Properties

Label 1638.2.r.x.1387.2
Level $1638$
Weight $2$
Character 1638.1387
Analytic conductor $13.079$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(757,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.757");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.r (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1387.2
Root \(2.13746 + 0.656712i\) of defining polynomial
Character \(\chi\) \(=\) 1638.1387
Dual form 1638.2.r.x.757.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +3.27492 q^{5} +(-0.500000 - 0.866025i) q^{7} -1.00000 q^{8} +(1.63746 - 2.83616i) q^{10} +(-2.00000 + 3.46410i) q^{11} +(3.50000 + 0.866025i) q^{13} -1.00000 q^{14} +(-0.500000 + 0.866025i) q^{16} +(1.50000 + 2.59808i) q^{17} +(4.27492 + 7.40437i) q^{19} +(-1.63746 - 2.83616i) q^{20} +(2.00000 + 3.46410i) q^{22} +(1.13746 - 1.97014i) q^{23} +5.72508 q^{25} +(2.50000 - 2.59808i) q^{26} +(-0.500000 + 0.866025i) q^{28} +(0.362541 - 0.627940i) q^{29} +6.27492 q^{31} +(0.500000 + 0.866025i) q^{32} +3.00000 q^{34} +(-1.63746 - 2.83616i) q^{35} +(3.63746 - 6.30026i) q^{37} +8.54983 q^{38} -3.27492 q^{40} +(0.362541 - 0.627940i) q^{41} +(-5.41238 - 9.37451i) q^{43} +4.00000 q^{44} +(-1.13746 - 1.97014i) q^{46} -8.54983 q^{47} +(-0.500000 + 0.866025i) q^{49} +(2.86254 - 4.95807i) q^{50} +(-1.00000 - 3.46410i) q^{52} -11.5498 q^{53} +(-6.54983 + 11.3446i) q^{55} +(0.500000 + 0.866025i) q^{56} +(-0.362541 - 0.627940i) q^{58} +(5.41238 + 9.37451i) q^{59} +(4.50000 + 7.79423i) q^{61} +(3.13746 - 5.43424i) q^{62} +1.00000 q^{64} +(11.4622 + 2.83616i) q^{65} +(5.13746 - 8.89834i) q^{67} +(1.50000 - 2.59808i) q^{68} -3.27492 q^{70} +(-1.13746 - 1.97014i) q^{71} +13.2749 q^{73} +(-3.63746 - 6.30026i) q^{74} +(4.27492 - 7.40437i) q^{76} +4.00000 q^{77} -8.00000 q^{79} +(-1.63746 + 2.83616i) q^{80} +(-0.362541 - 0.627940i) q^{82} -10.8248 q^{83} +(4.91238 + 8.50848i) q^{85} -10.8248 q^{86} +(2.00000 - 3.46410i) q^{88} +(4.13746 - 7.16629i) q^{89} +(-1.00000 - 3.46410i) q^{91} -2.27492 q^{92} +(-4.27492 + 7.40437i) q^{94} +(14.0000 + 24.2487i) q^{95} +(-7.27492 - 12.6005i) q^{97} +(0.500000 + 0.866025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} - 2 q^{7} - 4 q^{8} - q^{10} - 8 q^{11} + 14 q^{13} - 4 q^{14} - 2 q^{16} + 6 q^{17} + 2 q^{19} + q^{20} + 8 q^{22} - 3 q^{23} + 38 q^{25} + 10 q^{26} - 2 q^{28} + 9 q^{29}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 3.27492 1.46459 0.732294 0.680989i \(-0.238450\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) 0 0
\(7\) −0.500000 0.866025i −0.188982 0.327327i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.63746 2.83616i 0.517810 0.896873i
\(11\) −2.00000 + 3.46410i −0.603023 + 1.04447i 0.389338 + 0.921095i \(0.372704\pi\)
−0.992361 + 0.123371i \(0.960630\pi\)
\(12\) 0 0
\(13\) 3.50000 + 0.866025i 0.970725 + 0.240192i
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) 4.27492 + 7.40437i 0.980733 + 1.69868i 0.659546 + 0.751664i \(0.270749\pi\)
0.321187 + 0.947016i \(0.395918\pi\)
\(20\) −1.63746 2.83616i −0.366147 0.634185i
\(21\) 0 0
\(22\) 2.00000 + 3.46410i 0.426401 + 0.738549i
\(23\) 1.13746 1.97014i 0.237177 0.410802i −0.722726 0.691134i \(-0.757111\pi\)
0.959903 + 0.280332i \(0.0904447\pi\)
\(24\) 0 0
\(25\) 5.72508 1.14502
\(26\) 2.50000 2.59808i 0.490290 0.509525i
\(27\) 0 0
\(28\) −0.500000 + 0.866025i −0.0944911 + 0.163663i
\(29\) 0.362541 0.627940i 0.0673222 0.116606i −0.830400 0.557168i \(-0.811888\pi\)
0.897722 + 0.440563i \(0.145221\pi\)
\(30\) 0 0
\(31\) 6.27492 1.12701 0.563504 0.826113i \(-0.309453\pi\)
0.563504 + 0.826113i \(0.309453\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) −1.63746 2.83616i −0.276781 0.479399i
\(36\) 0 0
\(37\) 3.63746 6.30026i 0.597995 1.03576i −0.395122 0.918629i \(-0.629298\pi\)
0.993117 0.117128i \(-0.0373689\pi\)
\(38\) 8.54983 1.38697
\(39\) 0 0
\(40\) −3.27492 −0.517810
\(41\) 0.362541 0.627940i 0.0566195 0.0980678i −0.836326 0.548232i \(-0.815301\pi\)
0.892946 + 0.450164i \(0.148634\pi\)
\(42\) 0 0
\(43\) −5.41238 9.37451i −0.825380 1.42960i −0.901629 0.432511i \(-0.857628\pi\)
0.0762493 0.997089i \(-0.475706\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) −1.13746 1.97014i −0.167709 0.290481i
\(47\) −8.54983 −1.24712 −0.623561 0.781775i \(-0.714315\pi\)
−0.623561 + 0.781775i \(0.714315\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 2.86254 4.95807i 0.404824 0.701177i
\(51\) 0 0
\(52\) −1.00000 3.46410i −0.138675 0.480384i
\(53\) −11.5498 −1.58649 −0.793246 0.608901i \(-0.791610\pi\)
−0.793246 + 0.608901i \(0.791610\pi\)
\(54\) 0 0
\(55\) −6.54983 + 11.3446i −0.883179 + 1.52971i
\(56\) 0.500000 + 0.866025i 0.0668153 + 0.115728i
\(57\) 0 0
\(58\) −0.362541 0.627940i −0.0476040 0.0824526i
\(59\) 5.41238 + 9.37451i 0.704631 + 1.22046i 0.966824 + 0.255442i \(0.0822209\pi\)
−0.262193 + 0.965015i \(0.584446\pi\)
\(60\) 0 0
\(61\) 4.50000 + 7.79423i 0.576166 + 0.997949i 0.995914 + 0.0903080i \(0.0287851\pi\)
−0.419748 + 0.907641i \(0.637882\pi\)
\(62\) 3.13746 5.43424i 0.398458 0.690149i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 11.4622 + 2.83616i 1.42171 + 0.351783i
\(66\) 0 0
\(67\) 5.13746 8.89834i 0.627640 1.08711i −0.360383 0.932804i \(-0.617354\pi\)
0.988024 0.154301i \(-0.0493125\pi\)
\(68\) 1.50000 2.59808i 0.181902 0.315063i
\(69\) 0 0
\(70\) −3.27492 −0.391427
\(71\) −1.13746 1.97014i −0.134992 0.233812i 0.790603 0.612329i \(-0.209767\pi\)
−0.925594 + 0.378517i \(0.876434\pi\)
\(72\) 0 0
\(73\) 13.2749 1.55371 0.776856 0.629679i \(-0.216813\pi\)
0.776856 + 0.629679i \(0.216813\pi\)
\(74\) −3.63746 6.30026i −0.422846 0.732391i
\(75\) 0 0
\(76\) 4.27492 7.40437i 0.490367 0.849340i
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) −1.63746 + 2.83616i −0.183073 + 0.317092i
