \(0.292669\pi\)
\(422\) −1208.00 −0.139347
\(423\) 0 0
\(424\) −3536.00 −0.405008
\(425\) 1102.00 0.125776
\(426\) 0 0
\(427\) −1946.00 −0.220547
\(428\) −5008.00 −0.565586
\(429\) 0 0
\(430\) 288.000 0.0322991
\(431\) −7902.00 −0.883123 −0.441561 0.897231i \(-0.645575\pi\)
−0.441561 + 0.897231i \(0.645575\pi\)
\(432\) 0 0
\(433\) −16954.0 −1.88166 −0.940828 0.338884i \(-0.889951\pi\)
−0.940828 + 0.338884i \(0.889951\pi\)
\(434\) −1736.00 −0.192006
\(435\) 0 0
\(436\) 3720.00 0.408614
\(437\) −2560.00 −0.280232
\(438\) 0 0
\(439\) 13960.0 1.51771 0.758855 0.651260i \(-0.225759\pi\)
0.758855 + 0.651260i \(0.225759\pi\)
\(440\) −4800.00 −0.520071
\(441\) 0 0
\(442\) 1508.00 0.162281
\(443\) 1884.00 0.202058 0.101029 0.994883i \(-0.467787\pi\)
0.101029 + 0.994883i \(0.467787\pi\)
\(444\) 0 0
\(445\) −11616.0 −1.23742
\(446\) −11256.0 −1.19504
\(447\) 0 0
\(448\) 448.000 0.0472456
\(449\) 11436.0 1.20200 0.601000 0.799249i \(-0.294769\pi\)
0.601000 + 0.799249i \(0.294769\pi\)
\(450\) 0 0
\(451\) −4200.00 −0.438515
\(452\) 4136.00 0.430401
\(453\) 0 0
\(454\) −2244.00 −0.231974
\(455\) −1092.00 −0.112514
\(456\) 0 0
\(457\) 11486.0 1.17569 0.587847 0.808972i \(-0.299976\pi\)
0.587847 + 0.808972i \(0.299976\pi\)
\(458\) −8852.00 −0.903115
\(459\) 0 0
\(460\) 3072.00 0.311376
\(461\) −11172.0 −1.12870 −0.564351 0.825535i \(-0.690874\pi\)
−0.564351 + 0.825535i \(0.690874\pi\)
\(462\) 0 0
\(463\) −11688.0 −1.17319 −0.586595 0.809880i \(-0.699532\pi\)
−0.586595 + 0.809880i \(0.699532\pi\)
\(464\) 1760.00 0.176090
\(465\) 0 0
\(466\) 4380.00 0.435407
\(467\) 2448.00 0.242569 0.121285 0.992618i \(-0.461299\pi\)
0.121285 + 0.992618i \(0.461299\pi\)
\(468\) 0 0
\(469\) 140.000 0.0137838
\(470\) −1968.00 −0.193143
\(471\) 0 0
\(472\) −4944.00 −0.482131
\(473\) −600.000 −0.0583256
\(474\) 0 0
\(475\) −760.000 −0.0734130
\(476\) 1624.00 0.156378
\(477\) 0 0
\(478\) −2460.00 −0.235393
\(479\) −698.000 −0.0665813 −0.0332906 0.999446i \(-0.510599\pi\)
−0.0332906 + 0.999446i \(0.510599\pi\)
\(480\) 0 0
\(481\) 650.000 0.0616163
\(482\) 1572.00 0.148553
\(483\) 0 0
\(484\) 4676.00 0.439144
\(485\) 12264.0 1.14821
\(486\) 0 0
\(487\) −8156.00 −0.758899 −0.379449 0.925213i \(-0.623887\pi\)
−0.379449 + 0.925213i \(0.623887\pi\)
\(488\) 2224.00 0.206303
\(489\) 0 0
\(490\) −1176.00 −0.108421
\(491\) 10484.0 0.963618 0.481809 0.876276i \(-0.339980\pi\)
