Properties

Label 1638.2.r.x.757.1
Level $1638$
Weight $2$
Character 1638.757
Analytic conductor $13.079$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(757,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.757");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.r (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 757.1
Root \(-1.63746 + 1.52274i\) of defining polynomial
Character \(\chi\) \(=\) 1638.757
Dual form 1638.2.r.x.1387.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} -4.27492 q^{5} +(-0.500000 + 0.866025i) q^{7} -1.00000 q^{8} +(-2.13746 - 3.70219i) q^{10} +(-2.00000 - 3.46410i) q^{11} +(3.50000 - 0.866025i) q^{13} -1.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(1.50000 - 2.59808i) q^{17} +(-3.27492 + 5.67232i) q^{19} +(2.13746 - 3.70219i) q^{20} +(2.00000 - 3.46410i) q^{22} +(-2.63746 - 4.56821i) q^{23} +13.2749 q^{25} +(2.50000 + 2.59808i) q^{26} +(-0.500000 - 0.866025i) q^{28} +(4.13746 + 7.16629i) q^{29} -1.27492 q^{31} +(0.500000 - 0.866025i) q^{32} +3.00000 q^{34} +(2.13746 - 3.70219i) q^{35} +(-0.137459 - 0.238085i) q^{37} -6.54983 q^{38} +4.27492 q^{40} +(4.13746 + 7.16629i) q^{41} +(5.91238 - 10.2405i) q^{43} +4.00000 q^{44} +(2.63746 - 4.56821i) q^{46} +6.54983 q^{47} +(-0.500000 - 0.866025i) q^{49} +(6.63746 + 11.4964i) q^{50} +(-1.00000 + 3.46410i) q^{52} +3.54983 q^{53} +(8.54983 + 14.8087i) q^{55} +(0.500000 - 0.866025i) q^{56} +(-4.13746 + 7.16629i) q^{58} +(-5.91238 + 10.2405i) q^{59} +(4.50000 - 7.79423i) q^{61} +(-0.637459 - 1.10411i) q^{62} +1.00000 q^{64} +(-14.9622 + 3.70219i) q^{65} +(1.36254 + 2.35999i) q^{67} +(1.50000 + 2.59808i) q^{68} +4.27492 q^{70} +(2.63746 - 4.56821i) q^{71} +5.72508 q^{73} +(0.137459 - 0.238085i) q^{74} +(-3.27492 - 5.67232i) q^{76} +4.00000 q^{77} -8.00000 q^{79} +(2.13746 + 3.70219i) q^{80} +(-4.13746 + 7.16629i) q^{82} +11.8248 q^{83} +(-6.41238 + 11.1066i) q^{85} +11.8248 q^{86} +(2.00000 + 3.46410i) q^{88} +(0.362541 + 0.627940i) q^{89} +(-1.00000 + 3.46410i) q^{91} +5.27492 q^{92} +(3.27492 + 5.67232i) q^{94} +(14.0000 - 24.2487i) q^{95} +(0.274917 - 0.476171i) q^{97} +(0.500000 - 0.866025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} - 2 q^{7} - 4 q^{8} - q^{10} - 8 q^{11} + 14 q^{13} - 4 q^{14} - 2 q^{16} + 6 q^{17} + 2 q^{19} + q^{20} + 8 q^{22} - 3 q^{23} + 38 q^{25} + 10 q^{26} - 2 q^{28} + 9 q^{29}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −4.27492 −1.91180 −0.955901 0.293691i \(-0.905116\pi\)
−0.955901 + 0.293691i \(0.905116\pi\)
\(6\) 0 0
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −2.13746 3.70219i −0.675924 1.17073i
\(11\) −2.00000 3.46410i −0.603023 1.04447i −0.992361 0.123371i \(-0.960630\pi\)
0.389338 0.921095i \(-0.372704\pi\)
\(12\) 0 0
\(13\) 3.50000 0.866025i 0.970725 0.240192i
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) −3.27492 + 5.67232i −0.751318 + 1.30132i 0.195867 + 0.980631i \(0.437248\pi\)
−0.947184 + 0.320690i \(0.896085\pi\)
\(20\) 2.13746 3.70219i 0.477950 0.827834i
\(21\) 0 0
\(22\) 2.00000 3.46410i 0.426401 0.738549i
\(23\) −2.63746 4.56821i −0.549948 0.952538i −0.998277 0.0586697i \(-0.981314\pi\)
0.448329 0.893868i \(-0.352019\pi\)
\(24\) 0 0
\(25\) 13.2749 2.65498
\(26\) 2.50000 + 2.59808i 0.490290 + 0.509525i
\(27\) 0 0
\(28\) −0.500000 0.866025i −0.0944911 0.163663i
\(29\) 4.13746 + 7.16629i 0.768307 + 1.33075i 0.938480 + 0.345332i \(0.112234\pi\)
−0.170174 + 0.985414i \(0.554433\pi\)
\(30\) 0 0
\(31\) −1.27492 −0.228982 −0.114491 0.993424i \(-0.536524\pi\)
−0.114491 + 0.993424i \(0.536524\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) 2.13746 3.70219i 0.361296 0.625784i
\(36\) 0 0
\(37\) −0.137459 0.238085i −0.0225981 0.0391410i 0.854505 0.519443i \(-0.173860\pi\)
−0.877103 + 0.480302i \(0.840527\pi\)
\(38\) −6.54983 −1.06252
\(39\) 0 0
\(40\) 4.27492 0.675924
\(41\) 4.13746 + 7.16629i 0.646162 + 1.11919i 0.984032 + 0.177993i \(0.0569605\pi\)
−0.337869 + 0.941193i \(0.609706\pi\)
\(42\) 0 0
\(43\) 5.91238 10.2405i 0.901629 1.56167i 0.0762493 0.997089i \(-0.475706\pi\)
0.825380 0.564578i \(-0.190961\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) 2.63746 4.56821i 0.388872 0.673546i
\(47\) 6.54983 0.955392 0.477696 0.878525i \(-0.341472\pi\)
0.477696 + 0.878525i \(0.341472\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 6.63746 + 11.4964i 0.938678 + 1.62584i
\(51\) 0 0
\(52\) −1.00000 + 3.46410i −0.138675 + 0.480384i
\(53\) 3.54983 0.487607 0.243804 0.969825i \(-0.421605\pi\)
0.243804 + 0.969825i \(0.421605\pi\)
\(54\) 0 0
\(55\) 8.54983 + 14.8087i 1.15286 + 1.99681i
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) 0 0
\(58\) −4.13746 + 7.16629i −0.543275 + 0.940980i
\(59\) −5.91238 + 10.2405i −0.769726 + 1.33320i 0.167986 + 0.985789i \(0.446274\pi\)
−0.937712 + 0.347415i \(0.887060\pi\)
\(60\) 0 0
\(61\) 4.50000 7.79423i 0.576166 0.997949i −0.419748 0.907641i \(-0.637882\pi\)
0.995914 0.0903080i \(-0.0287851\pi\)
\(62\) −0.637459 1.10411i −0.0809573 0.140222i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −14.9622 + 3.70219i −1.85583 + 0.459200i
\(66\) 0 0
\(67\) 1.36254 + 2.35999i 0.166461 + 0.288319i 0.937173 0.348865i \(-0.113433\pi\)
−0.770712 + 0.637183i \(0.780099\pi\)
\(68\) 1.50000 + 2.59808i 0.181902 + 0.315063i
\(69\) 0 0
\(70\) 4.27492 0.510950
\(71\) 2.63746 4.56821i 0.313009 0.542147i −0.666003 0.745949i \(-0.731996\pi\)
0.979012 + 0.203802i \(0.0653297\pi\)
\(72\) 0 0
\(73\) 5.72508 0.670070 0.335035 0.942206i \(-0.391252\pi\)
0.335035 + 0.942206i \(0.391252\pi\)
\(74\) 0.137459 0.238085i 0.0159792 0.0276769i
\(75\) 0 0
\(76\) −3.27492 5.67232i −0.375659 0.650660i
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 2.13746 + 3.70219i 0.238975 + 0.413917i