\(81\) 0 0
\(82\) −0.362541 0.627940i −0.0400360 0.0693444i
\(83\) −10.8248 −1.18817 −0.594085 0.804402i \(-0.702486\pi\)
−0.594085 + 0.804402i \(0.702486\pi\)
\(84\) 0 0
\(85\) 4.91238 + 8.50848i 0.532822 + 0.922875i
\(86\) −10.8248 −1.16726
\(87\) 0 0
\(88\) 2.00000 3.46410i 0.213201 0.369274i
\(89\) 4.13746 7.16629i 0.438570 0.759625i −0.559010 0.829161i \(-0.688819\pi\)
0.997579 + 0.0695360i \(0.0221519\pi\)
\(90\) 0 0
\(91\) −1.00000 3.46410i −0.104828 0.363137i
\(92\) −2.27492 −0.237177
\(93\) 0 0
\(94\) −4.27492 + 7.40437i −0.440924 + 0.763703i
\(95\) 14.0000 + 24.2487i 1.43637 + 2.48787i
\(96\) 0 0
\(97\) −7.27492 12.6005i −0.738656 1.27939i −0.953101 0.302653i \(-0.902128\pi\)
0.214445 0.976736i \(-0.431206\pi\)
\(98\) 0.500000 + 0.866025i 0.0505076 + 0.0874818i
\(99\) 0 0
\(100\) −2.86254 4.95807i −0.286254 0.495807i
\(101\) 4.63746 8.03231i 0.461444 0.799245i −0.537589 0.843207i \(-0.680665\pi\)
0.999033 + 0.0439620i \(0.0139981\pi\)
\(102\) 0 0
\(103\) −2.27492 −0.224154 −0.112077 0.993700i \(-0.535750\pi\)
−0.112077 + 0.993700i \(0.535750\pi\)
\(104\) −3.50000 0.866025i −0.343203 0.0849208i
\(105\) 0 0
\(106\) −5.77492 + 10.0025i −0.560910 + 0.971524i
\(107\) −6.27492 + 10.8685i −0.606619 + 1.05070i 0.385174 + 0.922844i \(0.374141\pi\)
−0.991793 + 0.127851i \(0.959192\pi\)
\(108\) 0 0
\(109\) 10.5498 1.01049 0.505245 0.862976i \(-0.331402\pi\)
0.505245 + 0.862976i \(0.331402\pi\)
\(110\) 6.54983 + 11.3446i 0.624502 + 1.08167i
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) −3.91238 6.77643i −0.368045 0.637473i 0.621215 0.783641i \(-0.286640\pi\)
−0.989260 + 0.146167i \(0.953306\pi\)
\(114\) 0 0
\(115\) 3.72508 6.45203i 0.347366 0.601655i
\(116\) −0.725083 −0.0673222
\(117\) 0 0
\(118\) 10.8248 0.996499
\(119\) 1.50000 2.59808i 0.137505 0.238165i
\(120\) 0 0
\(121\) −2.50000 4.33013i −0.227273 0.393648i
\(122\) 9.00000 0.814822
\(123\) 0 0
\(124\) −3.13746 5.43424i −0.281752 0.488009i
\(125\) 2.37459 0.212389
\(126\) 0 0
\(127\) −4.00000 + 6.92820i −0.354943 + 0.614779i −0.987108 0.160055i \(-0.948833\pi\)
0.632166 + 0.774833i \(0.282166\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 8.18729 8.50848i 0.718073 0.746243i
\(131\) 10.2749 0.897724 0.448862 0.893601i \(-0.351830\pi\)
0.448862 + 0.893601i \(0.351830\pi\)
\(132\) 0 0
\(133\) 4.27492 7.40437i 0.370682 0.642041i
\(134\) −5.13746 8.89834i −0.443809 0.768699i
\(135\) 0 0
\(136\) −1.50000 2.59808i −0.128624 0.222783i
\(137\) 0.0876242 + 0.151770i 0.00748624 + 0.0129665i 0.869744 0.493503i \(-0.164284\pi\)
−0.862258 + 0.506469i \(0.830950\pi\)
\(138\) 0 0
\(139\) −10.5498 18.2728i −0.894825 1.54988i −0.834021 0.551733i \(-0.813967\pi\)
−0.0608046 0.998150i \(-0.519367\pi\)
\(140\) −1.63746 + 2.83616i −0.138391 + 0.239699i
\(141\) 0 0
\(142\) −2.27492 −0.190907
\(143\) −10.0000 + 10.3923i −0.836242 + 0.869048i
\(144\) 0 0
\(145\) 1.18729 2.05645i 0.0985993 0.170779i
\(146\) 6.63746 11.4964i 0.549320 0.951450i
\(147\) 0 0
\(148\) −7.27492 −0.597995
\(149\) −0.500000 0.866025i −0.0409616 0.0709476i 0.844818 0.535054i \(-0.179709\pi\)
−0.885779 + 0.464107i \(0.846375\pi\)
\(150\) 0 0
\(151\) −17.0997 −1.39155 −0.695776 0.718259i \(-0.744939\pi\)
−0.695776 + 0.718259i \(0.744939\pi\)
\(152\) −4.27492 7.40437i −0.346742 0.600574i
\(153\) 0 0
\(154\) 2.00000 3.46410i 0.161165 0.279145i
\(155\) 20.5498 1.65060
\(156\) 0 0
\(157\) −11.2749 −0.899836 −0.449918 0.893070i \(-0.648547\pi\)
−0.449918 + 0.893070i \(0.648547\pi\)
\(158\) −4.00000 + 6.92820i −0.318223 + 0.551178i
\(159\) 0 0
\(160\) 1.63746 + 2.83616i 0.129452 + 0.224218i
\(161\) −2.27492 −0.179289
\(162\) 0 0
\(163\) 2.86254 + 4.95807i 0.224212 + 0.388346i 0.956083 0.293097i \(-0.0946860\pi\)
−0.731871 + 0.681443i \(0.761353\pi\)
\(164\) −0.725083 −0.0566195
\(165\) 0 0
\(166\) −5.41238 + 9.37451i −0.420082 + 0.727603i
\(167\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(168\) 0 0
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) 9.82475 0.753524
\(171\) 0 0
\(172\) −5.41238 + 9.37451i −0.412690 + 0.714800i
\(173\) 5.27492 + 9.13642i 0.401045 + 0.694630i 0.993852 0.110715i \(-0.0353139\pi\)
−0.592808 + 0.805344i \(0.701981\pi\)
\(174\) 0 0
\(175\) −2.86254 4.95807i −0.216388 0.374795i
\(176\) −2.00000 3.46410i −0.150756 0.261116i
\(177\) 0 0
\(178\) −4.13746 7.16629i −0.310116 0.537136i
\(179\) 8.27492 14.3326i 0.618496 1.07127i −0.371264 0.928527i \(-0.621075\pi\)
0.989760 0.142740i \(-0.0455912\pi\)
\(180\) 0 0
\(181\) 5.82475 0.432950 0.216475 0.976288i \(-0.430544\pi\)
0.216475 + 0.976288i \(0.430544\pi\)
\(182\) −3.50000 0.866025i −0.259437 0.0641941i
\(183\) 0 0
\(184\) −1.13746 + 1.97014i −0.0838546 + 0.145240i
\(185\) 11.9124 20.6328i 0.875815 1.51696i
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) 4.27492 + 7.40437i 0.311780 + 0.540019i
\(189\) 0 0
\(190\) 28.0000 2.03133
\(191\) 7.13746 + 12.3624i 0.516448 + 0.894515i 0.999818 + 0.0190983i \(0.00607953\pi\)
−0.483369 + 0.875417i \(0.660587\pi\)
\(192\) 0 0
\(193\) 1.08762 1.88382i 0.0782889 0.135600i −0.824223 0.566266i \(-0.808388\pi\)
0.902512 + 0.430665i \(0.141721\pi\)
\(194\) −14.5498 −1.04462
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 0.412376 0.714256i 0.0293806 0.0508886i −0.850961 0.525228i \(-0.823980\pi\)
0.880342 + 0.474340i \(0.157313\pi\)
\(198\) 0 0
\(199\) 5.41238 + 9.37451i 0.383673 + 0.664541i 0.991584 0.129464i \(-0.0413256\pi\)
−0.607911 + 0.794005i \(0.707992\pi\)
\(200\) −5.72508 −0.404824
\(201\) 0 0
\(202\) −4.63746 8.03231i −0.326290 0.565152i
\(203\) −0.725083 −0.0508908
\(204\) 0 0
\(205\) 1.18729 2.05645i 0.0829241 0.143629i
\(206\) −1.13746 + 1.97014i −0.0792505 + 0.137266i
\(207\) 0 0