0.481809 + 0.876276i \(0.339980\pi\)
\(492\) 0 0
\(493\) 6380.00 0.582841
\(494\) −1040.00 −0.0947203
\(495\) 0 0
\(496\) 1984.00 0.179605
\(497\) 2730.00 0.246393
\(498\) 0 0
\(499\) −6980.00 −0.626188 −0.313094 0.949722i \(-0.601365\pi\)
−0.313094 + 0.949722i \(0.601365\pi\)
\(500\) −5088.00 −0.455085
\(501\) 0 0
\(502\) −560.000 −0.0497889
\(503\) −5180.00 −0.459175 −0.229587 0.973288i \(-0.573738\pi\)
−0.229587 + 0.973288i \(0.573738\pi\)
\(504\) 0 0
\(505\) −648.000 −0.0571002
\(506\) −6400.00 −0.562282
\(507\) 0 0
\(508\) −9120.00 −0.796525
\(509\) −4860.00 −0.423214 −0.211607 0.977355i \(-0.567870\pi\)
−0.211607 + 0.977355i \(0.567870\pi\)
\(510\) 0 0
\(511\) −14.0000 −0.00121198
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −7612.00 −0.653212
\(515\) 16992.0 1.45390
\(516\) 0 0
\(517\) 4100.00 0.348777
\(518\) 700.000 0.0593750
\(519\) 0 0
\(520\) 1248.00 0.105247
\(521\) 17390.0 1.46232 0.731161 0.682205i \(-0.238979\pi\)
0.731161 + 0.682205i \(0.238979\pi\)
\(522\) 0 0
\(523\) −12556.0 −1.04978 −0.524891 0.851170i \(-0.675894\pi\)
−0.524891 + 0.851170i \(0.675894\pi\)
\(524\) 6208.00 0.517553
\(525\) 0 0
\(526\) −7632.00 −0.632645
\(527\) 7192.00 0.594475
\(528\) 0 0
\(529\) −8071.00 −0.663352
\(530\) −10608.0 −0.869400
\(531\) 0 0
\(532\) −1120.00 −0.0912747
\(533\) 1092.00 0.0887425
\(534\) 0 0
\(535\) −15024.0 −1.21410
\(536\) −160.000 −0.0128936
\(537\) 0 0
\(538\) −6052.00 −0.484982
\(539\) 2450.00 0.195787
\(540\) 0 0
\(541\) −19398.0 −1.54156 −0.770781 0.637100i \(-0.780134\pi\)
−0.770781 + 0.637100i \(0.780134\pi\)
\(542\) −4960.00 −0.393082
\(543\) 0 0
\(544\) −1856.00 −0.146278
\(545\) 11160.0 0.877141
\(546\) 0 0
\(547\) −9308.00 −0.727571 −0.363786 0.931483i \(-0.618516\pi\)
−0.363786 + 0.931483i \(0.618516\pi\)
\(548\) −192.000 −0.0149668
\(549\) 0 0
\(550\) −1900.00 −0.147302
\(551\) −4400.00 −0.340193
\(552\) 0 0
\(553\) −4760.00 −0.366032
\(554\) −7180.00 −0.550630
\(555\) 0 0
\(556\) 112.000 0.00854291
\(557\) 19524.0 1.48520 0.742602 0.669733i \(-0.233592\pi\)
0.742602 + 0.669733i \(0.233592\pi\)
\(558\) 0 0
\(559\) 156.000 0.0118034
\(560\) 1344.00 0.101419
\(561\) 0 0
\(562\) 9664.00 0.725358
\(563\) 772.000 0.0577903 0.0288951 0.999582i \(-0.490801\pi\)
0.0288951 + 0.999582i \(0.490801\pi\)
\(564\) 0 0
\(565\) 12408.0 0.923909
\(566\) 11400.0 0.846604
\(567\) 0 0
\(568\) −3120.00 −0.230479