\(81\) 0 0
\(82\) −4.13746 + 7.16629i −0.456906 + 0.791384i
\(83\) 11.8248 1.29794 0.648968 0.760816i \(-0.275201\pi\)
0.648968 + 0.760816i \(0.275201\pi\)
\(84\) 0 0
\(85\) −6.41238 + 11.1066i −0.695520 + 1.20468i
\(86\) 11.8248 1.27510
\(87\) 0 0
\(88\) 2.00000 + 3.46410i 0.213201 + 0.369274i
\(89\) 0.362541 + 0.627940i 0.0384293 + 0.0665615i 0.884600 0.466350i \(-0.154431\pi\)
−0.846171 + 0.532911i \(0.821098\pi\)
\(90\) 0 0
\(91\) −1.00000 + 3.46410i −0.104828 + 0.363137i
\(92\) 5.27492 0.549948
\(93\) 0 0
\(94\) 3.27492 + 5.67232i 0.337782 + 0.585055i
\(95\) 14.0000 24.2487i 1.43637 2.48787i
\(96\) 0 0
\(97\) 0.274917 0.476171i 0.0279136 0.0483478i −0.851731 0.523979i \(-0.824447\pi\)
0.879645 + 0.475631i \(0.157780\pi\)
\(98\) 0.500000 0.866025i 0.0505076 0.0874818i
\(99\) 0 0
\(100\) −6.63746 + 11.4964i −0.663746 + 1.14964i
\(101\) 0.862541 + 1.49397i 0.0858261 + 0.148655i 0.905743 0.423828i \(-0.139314\pi\)
−0.819917 + 0.572483i \(0.805980\pi\)
\(102\) 0 0
\(103\) 5.27492 0.519753 0.259877 0.965642i \(-0.416318\pi\)
0.259877 + 0.965642i \(0.416318\pi\)
\(104\) −3.50000 + 0.866025i −0.343203 + 0.0849208i
\(105\) 0 0
\(106\) 1.77492 + 3.07425i 0.172395 + 0.298597i
\(107\) 1.27492 + 2.20822i 0.123251 + 0.213477i 0.921048 0.389449i \(-0.127335\pi\)
−0.797797 + 0.602926i \(0.794001\pi\)
\(108\) 0 0
\(109\) −4.54983 −0.435795 −0.217898 0.975972i \(-0.569920\pi\)
−0.217898 + 0.975972i \(0.569920\pi\)
\(110\) −8.54983 + 14.8087i −0.815195 + 1.41196i
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) 7.41238 12.8386i 0.697298 1.20775i −0.272102 0.962268i \(-0.587719\pi\)
0.969400 0.245487i \(-0.0789478\pi\)
\(114\) 0 0
\(115\) 11.2749 + 19.5287i 1.05139 + 1.82106i
\(116\) −8.27492 −0.768307
\(117\) 0 0
\(118\) −11.8248 −1.08856
\(119\) 1.50000 + 2.59808i 0.137505 + 0.238165i
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) 9.00000 0.814822
\(123\) 0 0
\(124\) 0.637459 1.10411i 0.0572455 0.0991521i
\(125\) −35.3746 −3.16400
\(126\) 0 0
\(127\) −4.00000 6.92820i −0.354943 0.614779i 0.632166 0.774833i \(-0.282166\pi\)
−0.987108 + 0.160055i \(0.948833\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −10.6873 11.1066i −0.937338 0.974110i
\(131\) 2.72508 0.238092 0.119046 0.992889i \(-0.462016\pi\)
0.119046 + 0.992889i \(0.462016\pi\)
\(132\) 0 0
\(133\) −3.27492 5.67232i −0.283971 0.491853i
\(134\) −1.36254 + 2.35999i −0.117706 + 0.203872i
\(135\) 0 0
\(136\) −1.50000 + 2.59808i −0.128624 + 0.222783i
\(137\) 11.4124 19.7668i 0.975025 1.68879i 0.295173 0.955444i \(-0.404623\pi\)
0.679852 0.733349i \(-0.262044\pi\)
\(138\) 0 0
\(139\) 4.54983 7.88054i 0.385912 0.668419i −0.605983 0.795477i \(-0.707220\pi\)
0.991895 + 0.127058i \(0.0405535\pi\)
\(140\) 2.13746 + 3.70219i 0.180648 + 0.312892i
\(141\) 0 0
\(142\) 5.27492 0.442661
\(143\) −10.0000 10.3923i −0.836242 0.869048i
\(144\) 0 0
\(145\) −17.6873 30.6353i −1.46885 2.54412i
\(146\) 2.86254 + 4.95807i 0.236906 + 0.410333i
\(147\) 0 0
\(148\) 0.274917 0.0225981
\(149\) −0.500000 + 0.866025i −0.0409616 + 0.0709476i −0.885779 0.464107i \(-0.846375\pi\)
0.844818 + 0.535054i \(0.179709\pi\)
\(150\) 0 0
\(151\) 13.0997 1.06604 0.533018 0.846104i \(-0.321058\pi\)
0.533018 + 0.846104i \(0.321058\pi\)
\(152\) 3.27492 5.67232i 0.265631 0.460086i
\(153\) 0 0
\(154\) 2.00000 + 3.46410i 0.161165 + 0.279145i
\(155\) 5.45017 0.437768
\(156\) 0 0
\(157\) −3.72508 −0.297294 −0.148647 0.988890i \(-0.547492\pi\)
−0.148647 + 0.988890i \(0.547492\pi\)
\(158\) −4.00000 6.92820i −0.318223 0.551178i
\(159\) 0 0
\(160\) −2.13746 + 3.70219i −0.168981 + 0.292684i
\(161\) 5.27492 0.415722
\(162\) 0 0
\(163\) 6.63746 11.4964i 0.519886 0.900469i −0.479847 0.877352i \(-0.659308\pi\)
0.999733 0.0231165i \(-0.00735887\pi\)
\(164\) −8.27492 −0.646162
\(165\) 0 0
\(166\) 5.91238 + 10.2405i 0.458889 + 0.794820i
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) −12.8248 −0.983614
\(171\) 0 0
\(172\) 5.91238 + 10.2405i 0.450814 + 0.780833i
\(173\) −2.27492 + 3.94027i −0.172959 + 0.299573i −0.939453 0.342678i \(-0.888666\pi\)
0.766494 + 0.642251i \(0.221999\pi\)
\(174\) 0 0
\(175\) −6.63746 + 11.4964i −0.501745 + 0.869047i
\(176\) −2.00000 + 3.46410i −0.150756 + 0.261116i
\(177\) 0 0
\(178\) −0.362541 + 0.627940i −0.0271736 + 0.0470661i
\(179\) 0.725083 + 1.25588i 0.0541952 + 0.0938689i 0.891850 0.452331i \(-0.149407\pi\)
−0.837655 + 0.546200i \(0.816074\pi\)
\(180\) 0 0
\(181\) −16.8248 −1.25057 −0.625287 0.780395i \(-0.715018\pi\)
−0.625287 + 0.780395i \(0.715018\pi\)
\(182\) −3.50000 + 0.866025i −0.259437 + 0.0641941i
\(183\) 0 0
\(184\) 2.63746 + 4.56821i 0.194436 + 0.336773i
\(185\) 0.587624 + 1.01779i 0.0432030 + 0.0748298i
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) −3.27492 + 5.67232i −0.238848 + 0.413697i
\(189\) 0 0
\(190\) 28.0000 2.03133
\(191\) 3.36254 5.82409i 0.243305 0.421417i −0.718349 0.695683i \(-0.755102\pi\)
0.961654 + 0.274267i \(0.0884351\pi\)
\(192\) 0 0
\(193\) 12.4124 + 21.4989i 0.893462 + 1.54752i 0.835696 + 0.549192i \(0.185064\pi\)
0.0577662 + 0.998330i \(0.481602\pi\)
\(194\) 0.549834 0.0394758
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −10.9124 18.9008i −0.777475 1.34663i −0.933393 0.358856i \(-0.883167\pi\)
0.155919 0.987770i \(-0.450166\pi\)
\(198\) 0 0
\(199\) −5.91238 + 10.2405i −0.419117 + 0.725932i −0.995851 0.0909999i \(-0.970994\pi\)
0.576734 + 0.816932i \(0.304327\pi\)
\(200\) −13.2749 −0.938678
\(201\) 0 0
\(202\) −0.862541 + 1.49397i −0.0606882 + 0.105115i
\(203\) −8.27492 −0.580785
\(204\) 0 0
\(205\) −17.6873 30.6353i −1.23533 2.13966i
\(206\) 2.63746 + 4.56821i 0.183760 + 0.318282i
\(207\) 0 0
\(208\) −2.50000 2.59808i −0.173344 0.180144i
\(209\) 26.1993 1.81225
\(210\) 0 0