\(208\) −2.50000 + 2.59808i −0.173344 + 0.180144i
\(209\) −34.1993 −2.36562
\(210\) 0 0
\(211\) 4.54983 7.88054i 0.313224 0.542519i −0.665835 0.746099i \(-0.731924\pi\)
0.979058 + 0.203580i \(0.0652578\pi\)
\(212\) 5.77492 + 10.0025i 0.396623 + 0.686971i
\(213\) 0 0
\(214\) 6.27492 + 10.8685i 0.428945 + 0.742954i
\(215\) −17.7251 30.7007i −1.20884 2.09377i
\(216\) 0 0
\(217\) −3.13746 5.43424i −0.212985 0.368900i
\(218\) 5.27492 9.13642i 0.357262 0.618797i
\(219\) 0 0
\(220\) 13.0997 0.883179
\(221\) 3.00000 + 10.3923i 0.201802 + 0.699062i
\(222\) 0 0
\(223\) −9.13746 + 15.8265i −0.611889 + 1.05982i 0.379032 + 0.925383i \(0.376257\pi\)
−0.990922 + 0.134440i \(0.957076\pi\)
\(224\) 0.500000 0.866025i 0.0334077 0.0578638i
\(225\) 0 0
\(226\) −7.82475 −0.520495
\(227\) 4.54983 + 7.88054i 0.301983 + 0.523050i 0.976585 0.215132i \(-0.0690180\pi\)
−0.674602 + 0.738182i \(0.735685\pi\)
\(228\) 0 0
\(229\) 20.2749 1.33980 0.669902 0.742449i \(-0.266336\pi\)
0.669902 + 0.742449i \(0.266336\pi\)
\(230\) −3.72508 6.45203i −0.245625 0.425434i
\(231\) 0 0
\(232\) −0.362541 + 0.627940i −0.0238020 + 0.0412263i
\(233\) −22.5498 −1.47729 −0.738644 0.674095i \(-0.764534\pi\)
−0.738644 + 0.674095i \(0.764534\pi\)
\(234\) 0 0
\(235\) −28.0000 −1.82652
\(236\) 5.41238 9.37451i 0.352316 0.610229i
\(237\) 0 0
\(238\) −1.50000 2.59808i −0.0972306 0.168408i
\(239\) −2.27492 −0.147152 −0.0735761 0.997290i \(-0.523441\pi\)
−0.0735761 + 0.997290i \(0.523441\pi\)
\(240\) 0 0
\(241\) 11.6375 + 20.1567i 0.749635 + 1.29841i 0.947998 + 0.318277i \(0.103104\pi\)
−0.198363 + 0.980129i \(0.563563\pi\)
\(242\) −5.00000 −0.321412
\(243\) 0 0
\(244\) 4.50000 7.79423i 0.288083 0.498974i
\(245\) −1.63746 + 2.83616i −0.104613 + 0.181196i
\(246\) 0 0
\(247\) 8.54983 + 29.6175i 0.544013 + 1.88452i
\(248\) −6.27492 −0.398458
\(249\) 0 0
\(250\) 1.18729 2.05645i 0.0750910 0.130061i
\(251\) 2.86254 + 4.95807i 0.180682 + 0.312950i 0.942113 0.335296i \(-0.108836\pi\)
−0.761431 + 0.648246i \(0.775503\pi\)
\(252\) 0 0
\(253\) 4.54983 + 7.88054i 0.286046 + 0.495446i
\(254\) 4.00000 + 6.92820i 0.250982 + 0.434714i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 7.50000 12.9904i 0.467837 0.810318i −0.531487 0.847066i \(-0.678367\pi\)
0.999325 + 0.0367485i \(0.0117000\pi\)
\(258\) 0 0
\(259\) −7.27492 −0.452041
\(260\) −3.27492 11.3446i −0.203102 0.703565i
\(261\) 0 0
\(262\) 5.13746 8.89834i 0.317393 0.549741i
\(263\) −4.54983 + 7.88054i −0.280555 + 0.485935i −0.971522 0.236951i \(-0.923852\pi\)
0.690967 + 0.722887i \(0.257185\pi\)
\(264\) 0 0
\(265\) −37.8248 −2.32356
\(266\) −4.27492 7.40437i −0.262112 0.453991i
\(267\) 0 0
\(268\) −10.2749 −0.627640
\(269\) −9.00000 15.5885i −0.548740 0.950445i −0.998361 0.0572259i \(-0.981774\pi\)
0.449622 0.893219i \(-0.351559\pi\)
\(270\) 0 0
\(271\) −8.86254 + 15.3504i −0.538361 + 0.932469i 0.460631 + 0.887591i \(0.347623\pi\)
−0.998993 + 0.0448772i \(0.985710\pi\)
\(272\) −3.00000 −0.181902
\(273\) 0 0
\(274\) 0.175248 0.0105871
\(275\) −11.4502 + 19.8323i −0.690471 + 1.19593i
\(276\) 0 0
\(277\) 3.91238 + 6.77643i 0.235072 + 0.407156i 0.959294 0.282411i \(-0.0911341\pi\)
−0.724222 + 0.689567i \(0.757801\pi\)
\(278\) −21.0997 −1.26547
\(279\) 0 0
\(280\) 1.63746 + 2.83616i 0.0978569 + 0.169493i
\(281\) −1.82475 −0.108856 −0.0544278 0.998518i \(-0.517333\pi\)
−0.0544278 + 0.998518i \(0.517333\pi\)
\(282\) 0 0
\(283\) 12.2749 21.2608i 0.729668 1.26382i −0.227355 0.973812i \(-0.573008\pi\)
0.957024 0.290010i \(-0.0936588\pi\)
\(284\) −1.13746 + 1.97014i −0.0674958 + 0.116906i
\(285\) 0 0
\(286\) 4.00000 + 13.8564i 0.236525 + 0.819346i
\(287\) −0.725083 −0.0428003
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) −1.18729 2.05645i −0.0697202 0.120759i
\(291\) 0 0
\(292\) −6.63746 11.4964i −0.388428 0.672777i
\(293\) −5.36254 9.28819i −0.313283 0.542622i 0.665788 0.746141i \(-0.268096\pi\)
−0.979071 + 0.203519i \(0.934762\pi\)
\(294\) 0 0
\(295\) 17.7251 + 30.7007i 1.03199 + 1.78747i
\(296\) −3.63746 + 6.30026i −0.211423 + 0.366195i
\(297\) 0 0
\(298\) −1.00000 −0.0579284
\(299\) 5.68729 5.91041i 0.328905 0.341808i
\(300\) 0 0
\(301\) −5.41238 + 9.37451i −0.311964 + 0.540338i
\(302\) −8.54983 + 14.8087i −0.491988 + 0.852148i
\(303\) 0 0
\(304\) −8.54983 −0.490367
\(305\) 14.7371 + 25.5255i 0.843845 + 1.46158i
\(306\) 0 0
\(307\) −16.5498 −0.944549 −0.472274 0.881452i \(-0.656567\pi\)
−0.472274 + 0.881452i \(0.656567\pi\)
\(308\) −2.00000 3.46410i −0.113961 0.197386i
\(309\) 0 0
\(310\) 10.2749 17.7967i 0.583576 1.01078i
\(311\) −12.5498 −0.711636 −0.355818 0.934555i \(-0.615798\pi\)
−0.355818 + 0.934555i \(0.615798\pi\)
\(312\) 0 0
\(313\) −27.6495 −1.56284 −0.781421 0.624004i \(-0.785505\pi\)
−0.781421 + 0.624004i \(0.785505\pi\)
\(314\) −5.63746 + 9.76436i −0.318140 + 0.551035i
\(315\) 0 0
\(316\) 4.00000 + 6.92820i 0.225018 + 0.389742i
\(317\) −7.54983 −0.424041 −0.212020 0.977265i \(-0.568004\pi\)
−0.212020 + 0.977265i \(0.568004\pi\)
\(318\) 0 0
\(319\) 1.45017 + 2.51176i 0.0811937 + 0.140632i
\(320\) 3.27492 0.183073
\(321\) 0 0
\(322\) −1.13746 + 1.97014i −0.0633881 + 0.109791i
\(323\) −12.8248 + 22.2131i −0.713588 + 1.23597i
\(324\) 0 0
\(325\) 20.0378 + 4.95807i 1.11150 + 0.275024i
\(326\) 5.72508 0.317083
\(327\) 0 0
\(328\) −0.362541 + 0.627940i −0.0200180 + 0.0346722i
\(329\) 4.27492 + 7.40437i 0.235684 + 0.408216i
\(330\) 0 0
\(331\) −2.00000 3.46410i −0.109930 0.190404i 0.805812 0.592172i \(-0.201729\pi\)
−0.915742 + 0.401768i \(0.868396\pi\)
\(332\) 5.41238 + 9.37451i 0.297043 + 0.514493i
\(333\) 0 0
\(334\) 0 0
\(335\) 16.8248 29.1413i 0.919234 1.59216i
\(336\) 0 0
\(337\) −7.27492 −0.396290 −0.198145 0.980173i \(-0.563492\pi\)
−0.198145 + 0.980173i \(0.563492\pi\)
\(338\) 11.0000 6.92820i 0.598321 0.376845i