\(569\) 8226.00 0.606067 0.303033 0.952980i \(-0.402001\pi\)
0.303033 + 0.952980i \(0.402001\pi\)
\(570\) 0 0
\(571\) −11852.0 −0.868635 −0.434318 0.900760i \(-0.643010\pi\)
−0.434318 + 0.900760i \(0.643010\pi\)
\(572\) −2600.00 −0.190055
\(573\) 0 0
\(574\) 1176.00 0.0855144
\(575\) 1216.00 0.0881925
\(576\) 0 0
\(577\) 11282.0 0.813996 0.406998 0.913429i \(-0.366576\pi\)
0.406998 + 0.913429i \(0.366576\pi\)
\(578\) 3098.00 0.222941
\(579\) 0 0
\(580\) 5280.00 0.378000
\(581\) −2254.00 −0.160950
\(582\) 0 0
\(583\) 22100.0 1.56996
\(584\) 16.0000 0.00113371
\(585\) 0 0
\(586\) −12768.0 −0.900070
\(587\) −14994.0 −1.05429 −0.527145 0.849775i \(-0.676738\pi\)
−0.527145 + 0.849775i \(0.676738\pi\)
\(588\) 0 0
\(589\) −4960.00 −0.346983
\(590\) −14832.0 −1.03496
\(591\) 0 0
\(592\) −800.000 −0.0555402
\(593\) 21544.0 1.49192 0.745958 0.665993i \(-0.231992\pi\)
0.745958 + 0.665993i \(0.231992\pi\)
\(594\) 0 0
\(595\) 4872.00 0.335685
\(596\) −10384.0 −0.713666
\(597\) 0 0
\(598\) 1664.00 0.113789
\(599\) 4824.00 0.329054 0.164527 0.986373i \(-0.447390\pi\)
0.164527 + 0.986373i \(0.447390\pi\)
\(600\) 0 0
\(601\) 4718.00 0.320218 0.160109 0.987099i \(-0.448815\pi\)
0.160109 + 0.987099i \(0.448815\pi\)
\(602\) 168.000 0.0113740
\(603\) 0 0
\(604\) −8208.00 −0.552945
\(605\) 14028.0 0.942677
\(606\) 0 0
\(607\) 4720.00 0.315616 0.157808 0.987470i \(-0.449557\pi\)
0.157808 + 0.987470i \(0.449557\pi\)
\(608\) 1280.00 0.0853797
\(609\) 0 0
\(610\) 6672.00 0.442855
\(611\) −1066.00 −0.0705822
\(612\) 0 0
\(613\) 16078.0 1.05935 0.529677 0.848199i \(-0.322313\pi\)
0.529677 + 0.848199i \(0.322313\pi\)
\(614\) −7672.00 −0.504262
\(615\) 0 0
\(616\) −2800.00 −0.183142
\(617\) −12840.0 −0.837794 −0.418897 0.908034i \(-0.637583\pi\)
−0.418897 + 0.908034i \(0.637583\pi\)
\(618\) 0 0
\(619\) −22332.0 −1.45008 −0.725039 0.688707i \(-0.758179\pi\)
−0.725039 + 0.688707i \(0.758179\pi\)
\(620\) 5952.00 0.385545
\(621\) 0 0
\(622\) 12232.0 0.788519
\(623\) −6776.00 −0.435754
\(624\) 0 0
\(625\) −17639.0 −1.12890
\(626\) 1284.00 0.0819792
\(627\) 0 0
\(628\) −10088.0 −0.641011
\(629\) −2900.00 −0.183832
\(630\) 0 0
\(631\) −23756.0 −1.49875 −0.749375 0.662146i \(-0.769646\pi\)
−0.749375 + 0.662146i \(0.769646\pi\)
\(632\) 5440.00 0.342392
\(633\) 0 0
\(634\) −18272.0 −1.14460
\(635\) −27360.0 −1.70984
\(636\) 0 0
\(637\) −637.000 −0.0396214
\(638\) −11000.0 −0.682593