\(211\) −10.5498 18.2728i −0.726281 1.25795i −0.958445 0.285278i \(-0.907914\pi\)
0.232164 0.972677i \(-0.425419\pi\)
\(212\) −1.77492 + 3.07425i −0.121902 + 0.211140i
\(213\) 0 0
\(214\) −1.27492 + 2.20822i −0.0871515 + 0.150951i
\(215\) −25.2749 + 43.7774i −1.72374 + 2.98560i
\(216\) 0 0
\(217\) 0.637459 1.10411i 0.0432735 0.0749519i
\(218\) −2.27492 3.94027i −0.154077 0.266869i
\(219\) 0 0
\(220\) −17.0997 −1.15286
\(221\) 3.00000 10.3923i 0.201802 0.699062i
\(222\) 0 0
\(223\) −5.36254 9.28819i −0.359102 0.621983i 0.628709 0.777641i \(-0.283584\pi\)
−0.987811 + 0.155657i \(0.950250\pi\)
\(224\) 0.500000 + 0.866025i 0.0334077 + 0.0578638i
\(225\) 0 0
\(226\) 14.8248 0.986128
\(227\) −10.5498 + 18.2728i −0.700217 + 1.21281i 0.268173 + 0.963371i \(0.413580\pi\)
−0.968390 + 0.249441i \(0.919753\pi\)
\(228\) 0 0
\(229\) 12.7251 0.840897 0.420449 0.907316i \(-0.361873\pi\)
0.420449 + 0.907316i \(0.361873\pi\)
\(230\) −11.2749 + 19.5287i −0.743446 + 1.28769i
\(231\) 0 0
\(232\) −4.13746 7.16629i −0.271637 0.470490i
\(233\) −7.45017 −0.488077 −0.244038 0.969766i \(-0.578472\pi\)
−0.244038 + 0.969766i \(0.578472\pi\)
\(234\) 0 0
\(235\) −28.0000 −1.82652
\(236\) −5.91238 10.2405i −0.384863 0.666602i
\(237\) 0 0
\(238\) −1.50000 + 2.59808i −0.0972306 + 0.168408i
\(239\) 5.27492 0.341206 0.170603 0.985340i \(-0.445428\pi\)
0.170603 + 0.985340i \(0.445428\pi\)
\(240\) 0 0
\(241\) 7.86254 13.6183i 0.506471 0.877233i −0.493501 0.869745i \(-0.664283\pi\)
0.999972 0.00748804i \(-0.00238354\pi\)
\(242\) −5.00000 −0.321412
\(243\) 0 0
\(244\) 4.50000 + 7.79423i 0.288083 + 0.498974i
\(245\) 2.13746 + 3.70219i 0.136557 + 0.236524i
\(246\) 0 0
\(247\) −6.54983 + 22.6893i −0.416756 + 1.44369i
\(248\) 1.27492 0.0809573
\(249\) 0 0
\(250\) −17.6873 30.6353i −1.11864 1.93755i
\(251\) 6.63746 11.4964i 0.418953 0.725647i −0.576882 0.816828i \(-0.695731\pi\)
0.995834 + 0.0911804i \(0.0290640\pi\)
\(252\) 0 0
\(253\) −10.5498 + 18.2728i −0.663262 + 1.14880i
\(254\) 4.00000 6.92820i 0.250982 0.434714i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 7.50000 + 12.9904i 0.467837 + 0.810318i 0.999325 0.0367485i \(-0.0117000\pi\)
−0.531487 + 0.847066i \(0.678367\pi\)
\(258\) 0 0
\(259\) 0.274917 0.0170825
\(260\) 4.27492 14.8087i 0.265119 0.918400i
\(261\) 0 0
\(262\) 1.36254 + 2.35999i 0.0841781 + 0.145801i
\(263\) 10.5498 + 18.2728i 0.650531 + 1.12675i 0.982994 + 0.183636i \(0.0587868\pi\)
−0.332464 + 0.943116i \(0.607880\pi\)
\(264\) 0 0
\(265\) −15.1752 −0.932208
\(266\) 3.27492 5.67232i 0.200798 0.347792i
\(267\) 0 0
\(268\) −2.72508 −0.166461
\(269\) −9.00000 + 15.5885i −0.548740 + 0.950445i 0.449622 + 0.893219i \(0.351559\pi\)
−0.998361 + 0.0572259i \(0.981774\pi\)
\(270\) 0 0
\(271\) −12.6375 21.8887i −0.767671 1.32965i −0.938823 0.344400i \(-0.888082\pi\)
0.171152 0.985245i \(-0.445251\pi\)
\(272\) −3.00000 −0.181902
\(273\) 0 0
\(274\) 22.8248 1.37889
\(275\) −26.5498 45.9857i −1.60102 2.77304i
\(276\) 0 0
\(277\) −7.41238 + 12.8386i −0.445366 + 0.771397i −0.998078 0.0619755i \(-0.980260\pi\)
0.552711 + 0.833373i \(0.313593\pi\)
\(278\) 9.09967 0.545762
\(279\) 0 0
\(280\) −2.13746 + 3.70219i −0.127738 + 0.221248i
\(281\) 20.8248 1.24230 0.621150 0.783691i \(-0.286666\pi\)
0.621150 + 0.783691i \(0.286666\pi\)
\(282\) 0 0
\(283\) 4.72508 + 8.18408i 0.280877 + 0.486493i 0.971601 0.236625i \(-0.0760414\pi\)
−0.690724 + 0.723119i \(0.742708\pi\)
\(284\) 2.63746 + 4.56821i 0.156504 + 0.271074i
\(285\) 0 0
\(286\) 4.00000 13.8564i 0.236525 0.819346i
\(287\) −8.27492 −0.488453
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 17.6873 30.6353i 1.03863 1.79897i
\(291\) 0 0
\(292\) −2.86254 + 4.95807i −0.167518 + 0.290149i
\(293\) −9.13746 + 15.8265i −0.533816 + 0.924596i 0.465404 + 0.885099i \(0.345909\pi\)
−0.999220 + 0.0394979i \(0.987424\pi\)
\(294\) 0 0
\(295\) 25.2749 43.7774i 1.47156 2.54882i
\(296\) 0.137459 + 0.238085i 0.00798962 + 0.0138384i
\(297\) 0 0
\(298\) −1.00000 −0.0579284
\(299\) −13.1873 13.7046i −0.762641 0.792560i
\(300\) 0 0
\(301\) 5.91238 + 10.2405i 0.340784 + 0.590255i
\(302\) 6.54983 + 11.3446i 0.376901 + 0.652811i
\(303\) 0 0
\(304\) 6.54983 0.375659
\(305\) −19.2371 + 33.3197i −1.10151 + 1.90788i
\(306\) 0 0
\(307\) −1.45017 −0.0827653 −0.0413827 0.999143i \(-0.513176\pi\)
−0.0413827 + 0.999143i \(0.513176\pi\)
\(308\) −2.00000 + 3.46410i −0.113961 + 0.197386i
\(309\) 0 0
\(310\) 2.72508 + 4.71998i 0.154774 + 0.268077i
\(311\) 2.54983 0.144588 0.0722939 0.997383i \(-0.476968\pi\)
0.0722939 + 0.997383i \(0.476968\pi\)
\(312\) 0 0
\(313\) 17.6495 0.997609 0.498804 0.866715i \(-0.333773\pi\)
0.498804 + 0.866715i \(0.333773\pi\)
\(314\) −1.86254 3.22602i −0.105109 0.182055i
\(315\) 0 0
\(316\) 4.00000 6.92820i 0.225018 0.389742i
\(317\) 7.54983 0.424041 0.212020 0.977265i \(-0.431996\pi\)
0.212020 + 0.977265i \(0.431996\pi\)
\(318\) 0 0
\(319\) 16.5498 28.6652i 0.926613 1.60494i
\(320\) −4.27492 −0.238975
\(321\) 0 0
\(322\) 2.63746 + 4.56821i 0.146980 + 0.254577i
\(323\) 9.82475 + 17.0170i 0.546664 + 0.946849i
\(324\) 0 0
\(325\) 46.4622 11.4964i 2.57726 0.637706i
\(326\) 13.2749 0.735230
\(327\) 0 0
\(328\) −4.13746 7.16629i −0.228453 0.395692i
\(329\) −3.27492 + 5.67232i −0.180552 + 0.312725i
\(330\) 0 0
\(331\) −2.00000 + 3.46410i −0.109930 + 0.190404i −0.915742 0.401768i \(-0.868396\pi\)
0.805812 + 0.592172i \(0.201729\pi\)
\(332\) −5.91238 + 10.2405i −0.324484 + 0.562022i
\(333\) 0 0
\(334\) 0 0
\(335\) −5.82475 10.0888i −0.318240 0.551208i
\(336\) 0 0
\(337\) 0.274917 0.0149757 0.00748785 0.999972i \(-0.497617\pi\)
0.00748785 + 0.999972i \(0.497617\pi\)
\(338\) 11.0000 + 6.92820i 0.598321 + 0.376845i
\(339\) 0 0
\(340\) −6.41238 11.1066i −0.347760 0.602338i