\(339\) 0 0
\(340\) 4.91238 8.50848i 0.266411 0.461437i
\(341\) −12.5498 + 21.7370i −0.679612 + 1.17712i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 5.41238 + 9.37451i 0.291816 + 0.505440i
\(345\) 0 0
\(346\) 10.5498 0.567163
\(347\) 7.72508 + 13.3802i 0.414704 + 0.718289i 0.995397 0.0958338i \(-0.0305517\pi\)
−0.580693 + 0.814122i \(0.697218\pi\)
\(348\) 0 0
\(349\) −8.96221 + 15.5230i −0.479736 + 0.830927i −0.999730 0.0232427i \(-0.992601\pi\)
0.519994 + 0.854170i \(0.325934\pi\)
\(350\) −5.72508 −0.306019
\(351\) 0 0
\(352\) −4.00000 −0.213201
\(353\) −2.22508 + 3.85396i −0.118429 + 0.205125i −0.919145 0.393919i \(-0.871119\pi\)
0.800716 + 0.599044i \(0.204453\pi\)
\(354\) 0 0
\(355\) −3.72508 6.45203i −0.197707 0.342438i
\(356\) −8.27492 −0.438570
\(357\) 0 0
\(358\) −8.27492 14.3326i −0.437343 0.757500i
\(359\) −29.0997 −1.53582 −0.767911 0.640557i \(-0.778704\pi\)
−0.767911 + 0.640557i \(0.778704\pi\)
\(360\) 0 0
\(361\) −27.0498 + 46.8517i −1.42368 + 2.46588i
\(362\) 2.91238 5.04438i 0.153071 0.265127i
\(363\) 0 0
\(364\) −2.50000 + 2.59808i −0.131036 + 0.136176i
\(365\) 43.4743 2.27555
\(366\) 0 0
\(367\) −2.86254 + 4.95807i −0.149423 + 0.258809i −0.931015 0.364982i \(-0.881075\pi\)
0.781591 + 0.623791i \(0.214408\pi\)
\(368\) 1.13746 + 1.97014i 0.0592941 + 0.102700i
\(369\) 0 0
\(370\) −11.9124 20.6328i −0.619295 1.07265i
\(371\) 5.77492 + 10.0025i 0.299819 + 0.519301i
\(372\) 0 0
\(373\) −2.08762 3.61587i −0.108093 0.187223i 0.806905 0.590682i \(-0.201141\pi\)
−0.914998 + 0.403459i \(0.867808\pi\)
\(374\) −6.00000 + 10.3923i −0.310253 + 0.537373i
\(375\) 0 0
\(376\) 8.54983 0.440924
\(377\) 1.81271 1.88382i 0.0933592 0.0970217i
\(378\) 0 0
\(379\) 10.0000 17.3205i 0.513665 0.889695i −0.486209 0.873843i \(-0.661621\pi\)
0.999874 0.0158521i \(-0.00504609\pi\)
\(380\) 14.0000 24.2487i 0.718185 1.24393i
\(381\) 0 0
\(382\) 14.2749 0.730368
\(383\) −19.0997 33.0816i −0.975947 1.69039i −0.676772 0.736192i \(-0.736622\pi\)
−0.299175 0.954198i \(-0.596712\pi\)
\(384\) 0 0
\(385\) 13.0997 0.667621
\(386\) −1.08762 1.88382i −0.0553586 0.0958839i
\(387\) 0 0
\(388\) −7.27492 + 12.6005i −0.369328 + 0.639695i
\(389\) −20.6495 −1.04697 −0.523486 0.852034i \(-0.675369\pi\)
−0.523486 + 0.852034i \(0.675369\pi\)
\(390\) 0 0
\(391\) 6.82475 0.345143
\(392\) 0.500000 0.866025i 0.0252538 0.0437409i
\(393\) 0 0
\(394\) −0.412376 0.714256i −0.0207752 0.0359837i
\(395\) −26.1993 −1.31823
\(396\) 0 0
\(397\) −7.86254 13.6183i −0.394610 0.683484i 0.598442 0.801166i \(-0.295787\pi\)
−0.993051 + 0.117682i \(0.962454\pi\)
\(398\) 10.8248 0.542596
\(399\) 0 0
\(400\) −2.86254 + 4.95807i −0.143127 + 0.247903i
\(401\) 2.63746 4.56821i 0.131708 0.228126i −0.792627 0.609707i \(-0.791287\pi\)
0.924335 + 0.381581i \(0.124620\pi\)
\(402\) 0 0
\(403\) 21.9622 + 5.43424i 1.09402 + 0.270699i
\(404\) −9.27492 −0.461444
\(405\) 0 0
\(406\) −0.362541 + 0.627940i −0.0179926 + 0.0311641i
\(407\) 14.5498 + 25.2011i 0.721209 + 1.24917i
\(408\) 0 0
\(409\) −11.4622 19.8531i −0.566770 0.981674i −0.996883 0.0788990i \(-0.974860\pi\)
0.430113 0.902775i \(-0.358474\pi\)
\(410\) −1.18729 2.05645i −0.0586362 0.101561i
\(411\) 0 0
\(412\) 1.13746 + 1.97014i 0.0560386 + 0.0970616i
\(413\) 5.41238 9.37451i 0.266326 0.461289i
\(414\) 0 0
\(415\) −35.4502 −1.74018
\(416\) 1.00000 + 3.46410i 0.0490290 + 0.169842i
\(417\) 0 0
\(418\) −17.0997 + 29.6175i −0.836372 + 1.44864i
\(419\) 7.68729 13.3148i 0.375549 0.650470i −0.614860 0.788636i \(-0.710788\pi\)
0.990409 + 0.138166i \(0.0441209\pi\)
\(420\) 0 0
\(421\) 0.725083 0.0353384 0.0176692 0.999844i \(-0.494375\pi\)
0.0176692 + 0.999844i \(0.494375\pi\)
\(422\) −4.54983 7.88054i −0.221482 0.383619i
\(423\) 0 0
\(424\) 11.5498 0.560910
\(425\) 8.58762 + 14.8742i 0.416561 + 0.721505i
\(426\) 0 0
\(427\) 4.50000 7.79423i 0.217770 0.377189i
\(428\) 12.5498 0.606619
\(429\) 0 0
\(430\) −35.4502 −1.70956
\(431\) −2.86254 + 4.95807i −0.137884 + 0.238822i −0.926695 0.375813i \(-0.877363\pi\)
0.788812 + 0.614635i \(0.210697\pi\)
\(432\) 0 0
\(433\) 1.36254 + 2.35999i 0.0654796 + 0.113414i 0.896907 0.442220i \(-0.145809\pi\)
−0.831427 + 0.555634i \(0.812476\pi\)
\(434\) −6.27492 −0.301206
\(435\) 0 0
\(436\) −5.27492 9.13642i −0.252623 0.437555i
\(437\) 19.4502 0.930428
\(438\) 0 0
\(439\) 8.54983 14.8087i 0.408061 0.706783i −0.586611 0.809869i \(-0.699538\pi\)
0.994672 + 0.103086i \(0.0328716\pi\)
\(440\) 6.54983 11.3446i 0.312251 0.540835i
\(441\) 0 0
\(442\) 10.5000 + 2.59808i 0.499434 + 0.123578i
\(443\) −19.4502 −0.924105 −0.462053 0.886853i \(-0.652887\pi\)
−0.462053 + 0.886853i \(0.652887\pi\)
\(444\) 0 0
\(445\) 13.5498 23.4690i 0.642324 1.11254i
\(446\) 9.13746 + 15.8265i 0.432671 + 0.749409i
\(447\) 0 0
\(448\) −0.500000 0.866025i −0.0236228 0.0409159i
\(449\) 5.54983 + 9.61260i 0.261913 + 0.453646i 0.966750 0.255723i \(-0.0823134\pi\)
−0.704837 + 0.709369i \(0.748980\pi\)
\(450\) 0 0
\(451\) 1.45017 + 2.51176i 0.0682856 + 0.118274i
\(452\) −3.91238 + 6.77643i −0.184023 + 0.318737i
\(453\) 0 0
\(454\) 9.09967 0.427069
\(455\) −3.27492 11.3446i −0.153530 0.531845i
\(456\) 0 0
\(457\) 8.50000 14.7224i 0.397613 0.688686i −0.595818 0.803120i \(-0.703172\pi\)
0.993431 + 0.114433i \(0.0365053\pi\)
\(458\) 10.1375 17.5586i 0.473692 0.820459i
\(459\) 0 0
\(460\) −7.45017 −0.347366
\(461\) 9.18729 + 15.9129i 0.427895 + 0.741136i 0.996686 0.0813464i \(-0.0259220\pi\)
−0.568791 + 0.822482i \(0.692589\pi\)
\(462\) 0 0
\(463\) 4.54983 0.211449 0.105724 0.994395i \(-0.466284\pi\)
0.105724 + 0.994395i \(0.466284\pi\)
\(464\) 0.362541 + 0.627940i 0.0168306 + 0.0291514i
\(465\) 0 0
\(466\) −11.2749 + 19.5287i −0.522300 + 0.904651i
\(467\) 30.8248 1.42640 0.713200 0.700961i \(-0.247245\pi\)