\(639\) 0 0
\(640\) −1536.00 −0.0948683
\(641\) −10170.0 −0.626663 −0.313331 0.949644i \(-0.601445\pi\)
−0.313331 + 0.949644i \(0.601445\pi\)
\(642\) 0 0
\(643\) −19404.0 −1.19008 −0.595038 0.803697i \(-0.702863\pi\)
−0.595038 + 0.803697i \(0.702863\pi\)
\(644\) 1792.00 0.109650
\(645\) 0 0
\(646\) 4640.00 0.282598
\(647\) −13704.0 −0.832705 −0.416352 0.909203i \(-0.636692\pi\)
−0.416352 + 0.909203i \(0.636692\pi\)
\(648\) 0 0
\(649\) 30900.0 1.86892
\(650\) 494.000 0.0298097
\(651\) 0 0
\(652\) −3392.00 −0.203744
\(653\) 19230.0 1.15242 0.576208 0.817303i \(-0.304532\pi\)
0.576208 + 0.817303i \(0.304532\pi\)
\(654\) 0 0
\(655\) 18624.0 1.11099
\(656\) −1344.00 −0.0799914
\(657\) 0 0
\(658\) −1148.00 −0.0680147
\(659\) −18608.0 −1.09995 −0.549973 0.835182i \(-0.685362\pi\)
−0.549973 + 0.835182i \(0.685362\pi\)
\(660\) 0 0
\(661\) −7394.00 −0.435088 −0.217544 0.976050i \(-0.569805\pi\)
−0.217544 + 0.976050i \(0.569805\pi\)
\(662\) 6120.00 0.359306
\(663\) 0 0
\(664\) 2576.00 0.150554
\(665\) −3360.00 −0.195933
\(666\) 0 0
\(667\) 7040.00 0.408680
\(668\) −3416.00 −0.197858
\(669\) 0 0
\(670\) −480.000 −0.0276776
\(671\) −13900.0 −0.799707
\(672\) 0 0
\(673\) 450.000 0.0257745 0.0128872 0.999917i \(-0.495898\pi\)
0.0128872 + 0.999917i \(0.495898\pi\)
\(674\) −9468.00 −0.541089
\(675\) 0 0
\(676\) 676.000 0.0384615
\(677\) −6666.00 −0.378427 −0.189214 0.981936i \(-0.560594\pi\)
−0.189214 + 0.981936i \(0.560594\pi\)
\(678\) 0 0
\(679\) 7154.00 0.404338
\(680\) −5568.00 −0.314004
\(681\) 0 0
\(682\) −12400.0 −0.696218
\(683\) 11082.0 0.620851 0.310425 0.950598i \(-0.399529\pi\)
0.310425 + 0.950598i \(0.399529\pi\)
\(684\) 0 0
\(685\) −576.000 −0.0321282
\(686\) −686.000 −0.0381802
\(687\) 0 0
\(688\) −192.000 −0.0106394
\(689\) −5746.00 −0.317714
\(690\) 0 0
\(691\) 19308.0 1.06297 0.531484 0.847068i \(-0.321635\pi\)
0.531484 + 0.847068i \(0.321635\pi\)
\(692\) −8184.00 −0.449579
\(693\) 0 0
\(694\) −22192.0 −1.21383
\(695\) 336.000 0.0183384
\(696\) 0 0
\(697\) −4872.00 −0.264763
\(698\) −4732.00 −0.256603
\(699\) 0 0
\(700\) 532.000 0.0287253
\(701\) −15318.0 −0.825325 −0.412663 0.910884i \(-0.635401\pi\)
−0.412663 + 0.910884i \(0.635401\pi\)
\(702\) 0 0
\(703\) 2000.00 0.107299
\(704\) 3200.00 0.171313
\(705\) 0 0
\(706\) −22152.0 −1.18088
\(707\) −378.000 −0.0201077
\(708\) 0 0
\(709\) −16486.0 −0.873265 −0.436632 0.899640i \(-0.643829\pi\)