\(341\) 2.54983 + 4.41644i 0.138081 + 0.239164i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −5.91238 + 10.2405i −0.318774 + 0.552133i
\(345\) 0 0
\(346\) −4.54983 −0.244601
\(347\) 15.2749 26.4569i 0.820001 1.42028i −0.0856804 0.996323i \(-0.527306\pi\)
0.905681 0.423960i \(-0.139360\pi\)
\(348\) 0 0
\(349\) 17.4622 + 30.2454i 0.934731 + 1.61900i 0.775113 + 0.631822i \(0.217693\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(350\) −13.2749 −0.709574
\(351\) 0 0
\(352\) −4.00000 −0.213201
\(353\) −9.77492 16.9307i −0.520266 0.901128i −0.999722 0.0235618i \(-0.992499\pi\)
0.479456 0.877566i \(-0.340834\pi\)
\(354\) 0 0
\(355\) −11.2749 + 19.5287i −0.598410 + 1.03648i
\(356\) −0.725083 −0.0384293
\(357\) 0 0
\(358\) −0.725083 + 1.25588i −0.0383218 + 0.0663753i
\(359\) 1.09967 0.0580383 0.0290192 0.999579i \(-0.490762\pi\)
0.0290192 + 0.999579i \(0.490762\pi\)
\(360\) 0 0
\(361\) −11.9502 20.6983i −0.628956 1.08938i
\(362\) −8.41238 14.5707i −0.442145 0.765817i
\(363\) 0 0
\(364\) −2.50000 2.59808i −0.131036 0.136176i
\(365\) −24.4743 −1.28104
\(366\) 0 0
\(367\) −6.63746 11.4964i −0.346473 0.600108i 0.639148 0.769084i \(-0.279287\pi\)
−0.985620 + 0.168976i \(0.945954\pi\)
\(368\) −2.63746 + 4.56821i −0.137487 + 0.238135i
\(369\) 0 0
\(370\) −0.587624 + 1.01779i −0.0305491 + 0.0529126i
\(371\) −1.77492 + 3.07425i −0.0921491 + 0.159607i
\(372\) 0 0
\(373\) −13.4124 + 23.2309i −0.694466 + 1.20285i 0.275894 + 0.961188i \(0.411026\pi\)
−0.970360 + 0.241663i \(0.922307\pi\)
\(374\) −6.00000 10.3923i −0.310253 0.537373i
\(375\) 0 0
\(376\) −6.54983 −0.337782
\(377\) 20.6873 + 21.4989i 1.06545 + 1.10725i
\(378\) 0 0
\(379\) 10.0000 + 17.3205i 0.513665 + 0.889695i 0.999874 + 0.0158521i \(0.00504609\pi\)
−0.486209 + 0.873843i \(0.661621\pi\)
\(380\) 14.0000 + 24.2487i 0.718185 + 1.24393i
\(381\) 0 0
\(382\) 6.72508 0.344085
\(383\) 11.0997 19.2252i 0.567167 0.982361i −0.429678 0.902982i \(-0.641373\pi\)
0.996844 0.0793791i \(-0.0252938\pi\)
\(384\) 0 0
\(385\) −17.0997 −0.871480
\(386\) −12.4124 + 21.4989i −0.631773 + 1.09426i
\(387\) 0 0
\(388\) 0.274917 + 0.476171i 0.0139568 + 0.0241739i
\(389\) 24.6495 1.24978 0.624890 0.780713i \(-0.285144\pi\)
0.624890 + 0.780713i \(0.285144\pi\)
\(390\) 0 0
\(391\) −15.8248 −0.800292
\(392\) 0.500000 + 0.866025i 0.0252538 + 0.0437409i
\(393\) 0 0
\(394\) 10.9124 18.9008i 0.549758 0.952208i
\(395\) 34.1993 1.72076
\(396\) 0 0
\(397\) −11.6375 + 20.1567i −0.584067 + 1.01163i 0.410924 + 0.911670i \(0.365206\pi\)
−0.994991 + 0.0999645i \(0.968127\pi\)
\(398\) −11.8248 −0.592721
\(399\) 0 0
\(400\) −6.63746 11.4964i −0.331873 0.574821i
\(401\) −1.13746 1.97014i −0.0568020 0.0983839i 0.836226 0.548385i \(-0.184757\pi\)
−0.893028 + 0.450001i \(0.851424\pi\)
\(402\) 0 0
\(403\) −4.46221 + 1.10411i −0.222279 + 0.0549997i
\(404\) −1.72508 −0.0858261
\(405\) 0 0
\(406\) −4.13746 7.16629i −0.205339 0.355657i
\(407\) −0.549834 + 0.952341i −0.0272543 + 0.0472058i
\(408\) 0 0
\(409\) 14.9622 25.9153i 0.739834 1.28143i −0.212736 0.977110i \(-0.568238\pi\)
0.952570 0.304320i \(-0.0984292\pi\)
\(410\) 17.6873 30.6353i 0.873513 1.51297i
\(411\) 0 0
\(412\) −2.63746 + 4.56821i −0.129938 + 0.225060i
\(413\) −5.91238 10.2405i −0.290929 0.503904i
\(414\) 0 0
\(415\) −50.5498 −2.48139
\(416\) 1.00000 3.46410i 0.0490290 0.169842i
\(417\) 0 0
\(418\) 13.0997 + 22.6893i 0.640726 + 1.10977i
\(419\) −11.1873 19.3770i −0.546535 0.946626i −0.998509 0.0545951i \(-0.982613\pi\)
0.451974 0.892031i \(-0.350720\pi\)
\(420\) 0 0
\(421\) 8.27492 0.403295 0.201647 0.979458i \(-0.435370\pi\)
0.201647 + 0.979458i \(0.435370\pi\)
\(422\) 10.5498 18.2728i 0.513558 0.889508i
\(423\) 0 0
\(424\) −3.54983 −0.172395
\(425\) 19.9124 34.4892i 0.965892 1.67297i
\(426\) 0 0
\(427\) 4.50000 + 7.79423i 0.217770 + 0.377189i
\(428\) −2.54983 −0.123251
\(429\) 0 0
\(430\) −50.5498 −2.43773
\(431\) −6.63746 11.4964i −0.319715 0.553763i 0.660713 0.750638i \(-0.270254\pi\)
−0.980429 + 0.196875i \(0.936921\pi\)
\(432\) 0 0
\(433\) 5.13746 8.89834i 0.246891 0.427627i −0.715771 0.698335i \(-0.753925\pi\)
0.962661 + 0.270708i \(0.0872579\pi\)
\(434\) 1.27492 0.0611980
\(435\) 0 0
\(436\) 2.27492 3.94027i 0.108949 0.188705i
\(437\) 34.5498 1.65274
\(438\) 0 0
\(439\) −6.54983 11.3446i −0.312607 0.541450i 0.666319 0.745667i \(-0.267869\pi\)
−0.978926 + 0.204216i \(0.934535\pi\)
\(440\) −8.54983 14.8087i −0.407597 0.705979i
\(441\) 0 0
\(442\) 10.5000 2.59808i 0.499434 0.123578i
\(443\) −34.5498 −1.64151 −0.820756 0.571279i \(-0.806448\pi\)
−0.820756 + 0.571279i \(0.806448\pi\)
\(444\) 0 0
\(445\) −1.54983 2.68439i −0.0734692 0.127252i
\(446\) 5.36254 9.28819i 0.253924 0.439809i
\(447\) 0 0
\(448\) −0.500000 + 0.866025i −0.0236228 + 0.0409159i
\(449\) −9.54983 + 16.5408i −0.450685 + 0.780609i −0.998429 0.0560374i \(-0.982153\pi\)
0.547744 + 0.836646i \(0.315487\pi\)
\(450\) 0 0
\(451\) 16.5498 28.6652i 0.779301 1.34979i
\(452\) 7.41238 + 12.8386i 0.348649 + 0.603877i
\(453\) 0 0
\(454\) −21.0997 −0.990257
\(455\) 4.27492 14.8087i 0.200411 0.694245i
\(456\) 0 0
\(457\) 8.50000 + 14.7224i 0.397613 + 0.688686i 0.993431 0.114433i \(-0.0365053\pi\)
−0.595818 + 0.803120i \(0.703172\pi\)
\(458\) 6.36254 + 11.0202i 0.297302 + 0.514942i
\(459\) 0 0
\(460\) −22.5498 −1.05139
\(461\) −9.68729 + 16.7789i −0.451182 + 0.781471i −0.998460 0.0554807i \(-0.982331\pi\)
0.547278 + 0.836951i \(0.315664\pi\)
\(462\) 0 0
\(463\) −10.5498 −0.490292 −0.245146 0.969486i \(-0.578836\pi\)
−0.245146 + 0.969486i \(0.578836\pi\)
\(464\) 4.13746 7.16629i 0.192077 0.332687i
\(465\) 0 0
\(466\) −3.72508 6.45203i −0.172561 0.298885i
\(467\) 8.17525 0.378305 0.189153 0.981948i \(-0.439426\pi\)
0.189153 + 0.981948i \(0.439426\pi\)