0.713200 + 0.700961i \(0.247245\pi\)
\(468\) 0 0
\(469\) −10.2749 −0.474452
\(470\) −14.0000 + 24.2487i −0.645772 + 1.11851i
\(471\) 0 0
\(472\) −5.41238 9.37451i −0.249125 0.431497i
\(473\) 43.2990 1.99089
\(474\) 0 0
\(475\) 24.4743 + 42.3907i 1.12296 + 1.94502i
\(476\) −3.00000 −0.137505
\(477\) 0 0
\(478\) −1.13746 + 1.97014i −0.0520261 + 0.0901119i
\(479\) 10.0000 17.3205i 0.456912 0.791394i −0.541884 0.840453i \(-0.682289\pi\)
0.998796 + 0.0490589i \(0.0156222\pi\)
\(480\) 0 0
\(481\) 18.1873 18.9008i 0.829269 0.861802i
\(482\) 23.2749 1.06014
\(483\) 0 0
\(484\) −2.50000 + 4.33013i −0.113636 + 0.196824i
\(485\) −23.8248 41.2657i −1.08183 1.87378i
\(486\) 0 0
\(487\) −14.5498 25.2011i −0.659316 1.14197i −0.980793 0.195051i \(-0.937513\pi\)
0.321477 0.946917i \(-0.395821\pi\)
\(488\) −4.50000 7.79423i −0.203705 0.352828i
\(489\) 0 0
\(490\) 1.63746 + 2.83616i 0.0739728 + 0.128125i
\(491\) −2.54983 + 4.41644i −0.115072 + 0.199311i −0.917809 0.397023i \(-0.870043\pi\)
0.802736 + 0.596334i \(0.203377\pi\)
\(492\) 0 0
\(493\) 2.17525 0.0979683
\(494\) 29.9244 + 7.40437i 1.34636 + 0.333139i
\(495\) 0 0
\(496\) −3.13746 + 5.43424i −0.140876 + 0.244004i
\(497\) −1.13746 + 1.97014i −0.0510220 + 0.0883727i
\(498\) 0 0
\(499\) −9.17525 −0.410741 −0.205370 0.978684i \(-0.565840\pi\)
−0.205370 + 0.978684i \(0.565840\pi\)
\(500\) −1.18729 2.05645i −0.0530974 0.0919673i
\(501\) 0 0
\(502\) 5.72508 0.255523
\(503\) 4.54983 + 7.88054i 0.202867 + 0.351376i 0.949451 0.313915i \(-0.101641\pi\)
−0.746584 + 0.665291i \(0.768307\pi\)
\(504\) 0 0
\(505\) 15.1873 26.3052i 0.675826 1.17056i
\(506\) 9.09967 0.404530
\(507\) 0 0
\(508\) 8.00000 0.354943
\(509\) −17.9124 + 31.0251i −0.793952 + 1.37517i 0.129550 + 0.991573i \(0.458647\pi\)
−0.923502 + 0.383593i \(0.874687\pi\)
\(510\) 0 0
\(511\) −6.63746 11.4964i −0.293624 0.508571i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −7.50000 12.9904i −0.330811 0.572981i
\(515\) −7.45017 −0.328294
\(516\) 0 0
\(517\) 17.0997 29.6175i 0.752043 1.30258i
\(518\) −3.63746 + 6.30026i −0.159821 + 0.276818i
\(519\) 0 0
\(520\) −11.4622 2.83616i −0.502651 0.124374i
\(521\) −1.82475 −0.0799438 −0.0399719 0.999201i \(-0.512727\pi\)
−0.0399719 + 0.999201i \(0.512727\pi\)
\(522\) 0 0
\(523\) −17.0997 + 29.6175i −0.747716 + 1.29508i 0.201199 + 0.979550i \(0.435516\pi\)
−0.948915 + 0.315532i \(0.897817\pi\)
\(524\) −5.13746 8.89834i −0.224431 0.388726i
\(525\) 0 0
\(526\) 4.54983 + 7.88054i 0.198382 + 0.343608i
\(527\) 9.41238 + 16.3027i 0.410010 + 0.710157i
\(528\) 0 0
\(529\) 8.91238 + 15.4367i 0.387495 + 0.671160i
\(530\) −18.9124 + 32.7572i −0.821501 + 1.42288i
\(531\) 0 0
\(532\) −8.54983 −0.370682
\(533\) 1.81271 1.88382i 0.0785171 0.0815973i
\(534\) 0 0
\(535\) −20.5498 + 35.5934i −0.888447 + 1.53884i
\(536\) −5.13746 + 8.89834i −0.221904 + 0.384350i
\(537\) 0 0
\(538\) −18.0000 −0.776035
\(539\) −2.00000 3.46410i −0.0861461 0.149209i
\(540\) 0 0
\(541\) −12.3746 −0.532025 −0.266013 0.963970i \(-0.585706\pi\)
−0.266013 + 0.963970i \(0.585706\pi\)
\(542\) 8.86254 + 15.3504i 0.380679 + 0.659355i
\(543\) 0 0
\(544\) −1.50000 + 2.59808i −0.0643120 + 0.111392i
\(545\) 34.5498 1.47995
\(546\) 0 0
\(547\) 33.0997 1.41524 0.707620 0.706593i \(-0.249769\pi\)
0.707620 + 0.706593i \(0.249769\pi\)
\(548\) 0.0876242 0.151770i 0.00374312 0.00648327i
\(549\) 0 0
\(550\) 11.4502 + 19.8323i 0.488237 + 0.845651i
\(551\) 6.19934 0.264101
\(552\) 0 0
\(553\) 4.00000 + 6.92820i 0.170097 + 0.294617i
\(554\) 7.82475 0.332442
\(555\) 0 0
\(556\) −10.5498 + 18.2728i −0.447413 + 0.774941i
\(557\) 12.5997 21.8233i 0.533865 0.924681i −0.465352 0.885126i \(-0.654072\pi\)
0.999217 0.0395559i \(-0.0125943\pi\)
\(558\) 0 0
\(559\) −10.8248 37.4980i −0.457838 1.58600i
\(560\) 3.27492 0.138391
\(561\) 0 0
\(562\) −0.912376 + 1.58028i −0.0384863 + 0.0666601i
\(563\) 12.0000 + 20.7846i 0.505740 + 0.875967i 0.999978 + 0.00664037i \(0.00211371\pi\)
−0.494238 + 0.869326i \(0.664553\pi\)
\(564\) 0 0
\(565\) −12.8127 22.1923i −0.539035 0.933635i
\(566\) −12.2749 21.2608i −0.515953 0.893657i
\(567\) 0 0
\(568\) 1.13746 + 1.97014i 0.0477267 + 0.0826651i
\(569\) 17.5498 30.3972i 0.735727 1.27432i −0.218676 0.975797i \(-0.570174\pi\)
0.954403 0.298520i \(-0.0964928\pi\)
\(570\) 0 0
\(571\) −22.2749 −0.932176 −0.466088 0.884738i \(-0.654337\pi\)
−0.466088 + 0.884738i \(0.654337\pi\)
\(572\) 14.0000 + 3.46410i 0.585369 + 0.144841i
\(573\) 0 0
\(574\) −0.362541 + 0.627940i −0.0151322 + 0.0262097i
\(575\) 6.51204 11.2792i 0.271571 0.470375i
\(576\) 0 0
\(577\) −28.3746 −1.18125 −0.590625 0.806946i \(-0.701119\pi\)
−0.590625 + 0.806946i \(0.701119\pi\)
\(578\) −4.00000 6.92820i −0.166378 0.288175i
\(579\) 0 0
\(580\) −2.37459 −0.0985993
\(581\) 5.41238 + 9.37451i 0.224543 + 0.388920i
\(582\) 0 0
\(583\) 23.0997 40.0098i 0.956691 1.65704i
\(584\) −13.2749 −0.549320
\(585\) 0 0
\(586\) −10.7251 −0.443049
\(587\) −21.9622 + 38.0397i −0.906477 + 1.57006i −0.0875558 + 0.996160i \(0.527906\pi\)
−0.818922 + 0.573905i \(0.805428\pi\)
\(588\) 0 0
\(589\) 26.8248 + 46.4618i 1.10529 + 1.91443i
\(590\) 35.4502 1.45946
\(591\) 0 0
\(592\) 3.63746 + 6.30026i 0.149499 + 0.258939i
\(593\) −19.5498 −0.802815 −0.401408 0.915899i \(-0.631479\pi\)
−0.401408 + 0.915899i \(0.631479\pi\)
\(594\) 0 0
\(595\) 4.91238 8.50848i 0.201388 0.348814i
\(596\) −0.500000 + 0.866025i −0.0204808 + 0.0354738i
\(597\) 0 0
\(598\) −2.27492 7.88054i −0.0930283 0.322259i
\(599\) 18.2749 0.746693 0.373346 0.927692i \(-0.378210\pi\)
0.373346 + 0.927692i \(0.378210\pi\)
\(600\) 0 0
\(601\) 7.63746 13.2285i 0.311538 0.539600i −0.667157 0.744917i \(-0.732489\pi\)
0.978696 + 0.205317i \(0.0658224\pi\)
\(602\) 5.41238 + 9.37451i 0.220592 + 0.382077i