−0.436632 + 0.899640i \(0.643829\pi\)
\(710\) −9360.00 −0.494753
\(711\) 0 0
\(712\) 7744.00 0.407610
\(713\) 7936.00 0.416838
\(714\) 0 0
\(715\) −7800.00 −0.407977
\(716\) 6752.00 0.352422
\(717\) 0 0
\(718\) −12812.0 −0.665933
\(719\) −10740.0 −0.557072 −0.278536 0.960426i \(-0.589849\pi\)
−0.278536 + 0.960426i \(0.589849\pi\)
\(720\) 0 0
\(721\) 9912.00 0.511986
\(722\) 10518.0 0.542160
\(723\) 0 0
\(724\) −1064.00 −0.0546177
\(725\) 2090.00 0.107063
\(726\) 0 0
\(727\) 22736.0 1.15988 0.579939 0.814660i \(-0.303076\pi\)
0.579939 + 0.814660i \(0.303076\pi\)
\(728\) 728.000 0.0370625
\(729\) 0 0
\(730\) 48.0000 0.00243364
\(731\) −696.000 −0.0352154
\(732\) 0 0
\(733\) 10082.0 0.508032 0.254016 0.967200i \(-0.418248\pi\)
0.254016 + 0.967200i \(0.418248\pi\)
\(734\) −4000.00 −0.201148
\(735\) 0 0
\(736\) −2048.00 −0.102568
\(737\) 1000.00 0.0499803
\(738\) 0 0
\(739\) −24676.0 −1.22831 −0.614155 0.789185i \(-0.710503\pi\)
−0.614155 + 0.789185i \(0.710503\pi\)
\(740\) −2400.00 −0.119224
\(741\) 0 0
\(742\) −6188.00 −0.306157
\(743\) −29178.0 −1.44070 −0.720348 0.693613i \(-0.756018\pi\)
−0.720348 + 0.693613i \(0.756018\pi\)
\(744\) 0 0
\(745\) −31152.0 −1.53197
\(746\) 7324.00 0.359451
\(747\) 0 0
\(748\) 11600.0 0.567029
\(749\) −8764.00 −0.427543
\(750\) 0 0
\(751\) 13432.0 0.652651 0.326325 0.945258i \(-0.394190\pi\)
0.326325 + 0.945258i \(0.394190\pi\)
\(752\) 1312.00 0.0636220
\(753\) 0 0
\(754\) 2860.00 0.138137
\(755\) −24624.0 −1.18697
\(756\) 0 0
\(757\) 114.000 0.00547345 0.00273672 0.999996i \(-0.499129\pi\)
0.00273672 + 0.999996i \(0.499129\pi\)
\(758\) −12016.0 −0.575779
\(759\) 0 0
\(760\) 3840.00 0.183278
\(761\) 5052.00 0.240650 0.120325 0.992735i \(-0.461606\pi\)
0.120325 + 0.992735i \(0.461606\pi\)
\(762\) 0 0
\(763\) 6510.00 0.308883
\(764\) −11504.0 −0.544765
\(765\) 0 0
\(766\) 22404.0 1.05677
\(767\) −8034.00 −0.378215
\(768\) 0 0
\(769\) −36862.0 −1.72858 −0.864290 0.502994i \(-0.832232\pi\)
−0.864290 + 0.502994i \(0.832232\pi\)
\(770\) −8400.00 −0.393136
\(771\) 0 0
\(772\) 12232.0 0.570258
\(773\) 1472.00 0.0684918 0.0342459 0.999413i \(-0.489097\pi\)
0.0342459 + 0.999413i \(0.489097\pi\)
\(774\) 0 0
\(775\) 2356.00 0.109200
\(776\) −8176.00 −0.378223
\(777\) 0 0
\(778\) −21716.0 −1.00072
\(779\) 3360.00 0.154537
\(780\) 0 0
\(781\) 19500.0 0.893425
\(782\) −7424.00 −0.339491
\(783\) 0 0