\(468\) 0 0
\(469\) −2.72508 −0.125833
\(470\) −14.0000 24.2487i −0.645772 1.11851i
\(471\) 0 0
\(472\) 5.91238 10.2405i 0.272139 0.471359i
\(473\) −47.2990 −2.17481
\(474\) 0 0
\(475\) −43.4743 + 75.2996i −1.99474 + 3.45498i
\(476\) −3.00000 −0.137505
\(477\) 0 0
\(478\) 2.63746 + 4.56821i 0.120635 + 0.208945i
\(479\) 10.0000 + 17.3205i 0.456912 + 0.791394i 0.998796 0.0490589i \(-0.0156222\pi\)
−0.541884 + 0.840453i \(0.682289\pi\)
\(480\) 0 0
\(481\) −0.687293 0.714256i −0.0313379 0.0325673i
\(482\) 15.7251 0.716258
\(483\) 0 0
\(484\) −2.50000 4.33013i −0.113636 0.196824i
\(485\) −1.17525 + 2.03559i −0.0533653 + 0.0924314i
\(486\) 0 0
\(487\) 0.549834 0.952341i 0.0249154 0.0431547i −0.853299 0.521422i \(-0.825402\pi\)
0.878214 + 0.478267i \(0.158735\pi\)
\(488\) −4.50000 + 7.79423i −0.203705 + 0.352828i
\(489\) 0 0
\(490\) −2.13746 + 3.70219i −0.0965605 + 0.167248i
\(491\) 12.5498 + 21.7370i 0.566366 + 0.980975i 0.996921 + 0.0784105i \(0.0249845\pi\)
−0.430555 + 0.902564i \(0.641682\pi\)
\(492\) 0 0
\(493\) 24.8248 1.11805
\(494\) −22.9244 + 5.67232i −1.03142 + 0.255210i
\(495\) 0 0
\(496\) 0.637459 + 1.10411i 0.0286227 + 0.0495760i
\(497\) 2.63746 + 4.56821i 0.118306 + 0.204912i
\(498\) 0 0
\(499\) −31.8248 −1.42467 −0.712336 0.701839i \(-0.752363\pi\)
−0.712336 + 0.701839i \(0.752363\pi\)
\(500\) 17.6873 30.6353i 0.791000 1.37005i
\(501\) 0 0
\(502\) 13.2749 0.592489
\(503\) −10.5498 + 18.2728i −0.470394 + 0.814746i −0.999427 0.0338552i \(-0.989221\pi\)
0.529033 + 0.848601i \(0.322555\pi\)
\(504\) 0 0
\(505\) −3.68729 6.38658i −0.164082 0.284199i
\(506\) −21.0997 −0.937995
\(507\) 0 0
\(508\) 8.00000 0.354943
\(509\) −6.58762 11.4101i −0.291991 0.505744i 0.682289 0.731082i \(-0.260985\pi\)
−0.974281 + 0.225339i \(0.927651\pi\)
\(510\) 0 0
\(511\) −2.86254 + 4.95807i −0.126631 + 0.219332i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −7.50000 + 12.9904i −0.330811 + 0.572981i
\(515\) −22.5498 −0.993664
\(516\) 0 0
\(517\) −13.0997 22.6893i −0.576123 0.997874i
\(518\) 0.137459 + 0.238085i 0.00603958 + 0.0104609i
\(519\) 0 0
\(520\) 14.9622 3.70219i 0.656136 0.162352i
\(521\) 20.8248 0.912349 0.456174 0.889890i \(-0.349219\pi\)
0.456174 + 0.889890i \(0.349219\pi\)
\(522\) 0 0
\(523\) 13.0997 + 22.6893i 0.572809 + 0.992133i 0.996276 + 0.0862221i \(0.0274795\pi\)
−0.423467 + 0.905911i \(0.639187\pi\)
\(524\) −1.36254 + 2.35999i −0.0595229 + 0.103097i
\(525\) 0 0
\(526\) −10.5498 + 18.2728i −0.459995 + 0.796734i
\(527\) −1.91238 + 3.31233i −0.0833044 + 0.144287i
\(528\) 0 0
\(529\) −2.41238 + 4.17836i −0.104886 + 0.181668i
\(530\) −7.58762 13.1422i −0.329585 0.570859i
\(531\) 0 0
\(532\) 6.54983 0.283971
\(533\) 20.6873 + 21.4989i 0.896066 + 0.931219i
\(534\) 0 0
\(535\) −5.45017 9.43996i −0.235631 0.408125i
\(536\) −1.36254 2.35999i −0.0588528 0.101936i
\(537\) 0 0
\(538\) −18.0000 −0.776035
\(539\) −2.00000 + 3.46410i −0.0861461 + 0.149209i
\(540\) 0 0
\(541\) 25.3746 1.09094 0.545469 0.838131i \(-0.316351\pi\)
0.545469 + 0.838131i \(0.316351\pi\)
\(542\) 12.6375 21.8887i 0.542825 0.940201i
\(543\) 0 0
\(544\) −1.50000 2.59808i −0.0643120 0.111392i
\(545\) 19.4502 0.833154
\(546\) 0 0
\(547\) 2.90033 0.124009 0.0620046 0.998076i \(-0.480251\pi\)
0.0620046 + 0.998076i \(0.480251\pi\)
\(548\) 11.4124 + 19.7668i 0.487513 + 0.844396i
\(549\) 0 0
\(550\) 26.5498 45.9857i 1.13209 1.96084i
\(551\) −54.1993 −2.30897
\(552\) 0 0
\(553\) 4.00000 6.92820i 0.170097 0.294617i
\(554\) −14.8248 −0.629843
\(555\) 0 0
\(556\) 4.54983 + 7.88054i 0.192956 + 0.334210i
\(557\) −17.5997 30.4835i −0.745722 1.29163i −0.949857 0.312685i \(-0.898771\pi\)
0.204135 0.978943i \(-0.434562\pi\)
\(558\) 0 0
\(559\) 11.8248 40.9621i 0.500134 1.73251i
\(560\) −4.27492 −0.180648
\(561\) 0 0
\(562\) 10.4124 + 18.0348i 0.439220 + 0.760751i
\(563\) 12.0000 20.7846i 0.505740 0.875967i −0.494238 0.869326i \(-0.664553\pi\)
0.999978 0.00664037i \(-0.00211371\pi\)
\(564\) 0 0
\(565\) −31.6873 + 54.8840i −1.33309 + 2.30899i
\(566\) −4.72508 + 8.18408i −0.198610 + 0.344003i
\(567\) 0 0
\(568\) −2.63746 + 4.56821i −0.110665 + 0.191678i
\(569\) 2.45017 + 4.24381i 0.102716 + 0.177910i 0.912803 0.408400i \(-0.133913\pi\)
−0.810087 + 0.586310i \(0.800580\pi\)
\(570\) 0 0
\(571\) −14.7251 −0.616226 −0.308113 0.951350i \(-0.599697\pi\)
−0.308113 + 0.951350i \(0.599697\pi\)
\(572\) 14.0000 3.46410i 0.585369 0.144841i
\(573\) 0 0
\(574\) −4.13746 7.16629i −0.172694 0.299115i
\(575\) −35.0120 60.6426i −1.46010 2.52897i
\(576\) 0 0
\(577\) 9.37459 0.390269 0.195135 0.980776i \(-0.437486\pi\)
0.195135 + 0.980776i \(0.437486\pi\)
\(578\) −4.00000 + 6.92820i −0.166378 + 0.288175i
\(579\) 0 0
\(580\) 35.3746 1.46885
\(581\) −5.91238 + 10.2405i −0.245287 + 0.424849i
\(582\) 0 0
\(583\) −7.09967 12.2970i −0.294038 0.509289i
\(584\) −5.72508 −0.236906
\(585\) 0 0
\(586\) −18.2749 −0.754930
\(587\) 4.46221 + 7.72877i 0.184175 + 0.319001i 0.943298 0.331946i \(-0.107705\pi\)
−0.759123 + 0.650947i \(0.774372\pi\)
\(588\) 0 0
\(589\) 4.17525 7.23174i 0.172038 0.297979i
\(590\) 50.5498 2.08110
\(591\) 0 0
\(592\) −0.137459 + 0.238085i −0.00564951 + 0.00978525i
\(593\) −4.45017 −0.182746 −0.0913732 0.995817i \(-0.529126\pi\)
−0.0913732 + 0.995817i \(0.529126\pi\)
\(594\) 0 0
\(595\) −6.41238 11.1066i −0.262882 0.455325i
\(596\) −0.500000 0.866025i −0.0204808 0.0354738i
\(597\) 0 0
\(598\) 5.27492 18.2728i 0.215707 0.747232i
\(599\) 10.7251 0.438215 0.219108 0.975701i \(-0.429685\pi\)
0.219108 + 0.975701i \(0.429685\pi\)
\(600\) 0 0
\(601\) 3.86254 + 6.69012i 0.157556 + 0.272896i 0.933987 0.357307i \(-0.116305\pi\)
−0.776431 + 0.630203i \(0.782972\pi\)
\(602\) −5.91238 + 10.2405i −0.240970 + 0.417373i
\(603\) 0 0
\(604\) −6.54983 + 11.3446i −0.266509 + 0.461607i