\(603\) 0 0
\(604\) 8.54983 + 14.8087i 0.347888 + 0.602559i
\(605\) −8.18729 14.1808i −0.332861 0.576532i
\(606\) 0 0
\(607\) −11.1375 19.2906i −0.452055 0.782983i 0.546458 0.837486i \(-0.315976\pi\)
−0.998514 + 0.0545034i \(0.982642\pi\)
\(608\) −4.27492 + 7.40437i −0.173371 + 0.300287i
\(609\) 0 0
\(610\) 29.4743 1.19338
\(611\) −29.9244 7.40437i −1.21061 0.299549i
\(612\) 0 0
\(613\) 4.18729 7.25260i 0.169123 0.292930i −0.768989 0.639262i \(-0.779240\pi\)
0.938112 + 0.346332i \(0.112573\pi\)
\(614\) −8.27492 + 14.3326i −0.333948 + 0.578416i
\(615\) 0 0
\(616\) −4.00000 −0.161165
\(617\) −6.46221 11.1929i −0.260159 0.450608i 0.706125 0.708087i \(-0.250442\pi\)
−0.966284 + 0.257479i \(0.917108\pi\)
\(618\) 0 0
\(619\) 29.6495 1.19171 0.595857 0.803090i \(-0.296812\pi\)
0.595857 + 0.803090i \(0.296812\pi\)
\(620\) −10.2749 17.7967i −0.412651 0.714732i
\(621\) 0 0
\(622\) −6.27492 + 10.8685i −0.251601 + 0.435786i
\(623\) −8.27492 −0.331528
\(624\) 0 0
\(625\) −20.8488 −0.833954
\(626\) −13.8248 + 23.9452i −0.552548 + 0.957042i
\(627\) 0 0
\(628\) 5.63746 + 9.76436i 0.224959 + 0.389641i
\(629\) 21.8248 0.870210
\(630\) 0 0
\(631\) −0.549834 0.952341i −0.0218886 0.0379121i 0.854874 0.518836i \(-0.173635\pi\)
−0.876762 + 0.480924i \(0.840301\pi\)
\(632\) 8.00000 0.318223
\(633\) 0 0
\(634\) −3.77492 + 6.53835i −0.149921 + 0.259671i
\(635\) −13.0997 + 22.6893i −0.519845 + 0.900397i
\(636\) 0 0
\(637\) −2.50000 + 2.59808i −0.0990536 + 0.102940i
\(638\) 2.90033 0.114825
\(639\) 0 0
\(640\) 1.63746 2.83616i 0.0647262 0.112109i
\(641\) −1.91238 3.31233i −0.0755343 0.130829i 0.825784 0.563986i \(-0.190733\pi\)
−0.901318 + 0.433157i \(0.857400\pi\)
\(642\) 0 0
\(643\) −21.3746 37.0219i −0.842931 1.46000i −0.887406 0.460989i \(-0.847495\pi\)
0.0444742 0.999011i \(-0.485839\pi\)
\(644\) 1.13746 + 1.97014i 0.0448221 + 0.0776342i
\(645\) 0 0
\(646\) 12.8248 + 22.2131i 0.504583 + 0.873964i
\(647\) 12.2749 21.2608i 0.482577 0.835848i −0.517223 0.855851i \(-0.673034\pi\)
0.999800 + 0.0200031i \(0.00636760\pi\)
\(648\) 0 0
\(649\) −43.2990 −1.69963
\(650\) 14.3127 14.8742i 0.561391 0.583414i
\(651\) 0 0
\(652\) 2.86254 4.95807i 0.112106 0.194173i
\(653\) −17.2371 + 29.8556i −0.674541 + 1.16834i 0.302062 + 0.953288i \(0.402325\pi\)
−0.976603 + 0.215051i \(0.931008\pi\)
\(654\) 0 0
\(655\) 33.6495 1.31479
\(656\) 0.362541 + 0.627940i 0.0141549 + 0.0245169i
\(657\) 0 0
\(658\) 8.54983 0.333307
\(659\) −14.2749 24.7249i −0.556072 0.963145i −0.997819 0.0660052i \(-0.978975\pi\)
0.441747 0.897139i \(-0.354359\pi\)
\(660\) 0 0
\(661\) −20.0498 + 34.7273i −0.779848 + 1.35074i 0.152181 + 0.988353i \(0.451370\pi\)
−0.932029 + 0.362384i \(0.881963\pi\)
\(662\) −4.00000 −0.155464
\(663\) 0 0
\(664\) 10.8248 0.420082
\(665\) 14.0000 24.2487i 0.542897 0.940325i
\(666\) 0 0
\(667\) −0.824752 1.42851i −0.0319345 0.0553122i
\(668\) 0 0
\(669\) 0 0
\(670\) −16.8248 29.1413i −0.649997 1.12583i
\(671\) −36.0000 −1.38976
\(672\) 0 0
\(673\) −6.04983 + 10.4786i −0.233204 + 0.403921i −0.958749 0.284253i \(-0.908254\pi\)
0.725545 + 0.688174i \(0.241588\pi\)
\(674\) −3.63746 + 6.30026i −0.140110 + 0.242677i
\(675\) 0 0
\(676\) −0.500000 12.9904i −0.0192308 0.499630i
\(677\) −11.6495 −0.447727 −0.223863 0.974621i \(-0.571867\pi\)
−0.223863 + 0.974621i \(0.571867\pi\)
\(678\) 0 0
\(679\) −7.27492 + 12.6005i −0.279186 + 0.483564i
\(680\) −4.91238 8.50848i −0.188381 0.326285i
\(681\) 0 0
\(682\) 12.5498 + 21.7370i 0.480558 + 0.832351i
\(683\) −24.8248 42.9977i −0.949893 1.64526i −0.745645 0.666343i \(-0.767859\pi\)
−0.204248 0.978919i \(-0.565475\pi\)
\(684\) 0 0
\(685\) 0.286962 + 0.497033i 0.0109643 + 0.0189906i
\(686\) 0.500000 0.866025i 0.0190901 0.0330650i
\(687\) 0 0
\(688\) 10.8248 0.412690
\(689\) −40.4244 10.0025i −1.54005 0.381063i
\(690\) 0 0
\(691\) −4.00000 + 6.92820i −0.152167 + 0.263561i −0.932024 0.362397i \(-0.881959\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 5.27492 9.13642i 0.200522 0.347315i
\(693\) 0 0
\(694\) 15.4502 0.586480
\(695\) −34.5498 59.8421i −1.31055 2.26994i
\(696\) 0 0
\(697\) 2.17525 0.0823934
\(698\) 8.96221 + 15.5230i 0.339225 + 0.587554i
\(699\) 0 0
\(700\) −2.86254 + 4.95807i −0.108194 + 0.187397i
\(701\) 37.9244 1.43239 0.716193 0.697902i \(-0.245883\pi\)
0.716193 + 0.697902i \(0.245883\pi\)
\(702\) 0 0
\(703\) 62.1993 2.34589
\(704\) −2.00000 + 3.46410i −0.0753778 + 0.130558i
\(705\) 0 0
\(706\) 2.22508 + 3.85396i 0.0837421 + 0.145046i
\(707\) −9.27492 −0.348819
\(708\) 0 0
\(709\) 4.81271 + 8.33585i 0.180745 + 0.313060i 0.942134 0.335235i \(-0.108816\pi\)
−0.761389 + 0.648295i \(0.775482\pi\)
\(710\) −7.45017 −0.279600
\(711\) 0 0
\(712\) −4.13746 + 7.16629i −0.155058 + 0.268568i
\(713\) 7.13746 12.3624i 0.267300 0.462977i
\(714\) 0 0
\(715\) −32.7492 + 34.0339i −1.22475 + 1.27280i
\(716\) −16.5498 −0.618496
\(717\) 0 0
\(718\) −14.5498 + 25.2011i −0.542995 + 0.940495i
\(719\) −4.00000 6.92820i −0.149175 0.258378i 0.781748 0.623595i \(-0.214328\pi\)
−0.930923 + 0.365216i \(0.880995\pi\)
\(720\) 0 0
\(721\) 1.13746 + 1.97014i 0.0423612 + 0.0733717i
\(722\) 27.0498 + 46.8517i 1.00669 + 1.74364i
\(723\) 0 0
\(724\) −2.91238 5.04438i −0.108238 0.187473i
\(725\) 2.07558 3.59501i 0.0770851 0.133515i
\(726\) 0 0
\(727\) −2.82475 −0.104764 −0.0523821 0.998627i \(-0.516681\pi\)
−0.0523821 + 0.998627i \(0.516681\pi\)
\(728\) 1.00000 + 3.46410i 0.0370625 + 0.128388i
\(729\) 0 0
\(730\) 21.7371 37.6498i 0.804527 1.39348i
\(731\) 16.2371 28.1235i 0.600552 1.04019i
\(732\) 0 0
\(733\) 12.6495 0.467220 0.233610 0.972330i \(-0.424946\pi\)
0.233610 + 0.972330i \(0.424946\pi\)
\(734\) 2.86254 + 4.95807i 0.105658 + 0.183006i
\(735\) 0 0
\(736\) 2.27492 0.0838546