\(784\) 784.000 0.0357143
\(785\) −30264.0 −1.37601
\(786\) 0 0
\(787\) −23620.0 −1.06984 −0.534919 0.844904i \(-0.679658\pi\)
−0.534919 + 0.844904i \(0.679658\pi\)
\(788\) 11808.0 0.533810
\(789\) 0 0
\(790\) 16320.0 0.734987
\(791\) 7238.00 0.325352
\(792\) 0 0
\(793\) 3614.00 0.161837
\(794\) 11700.0 0.522944
\(795\) 0 0
\(796\) 12256.0 0.545732
\(797\) −13986.0 −0.621593 −0.310796 0.950476i \(-0.600596\pi\)
−0.310796 + 0.950476i \(0.600596\pi\)
\(798\) 0 0
\(799\) 4756.00 0.210582
\(800\) −608.000 −0.0268701
\(801\) 0 0
\(802\) −22808.0 −1.00421
\(803\) −100.000 −0.00439467
\(804\) 0 0
\(805\) 5376.00 0.235378
\(806\) 3224.00 0.140894
\(807\) 0 0
\(808\) 432.000 0.0188090
\(809\) 30738.0 1.33584 0.667918 0.744235i \(-0.267186\pi\)
0.667918 + 0.744235i \(0.267186\pi\)
\(810\) 0 0
\(811\) 25480.0 1.10324 0.551618 0.834097i \(-0.314011\pi\)
0.551618 + 0.834097i \(0.314011\pi\)
\(812\) 3080.00 0.133112
\(813\) 0 0
\(814\) 5000.00 0.215295
\(815\) −10176.0 −0.437362
\(816\) 0 0
\(817\) 480.000 0.0205546
\(818\) 20388.0 0.871454
\(819\) 0 0
\(820\) −4032.00 −0.171712
\(821\) −23484.0 −0.998291 −0.499146 0.866518i \(-0.666353\pi\)
−0.499146 + 0.866518i \(0.666353\pi\)
\(822\) 0 0
\(823\) −1632.00 −0.0691227 −0.0345613 0.999403i \(-0.511003\pi\)
−0.0345613 + 0.999403i \(0.511003\pi\)
\(824\) −11328.0 −0.478919
\(825\) 0 0
\(826\) −8652.00 −0.364457
\(827\) −25734.0 −1.08205 −0.541027 0.841005i \(-0.681964\pi\)
−0.541027 + 0.841005i \(0.681964\pi\)
\(828\) 0 0
\(829\) 22314.0 0.934858 0.467429 0.884031i \(-0.345180\pi\)
0.467429 + 0.884031i \(0.345180\pi\)
\(830\) 7728.00 0.323184
\(831\) 0 0
\(832\) −832.000 −0.0346688
\(833\) 2842.00 0.118211
\(834\) 0 0
\(835\) −10248.0 −0.424727
\(836\) −8000.00 −0.330964
\(837\) 0 0
\(838\) 6384.00 0.263164
\(839\) −8330.00 −0.342769 −0.171385 0.985204i \(-0.554824\pi\)
−0.171385 + 0.985204i \(0.554824\pi\)
\(840\) 0 0
\(841\) −12289.0 −0.503875
\(842\) −20948.0 −0.857382
\(843\) 0 0
\(844\) 2416.00 0.0985334
\(845\) 2028.00 0.0825625
\(846\) 0 0
\(847\) 8183.00 0.331961
\(848\) 7072.00 0.286384
\(849\) 0 0
\(850\) −2204.00 −0.0889371
\(851\) −3200.00 −0.128901
\(852\) 0 0
\(853\) −4522.00 −0.181513 −0.0907563 0.995873i \(-0.528928\pi\)
−0.0907563 + 0.995873i \(0.528928\pi\)
\(854\) 3892.00 0.155950
\(855\) 0 0
\(856\) 10016.0 0.399930
\(857\) 40126.0 1.59939 0.799695 0.600406i \(-0.204994\pi\)
