Properties

Label 1638.2.r.y
Level $1638$
Weight $2$
Character orbit 1638.r
Analytic conductor $13.079$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.r (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Defining polynomial: \(x^{4} - x^{3} + 5 x^{2} + 4 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \beta_{2} ) q^{2} -\beta_{2} q^{4} + ( 1 + \beta_{3} ) q^{5} -\beta_{2} q^{7} - q^{8} +O(q^{10})\) \( q + ( 1 - \beta_{2} ) q^{2} -\beta_{2} q^{4} + ( 1 + \beta_{3} ) q^{5} -\beta_{2} q^{7} - q^{8} + ( 1 + \beta_{1} - \beta_{2} + \beta_{3} ) q^{10} + ( \beta_{1} + \beta_{3} ) q^{11} + ( -1 - 2 \beta_{1} + \beta_{2} - \beta_{3} ) q^{13} - q^{14} + ( -1 + \beta_{2} ) q^{16} + ( 2 \beta_{1} - 5 \beta_{2} ) q^{17} + \beta_{1} q^{19} + ( \beta_{1} - \beta_{2} ) q^{20} + \beta_{1} q^{22} + ( 4 + 2 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} ) q^{23} + \beta_{3} q^{25} + ( -\beta_{1} + \beta_{2} + \beta_{3} ) q^{26} + ( -1 + \beta_{2} ) q^{28} + ( -1 + 2 \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{29} + \beta_{2} q^{32} + ( -5 - 2 \beta_{3} ) q^{34} + ( \beta_{1} - \beta_{2} ) q^{35} + ( 5 + \beta_{1} - 5 \beta_{2} + \beta_{3} ) q^{37} -\beta_{3} q^{38} + ( -1 - \beta_{3} ) q^{40} + ( -1 + 4 \beta_{1} + \beta_{2} + 4 \beta_{3} ) q^{41} + 8 \beta_{2} q^{43} -\beta_{3} q^{44} + ( 2 \beta_{1} - 4 \beta_{2} ) q^{46} + ( 8 + 3 \beta_{3} ) q^{47} + ( -1 + \beta_{2} ) q^{49} + ( \beta_{1} + \beta_{3} ) q^{50} + ( 1 + \beta_{1} + 2 \beta_{3} ) q^{52} -7 q^{53} + ( 4 - 4 \beta_{2} ) q^{55} + \beta_{2} q^{56} + ( 2 \beta_{1} + \beta_{2} ) q^{58} + 2 \beta_{1} q^{59} + ( 4 \beta_{1} + \beta_{2} ) q^{61} + q^{64} + ( -5 - \beta_{1} + 9 \beta_{2} - \beta_{3} ) q^{65} + ( -4 + 2 \beta_{1} + 4 \beta_{2} + 2 \beta_{3} ) q^{67} + ( -5 - 2 \beta_{1} + 5 \beta_{2} - 2 \beta_{3} ) q^{68} + ( -1 - \beta_{3} ) q^{70} + ( -6 \beta_{1} + 4 \beta_{2} ) q^{71} + ( -5 - \beta_{3} ) q^{73} + ( \beta_{1} - 5 \beta_{2} ) q^{74} + ( -\beta_{1} - \beta_{3} ) q^{76} -\beta_{3} q^{77} + ( -4 + \beta_{3} ) q^{79} + ( -1 - \beta_{1} + \beta_{2} - \beta_{3} ) q^{80} + ( 4 \beta_{1} + \beta_{2} ) q^{82} -2 \beta_{3} q^{83} + ( 5 \beta_{1} - 13 \beta_{2} ) q^{85} + 8 q^{86} + ( -\beta_{1} - \beta_{3} ) q^{88} + ( 6 + \beta_{1} - 6 \beta_{2} + \beta_{3} ) q^{89} + ( 1 + \beta_{1} + 2 \beta_{3} ) q^{91} + ( -4 - 2 \beta_{3} ) q^{92} + ( 8 + 3 \beta_{1} - 8 \beta_{2} + 3 \beta_{3} ) q^{94} -4 \beta_{2} q^{95} + ( -2 \beta_{1} + 6 \beta_{2} ) q^{97} + \beta_{2} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{2} - 2q^{4} + 2q^{5} - 2q^{7} - 4q^{8} + O(q^{10}) \) \( 4q + 2q^{2} - 2q^{4} + 2q^{5} - 2q^{7} - 4q^{8} + q^{10} - q^{11} - 2q^{13} - 4q^{14} - 2q^{16} - 8q^{17} + q^{19} - q^{20} + q^{22} + 6q^{23} - 2q^{25} - q^{26} - 2q^{28} - 4q^{29} + 2q^{32} - 16q^{34} - q^{35} + 9q^{37} + 2q^{38} - 2q^{40} - 6q^{41} + 16q^{43} + 2q^{44} - 6q^{46} + 26q^{47} - 2q^{49} - q^{50} + q^{52} - 28q^{53} + 8q^{55} + 2q^{56} + 4q^{58} + 2q^{59} + 