\(737\) 20.5498 + 35.5934i 0.756963 + 1.31110i
\(738\) 0 0
\(739\) 20.8625 36.1350i 0.767441 1.32925i −0.171505 0.985183i \(-0.554863\pi\)
0.938946 0.344064i \(-0.111804\pi\)
\(740\) −23.8248 −0.875815
\(741\) 0 0
\(742\) 11.5498 0.424008
\(743\) −13.4124 + 23.2309i −0.492052 + 0.852260i −0.999958 0.00915297i \(-0.997086\pi\)
0.507906 + 0.861413i \(0.330420\pi\)
\(744\) 0 0
\(745\) −1.63746 2.83616i −0.0599918 0.103909i
\(746\) −4.17525 −0.152867
\(747\) 0 0
\(748\) 6.00000 + 10.3923i 0.219382 + 0.379980i
\(749\) 12.5498 0.458561
\(750\) 0 0
\(751\) 1.72508 2.98793i 0.0629492 0.109031i −0.832833 0.553524i \(-0.813283\pi\)
0.895782 + 0.444493i \(0.146616\pi\)
\(752\) 4.27492 7.40437i 0.155890 0.270010i
\(753\) 0 0
\(754\) −0.725083 2.51176i −0.0264060 0.0914729i
\(755\) −56.0000 −2.03805
\(756\) 0 0
\(757\) 13.0000 22.5167i 0.472493 0.818382i −0.527011 0.849858i \(-0.676688\pi\)
0.999505 + 0.0314762i \(0.0100208\pi\)
\(758\) −10.0000 17.3205i −0.363216 0.629109i
\(759\) 0 0
\(760\) −14.0000 24.2487i −0.507833 0.879593i
\(761\) −20.0997 34.8136i −0.728612 1.26199i −0.957470 0.288534i \(-0.906832\pi\)
0.228857 0.973460i \(-0.426501\pi\)
\(762\) 0 0
\(763\) −5.27492 9.13642i −0.190965 0.330761i
\(764\) 7.13746 12.3624i 0.258224 0.447257i
\(765\) 0 0
\(766\) −38.1993 −1.38020
\(767\) 10.8248 + 37.4980i 0.390859 + 1.35398i
\(768\) 0 0
\(769\) 1.82475 3.16056i 0.0658022 0.113973i −0.831247 0.555903i \(-0.812373\pi\)
0.897050 + 0.441930i \(0.145706\pi\)
\(770\) 6.54983 11.3446i 0.236040 0.408833i
\(771\) 0 0
\(772\) −2.17525 −0.0782889
\(773\) −25.5498 44.2536i −0.918964 1.59169i −0.800992 0.598675i \(-0.795694\pi\)
−0.117971 0.993017i \(-0.537639\pi\)
\(774\) 0 0
\(775\) 35.9244 1.29044
\(776\) 7.27492 + 12.6005i 0.261154 + 0.452333i
\(777\) 0 0
\(778\) −10.3248 + 17.8830i −0.370160 + 0.641136i
\(779\) 6.19934 0.222114
\(780\) 0 0
\(781\) 9.09967 0.325612
\(782\) 3.41238 5.91041i 0.122026 0.211356i
\(783\) 0 0
\(784\) −0.500000 0.866025i −0.0178571 0.0309295i
\(785\) −36.9244 −1.31789
\(786\) 0 0
\(787\) 4.54983 + 7.88054i 0.162184 + 0.280911i 0.935652 0.352925i \(-0.114813\pi\)
−0.773468 + 0.633836i \(0.781479\pi\)
\(788\) −0.824752 −0.0293806
\(789\) 0 0
\(790\) −13.0997 + 22.6893i −0.466065 + 0.807249i
\(791\) −3.91238 + 6.77643i −0.139108 + 0.240942i
\(792\) 0 0
\(793\) 9.00000 + 31.1769i 0.319599 + 1.10712i
\(794\) −15.7251 −0.558062
\(795\) 0 0
\(796\) 5.41238 9.37451i 0.191837 0.332271i
\(797\) 0.725083 + 1.25588i 0.0256837 + 0.0444856i 0.878582 0.477592i \(-0.158490\pi\)
−0.852898 + 0.522078i \(0.825157\pi\)
\(798\) 0 0
\(799\) −12.8248 22.2131i −0.453707 0.785844i
\(800\) 2.86254 + 4.95807i 0.101206 + 0.175294i
\(801\) 0 0
\(802\) −2.63746 4.56821i −0.0931319 0.161309i
\(803\) −26.5498 + 45.9857i −0.936923 + 1.62280i
\(804\) 0 0
\(805\) −7.45017 −0.262584
\(806\) 15.6873 16.3027i 0.552561 0.574239i
\(807\) 0 0
\(808\) −4.63746 + 8.03231i −0.163145 + 0.282576i
\(809\) 8.63746 14.9605i 0.303677 0.525984i −0.673289 0.739379i \(-0.735119\pi\)
0.976966 + 0.213396i \(0.0684523\pi\)
\(810\) 0 0
\(811\) −25.0997 −0.881369 −0.440684 0.897662i \(-0.645264\pi\)
−0.440684 + 0.897662i \(0.645264\pi\)
\(812\) 0.362541 + 0.627940i 0.0127227 + 0.0220364i
\(813\) 0 0
\(814\) 29.0997 1.01994
\(815\) 9.37459 + 16.2373i 0.328377 + 0.568766i
\(816\) 0 0
\(817\) 46.2749 80.1505i 1.61895 2.80411i
\(818\) −22.9244 −0.801534
\(819\) 0 0
\(820\) −2.37459 −0.0829241
\(821\) 3.86254 6.69012i 0.134804 0.233487i −0.790719 0.612180i \(-0.790293\pi\)
0.925522 + 0.378693i \(0.123626\pi\)
\(822\) 0 0
\(823\) 18.5498 + 32.1293i 0.646607 + 1.11996i 0.983928 + 0.178566i \(0.0571458\pi\)
−0.337321 + 0.941390i \(0.609521\pi\)
\(824\) 2.27492 0.0792505
\(825\) 0 0
\(826\) −5.41238 9.37451i −0.188321 0.326181i
\(827\) 25.0997 0.872801 0.436401 0.899753i \(-0.356253\pi\)
0.436401 + 0.899753i \(0.356253\pi\)
\(828\) 0 0
\(829\) 11.0876 19.2043i 0.385089 0.666994i −0.606692 0.794937i \(-0.707504\pi\)
0.991782 + 0.127943i \(0.0408374\pi\)
\(830\) −17.7251 + 30.7007i −0.615247 + 1.06564i
\(831\) 0 0
\(832\) 3.50000 + 0.866025i 0.121341 + 0.0300240i
\(833\) −3.00000 −0.103944
\(834\) 0 0
\(835\) 0 0
\(836\) 17.0997 + 29.6175i 0.591404 + 1.02434i
\(837\) 0 0
\(838\) −7.68729 13.3148i −0.265553 0.459952i
\(839\) 27.3746 + 47.4142i 0.945076 + 1.63692i 0.755600 + 0.655034i \(0.227346\pi\)
0.189476 + 0.981885i \(0.439321\pi\)
\(840\) 0 0
\(841\) 14.2371 + 24.6594i 0.490935 + 0.850325i
\(842\) 0.362541 0.627940i 0.0124940 0.0216402i
\(843\) 0 0
\(844\) −9.09967 −0.313224
\(845\) 37.6615 + 19.8531i 1.29560 + 0.682968i
\(846\) 0 0
\(847\) −2.50000 + 4.33013i −0.0859010 + 0.148785i
\(848\) 5.77492 10.0025i 0.198311 0.343486i
\(849\) 0 0
\(850\) 17.1752 0.589106
\(851\) −8.27492 14.3326i −0.283661 0.491314i
\(852\) 0 0
\(853\) −29.5498 −1.01177 −0.505884 0.862602i \(-0.668833\pi\)
−0.505884 + 0.862602i \(0.668833\pi\)
\(854\) −4.50000 7.79423i −0.153987 0.266713i
\(855\) 0 0
\(856\) 6.27492 10.8685i 0.214472 0.371477i
\(857\) 14.1752 0.484217 0.242109 0.970249i \(-0.422161\pi\)
0.242109 + 0.970249i \(0.422161\pi\)
\(858\) 0 0
\(859\) 17.6495 0.602193 0.301097 0.953594i \(-0.402647\pi\)
0.301097 + 0.953594i \(0.402647\pi\)
\(860\) −17.7251 + 30.7007i −0.604420 + 1.04689i
\(861\) 0 0
\(862\) 2.86254 + 4.95807i 0.0974985 + 0.168872i
\(863\) 55.2990 1.88240 0.941200 0.337850i \(-0.109700\pi\)
0.941200 + 0.337850i \(0.109700\pi\)
\(864\) 0 0
\(865\) 17.2749 + 29.9210i 0.587365 + 1.01735i
\(866\) 2.72508 0.0926021
\(867\) 0 0
\(868\) −3.13746 + 5.43424i −0.106492 + 0.184450i
\(869\) 16.0000 27.7128i 0.542763 0.940093i
\(870\) 0 0
\(871\) 25.6873 26.6950i 0.870381 0.904526i
\(872\) −10.5498 −0.357262
\(873\) 0 0
\(874\) 9.72508 16.8443i 0.328956 0.569768i