\(605\) 10.6873 18.5109i 0.434500 0.752577i
\(606\) 0 0
\(607\) −7.36254 + 12.7523i −0.298836 + 0.517600i −0.975870 0.218352i \(-0.929932\pi\)
0.677034 + 0.735952i \(0.263265\pi\)
\(608\) 3.27492 + 5.67232i 0.132815 + 0.230043i
\(609\) 0 0
\(610\) −38.4743 −1.55778
\(611\) 22.9244 5.67232i 0.927423 0.229478i
\(612\) 0 0
\(613\) −14.6873 25.4391i −0.593214 1.02748i −0.993796 0.111216i \(-0.964525\pi\)
0.400582 0.916261i \(-0.368808\pi\)
\(614\) −0.725083 1.25588i −0.0292620 0.0506832i
\(615\) 0 0
\(616\) −4.00000 −0.161165
\(617\) 19.9622 34.5756i 0.803648 1.39196i −0.113551 0.993532i \(-0.536223\pi\)
0.917200 0.398428i \(-0.130444\pi\)
\(618\) 0 0
\(619\) −15.6495 −0.629007 −0.314503 0.949256i \(-0.601838\pi\)
−0.314503 + 0.949256i \(0.601838\pi\)
\(620\) −2.72508 + 4.71998i −0.109442 + 0.189559i
\(621\) 0 0
\(622\) 1.27492 + 2.20822i 0.0511195 + 0.0885416i
\(623\) −0.725083 −0.0290498
\(624\) 0 0
\(625\) 84.8488 3.39395
\(626\) 8.82475 + 15.2849i 0.352708 + 0.610908i
\(627\) 0 0
\(628\) 1.86254 3.22602i 0.0743235 0.128732i
\(629\) −0.824752 −0.0328850
\(630\) 0 0
\(631\) 14.5498 25.2011i 0.579220 1.00324i −0.416349 0.909205i \(-0.636691\pi\)
0.995569 0.0940333i \(-0.0299760\pi\)
\(632\) 8.00000 0.318223
\(633\) 0 0
\(634\) 3.77492 + 6.53835i 0.149921 + 0.259671i
\(635\) 17.0997 + 29.6175i 0.678580 + 1.17533i
\(636\) 0 0
\(637\) −2.50000 2.59808i −0.0990536 0.102940i
\(638\) 33.0997 1.31043
\(639\) 0 0
\(640\) −2.13746 3.70219i −0.0844905 0.146342i
\(641\) 9.41238 16.3027i 0.371766 0.643918i −0.618071 0.786122i \(-0.712086\pi\)
0.989837 + 0.142204i \(0.0454189\pi\)
\(642\) 0 0
\(643\) 16.3746 28.3616i 0.645751 1.11847i −0.338377 0.941011i \(-0.609878\pi\)
0.984128 0.177462i \(-0.0567888\pi\)
\(644\) −2.63746 + 4.56821i −0.103930 + 0.180013i
\(645\) 0 0
\(646\) −9.82475 + 17.0170i −0.386550 + 0.669524i
\(647\) 4.72508 + 8.18408i 0.185762 + 0.321750i 0.943833 0.330423i \(-0.107191\pi\)
−0.758071 + 0.652172i \(0.773858\pi\)
\(648\) 0 0
\(649\) 47.2990 1.85665
\(650\) 33.1873 + 34.4892i 1.30171 + 1.35278i
\(651\) 0 0
\(652\) 6.63746 + 11.4964i 0.259943 + 0.450234i
\(653\) 16.7371 + 28.9896i 0.654974 + 1.13445i 0.981900 + 0.189399i \(0.0606539\pi\)
−0.326926 + 0.945050i \(0.606013\pi\)
\(654\) 0 0
\(655\) −11.6495 −0.455184
\(656\) 4.13746 7.16629i 0.161541 0.279797i
\(657\) 0 0
\(658\) −6.54983 −0.255339
\(659\) −6.72508 + 11.6482i −0.261972 + 0.453749i −0.966766 0.255663i \(-0.917706\pi\)
0.704794 + 0.709412i \(0.251039\pi\)
\(660\) 0 0
\(661\) −4.95017 8.57394i −0.192539 0.333488i 0.753552 0.657388i \(-0.228339\pi\)
−0.946091 + 0.323901i \(0.895006\pi\)
\(662\) −4.00000 −0.155464
\(663\) 0 0
\(664\) −11.8248 −0.458889
\(665\) 14.0000 + 24.2487i 0.542897 + 0.940325i
\(666\) 0 0
\(667\) 21.8248 37.8016i 0.845058 1.46368i
\(668\) 0 0
\(669\) 0 0
\(670\) 5.82475 10.0888i 0.225030 0.389763i
\(671\) −36.0000 −1.38976
\(672\) 0 0
\(673\) 9.04983 + 15.6748i 0.348845 + 0.604218i 0.986045 0.166481i \(-0.0532405\pi\)
−0.637199 + 0.770699i \(0.719907\pi\)
\(674\) 0.137459 + 0.238085i 0.00529471 + 0.00917070i
\(675\) 0 0
\(676\) −0.500000 + 12.9904i −0.0192308 + 0.499630i
\(677\) 33.6495 1.29326 0.646628 0.762806i \(-0.276179\pi\)
0.646628 + 0.762806i \(0.276179\pi\)
\(678\) 0 0
\(679\) 0.274917 + 0.476171i 0.0105504 + 0.0182738i
\(680\) 6.41238 11.1066i 0.245903 0.425917i
\(681\) 0 0
\(682\) −2.54983 + 4.41644i −0.0976382 + 0.169114i
\(683\) −2.17525 + 3.76764i −0.0832336 + 0.144165i −0.904637 0.426183i \(-0.859858\pi\)
0.821404 + 0.570347i \(0.193191\pi\)
\(684\) 0 0
\(685\) −48.7870 + 84.5015i −1.86405 + 3.22864i
\(686\) 0.500000 + 0.866025i 0.0190901 + 0.0330650i
\(687\) 0 0
\(688\) −11.8248 −0.450814
\(689\) 12.4244 3.07425i 0.473333 0.117119i
\(690\) 0 0
\(691\) −4.00000 6.92820i −0.152167 0.263561i 0.779857 0.625958i \(-0.215292\pi\)
−0.932024 + 0.362397i \(0.881959\pi\)
\(692\) −2.27492 3.94027i −0.0864794 0.149787i
\(693\) 0 0
\(694\) 30.5498 1.15966
\(695\) −19.4502 + 33.6887i −0.737787 + 1.27788i
\(696\) 0 0
\(697\) 24.8248 0.940305
\(698\) −17.4622 + 30.2454i −0.660954 + 1.14481i
\(699\) 0 0
\(700\) −6.63746 11.4964i −0.250872 0.434524i
\(701\) −14.9244 −0.563688 −0.281844 0.959460i \(-0.590946\pi\)
−0.281844 + 0.959460i \(0.590946\pi\)
\(702\) 0 0
\(703\) 1.80066 0.0679133
\(704\) −2.00000 3.46410i −0.0753778 0.130558i
\(705\) 0 0
\(706\) 9.77492 16.9307i 0.367884 0.637194i
\(707\) −1.72508 −0.0648784
\(708\) 0 0
\(709\) 23.6873 41.0276i 0.889595 1.54082i 0.0492402 0.998787i \(-0.484320\pi\)
0.840355 0.542037i \(-0.182347\pi\)
\(710\) −22.5498 −0.846280
\(711\) 0 0
\(712\) −0.362541 0.627940i −0.0135868 0.0235331i
\(713\) 3.36254 + 5.82409i 0.125928 + 0.218114i
\(714\) 0 0
\(715\) 42.7492 + 44.4262i 1.59873 + 1.66145i
\(716\) −1.45017 −0.0541952
\(717\) 0 0
\(718\) 0.549834 + 0.952341i 0.0205196 + 0.0355411i
\(719\) −4.00000 + 6.92820i −0.149175 + 0.258378i −0.930923 0.365216i \(-0.880995\pi\)
0.781748 + 0.623595i \(0.214328\pi\)
\(720\) 0 0
\(721\) −2.63746 + 4.56821i −0.0982241 + 0.170129i
\(722\) 11.9502 20.6983i 0.444739 0.770311i
\(723\) 0 0
\(724\) 8.41238 14.5707i 0.312643 0.541514i
\(725\) 54.9244 + 95.1319i 2.03984 + 3.53311i
\(726\) 0 0
\(727\) 19.8248 0.735259 0.367630 0.929972i \(-0.380169\pi\)
0.367630 + 0.929972i \(0.380169\pi\)
\(728\) 1.00000 3.46410i 0.0370625 0.128388i
\(729\) 0 0
\(730\) −12.2371 21.1953i −0.452916 0.784474i
\(731\) −17.7371 30.7216i −0.656031 1.13628i
\(732\) 0 0
\(733\) −32.6495 −1.20594 −0.602968 0.797765i \(-0.706016\pi\)
−0.602968 + 0.797765i \(0.706016\pi\)
\(734\) 6.63746 11.4964i 0.244993 0.424340i
\(735\) 0 0
\(736\) −5.27492 −0.194436
\(737\) 5.45017 9.43996i 0.200759 0.347726i
\(738\) 0 0