6q^{61} + 4q^{64} - q^{65} - 10q^{67} - 8q^{68} - 2q^{70} + 2q^{71} - 18q^{73} - 9q^{74} + q^{76} + 2q^{77} - 18q^{79} - q^{80} + 6q^{82} + 4q^{83} - 21q^{85} + 32q^{86} + q^{88} + 11q^{89} + q^{91} - 12q^{92} + 13q^{94} - 8q^{95} + 10q^{97} + 2q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - x^{3} + 5 x^{2} + 4 x + 16\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{3} + 5 \nu^{2} - 5 \nu + 16 \)\()/20\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{3} + 4 \)\()/5\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} + 4 \beta_{2} + \beta_{1} - 4\)
\(\nu^{3}\)\(=\)\(5 \beta_{3} - 4\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(-\beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
757.1
1.28078 2.21837i
−0.780776 + 1.35234i
1.28078 + 2.21837i
−0.780776 1.35234i
0.500000 + 0.866025i 0 −0.500000 + 0.866025i −1.56155 0 −0.500000 + 0.866025i −1.00000 0 −0.780776 1.35234i
757.2 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 2.56155 0 −0.500000 + 0.866025i −1.00000 0 1.28078 + 2.21837i
1387.1 0.500000 0.866025i 0 −0.500000 0.866025i −1.56155 0 −0.500000 0.866025i −1.00000 0 −0.780776 + 1.35234i
1387.2 0.500000 0.866025i 0 −0.500000 0.866025i 2.56155 0 −0.500000 0.866025i −1.00000 0 1.28078 2.21837i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1638.2.r.y 4
3.b odd 2 1 546.2.l.l 4
13.c even 3 1 inner 1638.2.r.y 4
39.h odd 6 1 7098.2.a.bi 2
39.i odd 6 1 546.2.l.l 4
39.i odd 6 1 7098.2.a.bt 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.l.l 4 3.b odd 2 1
546.2.l.l 4 39.i odd 6 1
1638.2.r.y 4 1.a even 1 1 trivial
1638.2.r.y 4 13.c even 3 1 inner
7098.2.a.bi 2 39.h odd 6 1
7098.2.a.bt 2 39.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1638, [\chi])\):

\( T_{5}^{2} - T_{5} - 4 \)
\( T_{11}^{4} + T_{11}^{3} + 5 T_{11}^{2} - 4 T_{11} + 16 \)
\( T_{17}^{4} + 8 T_{17}^{3} + 65 T_{17}^{2} - 8 T_{17} + 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - T + T^{2} )^{2} \)
$3$ \( T^{4} \)
$5$ \( ( -4 - T + T^{2} )^{2} \)
$7$ \( ( 1 + T + T^{2} )^{2} \)
$11$ \( 16 - 4 T + 5 T^{2} + T^{3} + T^{4} \)
$13$ \( ( 13 + T + T^{2} )^{2} \)
$17$ \( 1 - 8 T + 65 T^{2} + 8 T^{3} + T^{4} \)
$19$ \( 16 + 4 T + 5 T^{2} - T^{3} + T^{4} \)
$23$ \( 64 + 48 T + 44 T^{2} - 6 T^{3} + T^{4} \)
$29$ \( 169 - 52 T + 29 T^{2} + 4 T^{3} + T^{4} \)
$31$ \( T^{4} \)
$37$ \( 256 - 144 T + 65 T^{2} - 9 T^{3} + T^{4} \)
$41$ \( 3481 - 354 T + 95 T^{2} + 6 T^{3} + T^{4} \)
$43$ \( ( 64 - 8 T + T^{2} )^{2} \)
$47$ \( ( 4 - 13 T + T^{2} )^{2} \)
$53$ \( ( 7 + T )^{4} \)
$59$ \( 256 + 32 T + 20 T^{2} - 2 T^{3} + T^{4} \)
$61$ \( 3481 + 354 T + 95 T^{2} - 6 T^{3} + T^{4} \)
$67$ \( 64 + 80 T + 92 T^{2} + 10 T^{3} + T^{4} \)
$71$ \( 23104 + 304 T + 156 T^{2} - 2 T^{3} + T^{4} \)
$73$ \( ( 16 + 9 T + T^{2} )^{2} \)
$79$ \( ( 16 + 9 T + T^{2} )^{2} \)
$83$ \( ( -16 - 2 T + T^{2} )^{2} \)
$89$ \( 676 - 286 T + 95 T^{2} - 11 T^{3} + T^{4} \)
$97$ \( 64 - 80 T + 92 T^{2} - 10 T^{3} + T^{4} \)
show more
show less