0.799695 + 0.600406i \(0.204994\pi\)
\(858\) 0 0
\(859\) 34484.0 1.36971 0.684854 0.728680i \(-0.259866\pi\)
0.684854 + 0.728680i \(0.259866\pi\)
\(860\) −576.000 −0.0228389
\(861\) 0 0
\(862\) 15804.0 0.624462
\(863\) 6714.00 0.264829 0.132414 0.991194i \(-0.457727\pi\)
0.132414 + 0.991194i \(0.457727\pi\)
\(864\) 0 0
\(865\) −24552.0 −0.965079
\(866\) 33908.0 1.33053
\(867\) 0 0
\(868\) 3472.00 0.135769
\(869\) −34000.0 −1.32724
\(870\) 0 0
\(871\) −260.000 −0.0101145
\(872\) −7440.00 −0.288934
\(873\) 0 0
\(874\) 5120.00 0.198154
\(875\) −8904.00 −0.344012
\(876\) 0 0
\(877\) −18362.0 −0.707002 −0.353501 0.935434i \(-0.615009\pi\)
−0.353501 + 0.935434i \(0.615009\pi\)
\(878\) −27920.0 −1.07318
\(879\) 0 0
\(880\) 9600.00 0.367745
\(881\) −18018.0 −0.689037 −0.344519 0.938779i \(-0.611958\pi\)
−0.344519 + 0.938779i \(0.611958\pi\)
\(882\) 0 0
\(883\) −5892.00 −0.224554 −0.112277 0.993677i \(-0.535814\pi\)
−0.112277 + 0.993677i \(0.535814\pi\)
\(884\) −3016.00 −0.114750
\(885\) 0 0
\(886\) −3768.00 −0.142876
\(887\) 35544.0 1.34549 0.672746 0.739874i \(-0.265115\pi\)
0.672746 + 0.739874i \(0.265115\pi\)
\(888\) 0 0
\(889\) −15960.0 −0.602116
\(890\) 23232.0 0.874987
\(891\) 0 0
\(892\) 22512.0 0.845020
\(893\) −3280.00 −0.122913
\(894\) 0 0
\(895\) 20256.0 0.756518
\(896\) −896.000 −0.0334077
\(897\) 0 0
\(898\) −22872.0 −0.849943
\(899\) 13640.0 0.506028
\(900\) 0 0
\(901\) 25636.0 0.947901
\(902\) 8400.00 0.310077
\(903\) 0 0
\(904\) −8272.00 −0.304339
\(905\) −3192.00 −0.117244
\(906\) 0 0
\(907\) 21020.0 0.769523 0.384762 0.923016i \(-0.374284\pi\)
0.384762 + 0.923016i \(0.374284\pi\)
\(908\) 4488.00 0.164030
\(909\) 0 0
\(910\) 2184.00 0.0795592
\(911\) −30172.0 −1.09730 −0.548651 0.836051i \(-0.684859\pi\)
−0.548651 + 0.836051i \(0.684859\pi\)
\(912\) 0 0
\(913\) −16100.0 −0.583606
\(914\) −22972.0 −0.831342
\(915\) 0 0
\(916\) 17704.0 0.638599
\(917\) 10864.0 0.391233
\(918\) 0 0
\(919\) 25528.0 0.916312 0.458156 0.888872i \(-0.348510\pi\)
0.458156 + 0.888872i \(0.348510\pi\)
\(920\) −6144.00 −0.220176
\(921\) 0 0
\(922\) 22344.0 0.798113
\(923\) −5070.00 −0.180803
\(924\) 0 0
\(925\) −950.000 −0.0337684
\(926\) 23376.0 0.829571
\(927\) 0 0
\(928\) −3520.00 −0.124515
\(929\) 28460.0 1.00510 0.502552 0.864547i \(-0.332394\pi\)
0.502552 + 0.864547i \(0.332394\pi\)
\(930\) 0 0
\(931\) −1960.00 −0.0689972
\(932\) −8760.00 −0.307879