\(875\) −1.18729 2.05645i −0.0401378 0.0695208i
\(876\) 0 0
\(877\) 5.63746 + 9.76436i 0.190363 + 0.329719i 0.945371 0.325997i \(-0.105700\pi\)
−0.755007 + 0.655716i \(0.772367\pi\)
\(878\) −8.54983 14.8087i −0.288543 0.499771i
\(879\) 0 0
\(880\) −6.54983 11.3446i −0.220795 0.382428i
\(881\) −6.77492 + 11.7345i −0.228253 + 0.395345i −0.957290 0.289128i \(-0.906635\pi\)
0.729038 + 0.684474i \(0.239968\pi\)
\(882\) 0 0
\(883\) −25.0241 −0.842128 −0.421064 0.907031i \(-0.638343\pi\)
−0.421064 + 0.907031i \(0.638343\pi\)
\(884\) 7.50000 7.79423i 0.252252 0.262148i
\(885\) 0 0
\(886\) −9.72508 + 16.8443i −0.326721 + 0.565897i
\(887\) 15.7251 27.2366i 0.527997 0.914517i −0.471471 0.881882i \(-0.656277\pi\)
0.999467 0.0326352i \(-0.0103900\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) −13.5498 23.4690i −0.454191 0.786683i
\(891\) 0 0
\(892\) 18.2749 0.611889
\(893\) −36.5498 63.3062i −1.22309 2.11846i
\(894\) 0 0
\(895\) 27.0997 46.9380i 0.905842 1.56896i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 11.0997 0.370401
\(899\) 2.27492 3.94027i 0.0758727 0.131415i
\(900\) 0 0
\(901\) −17.3248 30.0074i −0.577171 0.999690i
\(902\) 2.90033 0.0965705
\(903\) 0 0
\(904\) 3.91238 + 6.77643i 0.130124 + 0.225381i
\(905\) 19.0756 0.634094
\(906\) 0 0
\(907\) 8.58762 14.8742i 0.285147 0.493890i −0.687498 0.726187i \(-0.741291\pi\)
0.972645 + 0.232297i \(0.0746241\pi\)
\(908\) 4.54983 7.88054i 0.150992 0.261525i
\(909\) 0 0
\(910\) −11.4622 2.83616i −0.379969 0.0940178i
\(911\) −5.09967 −0.168960 −0.0844798 0.996425i \(-0.526923\pi\)
−0.0844798 + 0.996425i \(0.526923\pi\)
\(912\) 0 0
\(913\) 21.6495 37.4980i 0.716494 1.24100i
\(914\) −8.50000 14.7224i −0.281155 0.486975i
\(915\) 0 0
\(916\) −10.1375 17.5586i −0.334951 0.580152i
\(917\) −5.13746 8.89834i −0.169654 0.293849i
\(918\) 0 0
\(919\) 2.82475 + 4.89261i 0.0931800 + 0.161392i 0.908848 0.417128i \(-0.136963\pi\)
−0.815668 + 0.578521i \(0.803630\pi\)
\(920\) −3.72508 + 6.45203i −0.122812 + 0.212717i
\(921\) 0 0
\(922\) 18.3746 0.605135
\(923\) −2.27492 7.88054i −0.0748798 0.259391i
\(924\) 0 0
\(925\) 20.8248 36.0695i 0.684714 1.18596i
\(926\) 2.27492 3.94027i 0.0747584 0.129485i
\(927\) 0 0
\(928\) 0.725083 0.0238020
\(929\) 19.2251 + 33.2988i 0.630755 + 1.09250i 0.987398 + 0.158258i \(0.0505878\pi\)
−0.356643 + 0.934241i \(0.616079\pi\)
\(930\) 0 0
\(931\) −8.54983 −0.280210
\(932\) 11.2749 + 19.5287i 0.369322 + 0.639685i
\(933\) 0 0
\(934\) 15.4124 26.6950i 0.504308 0.873488i
\(935\) −39.2990 −1.28521
\(936\) 0 0
\(937\) 41.8248 1.36636 0.683178 0.730252i \(-0.260598\pi\)
0.683178 + 0.730252i \(0.260598\pi\)
\(938\) −5.13746 + 8.89834i −0.167744 + 0.290541i
\(939\) 0 0
\(940\) 14.0000 + 24.2487i 0.456630 + 0.790906i
\(941\) 7.64950 0.249367 0.124683 0.992197i \(-0.460209\pi\)
0.124683 + 0.992197i \(0.460209\pi\)
\(942\) 0 0
\(943\) −0.824752 1.42851i −0.0268576 0.0465187i
\(944\) −10.8248 −0.352316
\(945\) 0 0
\(946\) 21.6495 37.4980i 0.703886 1.21917i
\(947\) 10.5498 18.2728i 0.342824 0.593788i −0.642132 0.766594i \(-0.721950\pi\)
0.984956 + 0.172806i \(0.0552834\pi\)
\(948\) 0 0
\(949\) 46.4622 + 11.4964i 1.50823 + 0.373189i
\(950\) 48.9485 1.58810
\(951\) 0 0
\(952\) −1.50000 + 2.59808i −0.0486153 + 0.0842041i
\(953\) 9.54983 + 16.5408i 0.309349 + 0.535809i 0.978220 0.207570i \(-0.0665554\pi\)
−0.668871 + 0.743379i \(0.733222\pi\)
\(954\) 0 0
\(955\) 23.3746 + 40.4860i 0.756384 + 1.31010i
\(956\) 1.13746 + 1.97014i 0.0367880 + 0.0637188i
\(957\) 0 0
\(958\) −10.0000 17.3205i −0.323085 0.559600i
\(959\) 0.0876242 0.151770i 0.00282953 0.00490089i
\(960\) 0 0
\(961\) 8.37459 0.270148
\(962\) −7.27492 25.2011i −0.234553 0.812515i
\(963\) 0 0
\(964\) 11.6375 20.1567i 0.374817 0.649203i
\(965\) 3.56188 6.16936i 0.114661 0.198599i
\(966\) 0 0
\(967\) −3.45017 −0.110950 −0.0554749 0.998460i \(-0.517667\pi\)
−0.0554749 + 0.998460i \(0.517667\pi\)
\(968\) 2.50000 + 4.33013i 0.0803530 + 0.139176i
\(969\) 0 0
\(970\) −47.6495 −1.52993
\(971\) −24.7870 42.9323i −0.795451 1.37776i −0.922552 0.385873i \(-0.873900\pi\)
0.127101 0.991890i \(-0.459433\pi\)
\(972\) 0 0
\(973\) −10.5498 + 18.2728i −0.338212 + 0.585801i
\(974\) −29.0997 −0.932414
\(975\) 0 0
\(976\) −9.00000 −0.288083
\(977\) 31.1873 54.0180i 0.997770 1.72819i 0.441080 0.897468i \(-0.354596\pi\)
0.556690 0.830720i \(-0.312071\pi\)
\(978\) 0 0
\(979\) 16.5498 + 28.6652i 0.528935 + 0.916142i
\(980\) 3.27492 0.104613
\(981\) 0 0
\(982\) 2.54983 + 4.41644i 0.0813685 + 0.140934i
\(983\) 51.8488 1.65372 0.826861 0.562407i \(-0.190125\pi\)
0.826861 + 0.562407i \(0.190125\pi\)
\(984\) 0 0
\(985\) 1.35050 2.33913i 0.0430304 0.0745308i
\(986\) 1.08762 1.88382i 0.0346370 0.0599931i
\(987\) 0 0
\(988\) 21.3746 22.2131i 0.680016 0.706694i
\(989\) −24.6254 −0.783043
\(990\) 0 0
\(991\) −19.3746 + 33.5578i −0.615454 + 1.06600i 0.374851 + 0.927085i \(0.377694\pi\)
−0.990305 + 0.138912i \(0.955639\pi\)
\(992\) 3.13746 + 5.43424i 0.0996144 + 0.172537i
\(993\) 0 0
\(994\) 1.13746 + 1.97014i 0.0360780 + 0.0624889i
\(995\) 17.7251 + 30.7007i 0.561923 + 0.973279i
\(996\) 0 0
\(997\) 17.0498 + 29.5312i 0.539974 + 0.935262i 0.998905 + 0.0467900i \(0.0148991\pi\)
−0.458931 + 0.888472i \(0.651768\pi\)
\(998\) −4.58762 + 7.94600i −0.145219 + 0.251526i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.r.x.1387.2 4
3.2 odd 2 546.2.l.j.295.1 yes 4
13.3 even 3 inner 1638.2.r.x.757.2 4
39.17 odd 6 7098.2.a.bm.1.2 2
39.29 odd 6 546.2.l.j.211.1 4
39.35 odd 6 7098.2.a.ca.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.l.j.211.1 4 39.29 odd 6
546.2.l.j.295.1 yes 4 3.2 odd 2
1638.2.r.x.757.2 4 13.3 even 3 inner
1638.2.r.x.1387.2 4 1.1 even 1 trivial
7098.2.a.bm.1.2 2 39.17 odd 6
7098.2.a.ca.1.1 2 39.35 odd 6