\(739\) 24.6375 + 42.6733i 0.906304 + 1.56976i 0.819158 + 0.573568i \(0.194441\pi\)
0.0871458 + 0.996196i \(0.472225\pi\)
\(740\) −1.17525 −0.0432030
\(741\) 0 0
\(742\) −3.54983 −0.130319
\(743\) −2.08762 3.61587i −0.0765875 0.132653i 0.825188 0.564858i \(-0.191069\pi\)
−0.901776 + 0.432205i \(0.857736\pi\)
\(744\) 0 0
\(745\) 2.13746 3.70219i 0.0783104 0.135638i
\(746\) −26.8248 −0.982124
\(747\) 0 0
\(748\) 6.00000 10.3923i 0.219382 0.379980i
\(749\) −2.54983 −0.0931689
\(750\) 0 0
\(751\) 9.27492 + 16.0646i 0.338447 + 0.586207i 0.984141 0.177390i \(-0.0567652\pi\)
−0.645694 + 0.763596i \(0.723432\pi\)
\(752\) −3.27492 5.67232i −0.119424 0.206848i
\(753\) 0 0
\(754\) −8.27492 + 28.6652i −0.301355 + 1.04392i
\(755\) −56.0000 −2.03805
\(756\) 0 0
\(757\) 13.0000 + 22.5167i 0.472493 + 0.818382i 0.999505 0.0314762i \(-0.0100208\pi\)
−0.527011 + 0.849858i \(0.676688\pi\)
\(758\) −10.0000 + 17.3205i −0.363216 + 0.629109i
\(759\) 0 0
\(760\) −14.0000 + 24.2487i −0.507833 + 0.879593i
\(761\) 10.0997 17.4931i 0.366113 0.634126i −0.622841 0.782348i \(-0.714022\pi\)
0.988954 + 0.148222i \(0.0473551\pi\)
\(762\) 0 0
\(763\) 2.27492 3.94027i 0.0823575 0.142647i
\(764\) 3.36254 + 5.82409i 0.121652 + 0.210708i
\(765\) 0 0
\(766\) 22.1993 0.802095
\(767\) −11.8248 + 40.9621i −0.426967 + 1.47906i
\(768\) 0 0
\(769\) −20.8248 36.0695i −0.750960 1.30070i −0.947358 0.320176i \(-0.896258\pi\)
0.196398 0.980524i \(-0.437075\pi\)
\(770\) −8.54983 14.8087i −0.308115 0.533670i
\(771\) 0 0
\(772\) −24.8248 −0.893462
\(773\) −10.4502 + 18.1002i −0.375866 + 0.651020i −0.990456 0.137827i \(-0.955988\pi\)
0.614590 + 0.788847i \(0.289321\pi\)
\(774\) 0 0
\(775\) −16.9244 −0.607943
\(776\) −0.274917 + 0.476171i −0.00986895 + 0.0170935i
\(777\) 0 0
\(778\) 12.3248 + 21.3471i 0.441864 + 0.765330i
\(779\) −54.1993 −1.94189
\(780\) 0 0
\(781\) −21.0997 −0.755006
\(782\) −7.91238 13.7046i −0.282946 0.490077i
\(783\) 0 0
\(784\) −0.500000 + 0.866025i −0.0178571 + 0.0309295i
\(785\) 15.9244 0.568367
\(786\) 0 0
\(787\) −10.5498 + 18.2728i −0.376061 + 0.651357i −0.990485 0.137619i \(-0.956055\pi\)
0.614424 + 0.788976i \(0.289388\pi\)
\(788\) 21.8248 0.777475
\(789\) 0 0
\(790\) 17.0997 + 29.6175i 0.608379 + 1.05374i
\(791\) 7.41238 + 12.8386i 0.263554 + 0.456488i
\(792\) 0 0
\(793\) 9.00000 31.1769i 0.319599 1.10712i
\(794\) −23.2749 −0.825996
\(795\) 0 0
\(796\) −5.91238 10.2405i −0.209559 0.362966i
\(797\) 8.27492 14.3326i 0.293113 0.507686i −0.681431 0.731882i \(-0.738642\pi\)
0.974544 + 0.224196i \(0.0719756\pi\)
\(798\) 0 0
\(799\) 9.82475 17.0170i 0.347575 0.602017i
\(800\) 6.63746 11.4964i 0.234670 0.406460i
\(801\) 0 0
\(802\) 1.13746 1.97014i 0.0401651 0.0695679i
\(803\) −11.4502 19.8323i −0.404068 0.699866i
\(804\) 0 0
\(805\) −22.5498 −0.794777
\(806\) −3.18729 3.31233i −0.112268 0.116672i
\(807\) 0 0
\(808\) −0.862541 1.49397i −0.0303441 0.0525575i
\(809\) 4.86254 + 8.42217i 0.170958 + 0.296108i 0.938755 0.344585i \(-0.111980\pi\)
−0.767797 + 0.640693i \(0.778647\pi\)
\(810\) 0 0
\(811\) 5.09967 0.179074 0.0895368 0.995984i \(-0.471461\pi\)
0.0895368 + 0.995984i \(0.471461\pi\)
\(812\) 4.13746 7.16629i 0.145196 0.251487i
\(813\) 0 0
\(814\) −1.09967 −0.0385434
\(815\) −28.3746 + 49.1462i −0.993918 + 1.72152i
\(816\) 0 0
\(817\) 38.7251 + 67.0738i 1.35482 + 2.34662i
\(818\) 29.9244 1.04628
\(819\) 0 0
\(820\) 35.3746 1.23533
\(821\) 7.63746 + 13.2285i 0.266549 + 0.461677i 0.967968 0.251072i \(-0.0807832\pi\)
−0.701419 + 0.712749i \(0.747450\pi\)
\(822\) 0 0
\(823\) 3.45017 5.97586i 0.120265 0.208305i −0.799607 0.600524i \(-0.794959\pi\)
0.919872 + 0.392218i \(0.128292\pi\)
\(824\) −5.27492 −0.183760
\(825\) 0 0
\(826\) 5.91238 10.2405i 0.205718 0.356314i
\(827\) −5.09967 −0.177333 −0.0886664 0.996061i \(-0.528261\pi\)
−0.0886664 + 0.996061i \(0.528261\pi\)
\(828\) 0 0
\(829\) 22.4124 + 38.8194i 0.778414 + 1.34825i 0.932856 + 0.360251i \(0.117309\pi\)
−0.154442 + 0.988002i \(0.549358\pi\)
\(830\) −25.2749 43.7774i −0.877305 1.51954i
\(831\) 0 0
\(832\) 3.50000 0.866025i 0.121341 0.0300240i
\(833\) −3.00000 −0.103944
\(834\) 0 0
\(835\) 0 0
\(836\) −13.0997 + 22.6893i −0.453062 + 0.784726i
\(837\) 0 0
\(838\) 11.1873 19.3770i 0.386459 0.669366i
\(839\) −10.3746 + 17.9693i −0.358170 + 0.620369i −0.987655 0.156643i \(-0.949933\pi\)
0.629485 + 0.777013i \(0.283266\pi\)
\(840\) 0 0
\(841\) −19.7371 + 34.1857i −0.680591 + 1.17882i
\(842\) 4.13746 + 7.16629i 0.142586 + 0.246967i
\(843\) 0 0
\(844\) 21.0997 0.726281
\(845\) −49.1615 + 25.9153i −1.69121 + 0.891514i
\(846\) 0 0
\(847\) −2.50000 4.33013i −0.0859010 0.148785i
\(848\) −1.77492 3.07425i −0.0609509 0.105570i
\(849\) 0 0
\(850\) 39.8248 1.36598
\(851\) −0.725083 + 1.25588i −0.0248555 + 0.0430510i
\(852\) 0 0
\(853\) −14.4502 −0.494764 −0.247382 0.968918i \(-0.579570\pi\)
−0.247382 + 0.968918i \(0.579570\pi\)
\(854\) −4.50000 + 7.79423i −0.153987 + 0.266713i
\(855\) 0 0
\(856\) −1.27492 2.20822i −0.0435758 0.0754755i
\(857\) 36.8248 1.25791 0.628955 0.777442i \(-0.283483\pi\)
0.628955 + 0.777442i \(0.283483\pi\)
\(858\) 0 0
\(859\) −27.6495 −0.943389 −0.471694 0.881762i \(-0.656357\pi\)
−0.471694 + 0.881762i \(0.656357\pi\)
\(860\) −25.2749 43.7774i −0.861868 1.49280i
\(861\) 0 0
\(862\) 6.63746 11.4964i 0.226073 0.391569i
\(863\) −35.2990 −1.20159 −0.600796 0.799402i \(-0.705150\pi\)
−0.600796 + 0.799402i \(0.705150\pi\)
\(864\) 0 0
\(865\) 9.72508 16.8443i 0.330663 0.572725i
\(866\) 10.2749 0.349156
\(867\) 0 0
\(868\) 0.637459 + 1.10411i 0.0216368 + 0.0374760i
\(869\) 16.0000 + 27.7128i 0.542763 + 0.940093i
\(870\) 0 0
\(871\) 6.81271 + 7.07997i 0.230840 + 0.239896i
\(872\) 4.54983 0.154077
\(873\) 0 0
\(874\) 17.2749 + 29.9210i 0.584333 + 1.01209i