\(933\) 0 0
\(934\) −4896.00 −0.171522
\(935\) 34800.0 1.21720
\(936\) 0 0
\(937\) −10682.0 −0.372429 −0.186214 0.982509i \(-0.559622\pi\)
−0.186214 + 0.982509i \(0.559622\pi\)
\(938\) −280.000 −0.00974661
\(939\) 0 0
\(940\) 3936.00 0.136573
\(941\) −49992.0 −1.73187 −0.865937 0.500154i \(-0.833277\pi\)
−0.865937 + 0.500154i \(0.833277\pi\)
\(942\) 0 0
\(943\) −5376.00 −0.185649
\(944\) 9888.00 0.340918
\(945\) 0 0
\(946\) 1200.00 0.0412425
\(947\) −24338.0 −0.835141 −0.417571 0.908644i \(-0.637118\pi\)
−0.417571 + 0.908644i \(0.637118\pi\)
\(948\) 0 0
\(949\) 26.0000 0.000889353 0
\(950\) 1520.00 0.0519109
\(951\) 0 0
\(952\) −3248.00 −0.110576
\(953\) −24558.0 −0.834745 −0.417372 0.908736i \(-0.637049\pi\)
−0.417372 + 0.908736i \(0.637049\pi\)
\(954\) 0 0
\(955\) −34512.0 −1.16941
\(956\) 4920.00 0.166448
\(957\) 0 0
\(958\) 1396.00 0.0470801
\(959\) −336.000 −0.0113139
\(960\) 0 0
\(961\) −14415.0 −0.483871
\(962\) −1300.00 −0.0435693
\(963\) 0 0
\(964\) −3144.00 −0.105043
\(965\) 36696.0 1.22413
\(966\) 0 0
\(967\) −17764.0 −0.590746 −0.295373 0.955382i \(-0.595444\pi\)
−0.295373 + 0.955382i \(0.595444\pi\)
\(968\) −9352.00 −0.310521
\(969\) 0 0
\(970\) −24528.0 −0.811904
\(971\) −39300.0 −1.29886 −0.649432 0.760420i \(-0.724993\pi\)
−0.649432 + 0.760420i \(0.724993\pi\)
\(972\) 0 0
\(973\) 196.000 0.00645783
\(974\) 16312.0 0.536622
\(975\) 0 0
\(976\) −4448.00 −0.145878
\(977\) −3940.00 −0.129019 −0.0645096 0.997917i \(-0.520548\pi\)
−0.0645096 + 0.997917i \(0.520548\pi\)
\(978\) 0 0
\(979\) −48400.0 −1.58005
\(980\) 2352.00 0.0766652
\(981\) 0 0
\(982\) −20968.0 −0.681381
\(983\) −33682.0 −1.09287 −0.546434 0.837502i \(-0.684015\pi\)
−0.546434 + 0.837502i \(0.684015\pi\)
\(984\) 0 0
\(985\) 35424.0 1.14589
\(986\) −12760.0 −0.412131
\(987\) 0 0
\(988\) 2080.00 0.0669773
\(989\) −768.000 −0.0246926
\(990\) 0 0
\(991\) −15352.0 −0.492101 −0.246051 0.969257i \(-0.579133\pi\)
−0.246051 + 0.969257i \(0.579133\pi\)
\(992\) −3968.00 −0.127000
\(993\) 0 0
\(994\) −5460.00 −0.174226
\(995\) 36768.0 1.17148
\(996\) 0 0
\(997\) 6942.00 0.220517 0.110258 0.993903i \(-0.464832\pi\)
0.110258 + 0.993903i \(0.464832\pi\)
\(998\) 13960.0 0.442782
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.4.a.g.1.1 1
3.2 odd 2 546.4.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.4.a.d.1.1 1 3.2 odd 2
1638.4.a.g.1.1 1 1.1 even 1 trivial