Properties

Label 1638.2.l
Level $1638$
Weight $2$
Character orbit 1638.l
Rep. character $\chi_{1638}(373,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $224$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.l (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 819 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1638, [\chi])\).

Total New Old
Modular forms 688 224 464
Cusp forms 656 224 432
Eisenstein series 32 0 32

Trace form

\( 224 q - 112 q^{4} - 4 q^{7} - 8 q^{9} + 8 q^{11} + 2 q^{13} - 4 q^{15} - 112 q^{16} - 16 q^{17} + 12 q^{18} - 8 q^{19} - 8 q^{21} + 8 q^{23} - 112 q^{25} - 4 q^{26} + 6 q^{27} + 8 q^{28} - 16 q^{29} - 8 q^{30}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1638, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1638, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1638, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(819, [\chi])\)\(^{\oplus 2}\)