\(875\) 17.6873 30.6353i 0.597940 1.03566i
\(876\) 0 0
\(877\) 1.86254 3.22602i 0.0628936 0.108935i −0.832864 0.553478i \(-0.813300\pi\)
0.895758 + 0.444543i \(0.146634\pi\)
\(878\) 6.54983 11.3446i 0.221046 0.382863i
\(879\) 0 0
\(880\) 8.54983 14.8087i 0.288215 0.499203i
\(881\) 0.774917 + 1.34220i 0.0261076 + 0.0452197i 0.878784 0.477220i \(-0.158355\pi\)
−0.852676 + 0.522439i \(0.825022\pi\)
\(882\) 0 0
\(883\) 58.0241 1.95267 0.976333 0.216273i \(-0.0693900\pi\)
0.976333 + 0.216273i \(0.0693900\pi\)
\(884\) 7.50000 + 7.79423i 0.252252 + 0.262148i
\(885\) 0 0
\(886\) −17.2749 29.9210i −0.580362 1.00522i
\(887\) 23.2749 + 40.3133i 0.781495 + 1.35359i 0.931071 + 0.364839i \(0.118876\pi\)
−0.149575 + 0.988750i \(0.547791\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) 1.54983 2.68439i 0.0519506 0.0899810i
\(891\) 0 0
\(892\) 10.7251 0.359102
\(893\) −21.4502 + 37.1528i −0.717802 + 1.24327i
\(894\) 0 0
\(895\) −3.09967 5.36878i −0.103611 0.179459i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −19.0997 −0.637364
\(899\) −5.27492 9.13642i −0.175928 0.304717i
\(900\) 0 0
\(901\) 5.32475 9.22274i 0.177393 0.307254i
\(902\) 33.0997 1.10210
\(903\) 0 0
\(904\) −7.41238 + 12.8386i −0.246532 + 0.427006i
\(905\) 71.9244 2.39085
\(906\) 0 0
\(907\) 19.9124 + 34.4892i 0.661180 + 1.14520i 0.980306 + 0.197484i \(0.0632772\pi\)
−0.319126 + 0.947712i \(0.603389\pi\)
\(908\) −10.5498 18.2728i −0.350109 0.606406i
\(909\) 0 0
\(910\) 14.9622 3.70219i 0.495992 0.122726i
\(911\) 25.0997 0.831589 0.415795 0.909459i \(-0.363504\pi\)
0.415795 + 0.909459i \(0.363504\pi\)
\(912\) 0 0
\(913\) −23.6495 40.9621i −0.782684 1.35565i
\(914\) −8.50000 + 14.7224i −0.281155 + 0.486975i
\(915\) 0 0
\(916\) −6.36254 + 11.0202i −0.210224 + 0.364119i
\(917\) −1.36254 + 2.35999i −0.0449951 + 0.0779338i
\(918\) 0 0
\(919\) −19.8248 + 34.3375i −0.653958 + 1.13269i 0.328196 + 0.944610i \(0.393559\pi\)
−0.982154 + 0.188079i \(0.939774\pi\)
\(920\) −11.2749 19.5287i −0.371723 0.643843i
\(921\) 0 0
\(922\) −19.3746 −0.638068
\(923\) 5.27492 18.2728i 0.173626 0.601458i
\(924\) 0 0
\(925\) −1.82475 3.16056i −0.0599975 0.103919i
\(926\) −5.27492 9.13642i −0.173345 0.300242i
\(927\) 0 0
\(928\) 8.27492 0.271637
\(929\) 26.7749 46.3755i 0.878457 1.52153i 0.0254221 0.999677i \(-0.491907\pi\)
0.853034 0.521855i \(-0.174760\pi\)
\(930\) 0 0
\(931\) 6.54983 0.214662
\(932\) 3.72508 6.45203i 0.122019 0.211343i
\(933\) 0 0
\(934\) 4.08762 + 7.07997i 0.133751 + 0.231664i
\(935\) 51.2990 1.67766
\(936\) 0 0
\(937\) 19.1752 0.626428 0.313214 0.949683i \(-0.398594\pi\)
0.313214 + 0.949683i \(0.398594\pi\)
\(938\) −1.36254 2.35999i −0.0444886 0.0770564i
\(939\) 0 0
\(940\) 14.0000 24.2487i 0.456630 0.790906i
\(941\) −37.6495 −1.22734 −0.613669 0.789563i \(-0.710307\pi\)
−0.613669 + 0.789563i \(0.710307\pi\)
\(942\) 0 0
\(943\) 21.8248 37.8016i 0.710712 1.23099i
\(944\) 11.8248 0.384863
\(945\) 0 0
\(946\) −23.6495 40.9621i −0.768912 1.33179i
\(947\) −4.54983 7.88054i −0.147850 0.256083i 0.782583 0.622547i \(-0.213902\pi\)
−0.930433 + 0.366463i \(0.880569\pi\)
\(948\) 0 0
\(949\) 20.0378 4.95807i 0.650454 0.160946i
\(950\) −86.9485 −2.82098
\(951\) 0 0
\(952\) −1.50000 2.59808i −0.0486153 0.0842041i
\(953\) −5.54983 + 9.61260i −0.179777 + 0.311383i −0.941804 0.336162i \(-0.890871\pi\)
0.762027 + 0.647545i \(0.224204\pi\)
\(954\) 0 0
\(955\) −14.3746 + 24.8975i −0.465151 + 0.805665i
\(956\) −2.63746 + 4.56821i −0.0853015 + 0.147747i
\(957\) 0 0
\(958\) −10.0000 + 17.3205i −0.323085 + 0.559600i
\(959\) 11.4124 + 19.7668i 0.368525 + 0.638304i
\(960\) 0 0
\(961\) −29.3746 −0.947567
\(962\) 0.274917 0.952341i 0.00886369 0.0307047i
\(963\) 0 0
\(964\) 7.86254 + 13.6183i 0.253235 + 0.438617i
\(965\) −53.0619 91.9059i −1.70812 2.95855i
\(966\) 0 0
\(967\) −18.5498 −0.596522 −0.298261 0.954484i \(-0.596407\pi\)
−0.298261 + 0.954484i \(0.596407\pi\)
\(968\) 2.50000 4.33013i 0.0803530 0.139176i
\(969\) 0 0
\(970\) −2.35050 −0.0754699
\(971\) 24.2870 42.0663i 0.779406 1.34997i −0.152879 0.988245i \(-0.548854\pi\)
0.932285 0.361725i \(-0.117812\pi\)
\(972\) 0 0
\(973\) 4.54983 + 7.88054i 0.145861 + 0.252639i
\(974\) 1.09967 0.0352357
\(975\) 0 0
\(976\) −9.00000 −0.288083
\(977\) 12.3127 + 21.3262i 0.393918 + 0.682287i 0.992962 0.118429i \(-0.0377859\pi\)
−0.599044 + 0.800716i \(0.704453\pi\)
\(978\) 0 0
\(979\) 1.45017 2.51176i 0.0463475 0.0802762i
\(980\) −4.27492 −0.136557
\(981\) 0 0
\(982\) −12.5498 + 21.7370i −0.400481 + 0.693654i
\(983\) −53.8488 −1.71751 −0.858756 0.512385i \(-0.828762\pi\)
−0.858756 + 0.512385i \(0.828762\pi\)
\(984\) 0 0
\(985\) 46.6495 + 80.7993i 1.48638 + 2.57448i
\(986\) 12.4124 + 21.4989i 0.395291 + 0.684663i
\(987\) 0 0
\(988\) −16.3746 17.0170i −0.520945 0.541382i
\(989\) −62.3746 −1.98340
\(990\) 0 0
\(991\) 18.3746 + 31.8257i 0.583688 + 1.01098i 0.995038 + 0.0994996i \(0.0317242\pi\)
−0.411350 + 0.911478i \(0.634942\pi\)
\(992\) −0.637459 + 1.10411i −0.0202393 + 0.0350555i
\(993\) 0 0
\(994\) −2.63746 + 4.56821i −0.0836551 + 0.144895i
\(995\) 25.2749 43.7774i 0.801269 1.38784i
\(996\) 0 0
\(997\) 1.95017 3.37779i 0.0617624 0.106976i −0.833491 0.552533i \(-0.813661\pi\)
0.895253 + 0.445558i \(0.146995\pi\)
\(998\) −15.9124 27.5610i −0.503697 0.872430i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.r.x.757.1 4
3.2 odd 2 546.2.l.j.211.2 4
13.9 even 3 inner 1638.2.r.x.1387.1 4
39.23 odd 6 7098.2.a.bm.1.1 2
39.29 odd 6 7098.2.a.ca.1.2 2
39.35 odd 6 546.2.l.j.295.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.l.j.211.2 4 3.2 odd 2
546.2.l.j.295.2 yes 4 39.35 odd 6
1638.2.r.x.757.1 4 1.1 even 1 trivial
1638.2.r.x.1387.1 4 13.9 even 3 inner
7098.2.a.bm.1.1 2 39.23 odd 6
7098.2.a.ca.1.2 2 39.29 odd 6