Properties

Label 1638.2.j.k.235.1
Level $1638$
Weight $2$
Character 1638.235
Analytic conductor $13.079$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(235,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 235.1
Root \(-1.32288 - 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 1638.235
Dual form 1638.2.j.k.1171.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.82288 - 3.15731i) q^{5} +(1.32288 + 2.29129i) q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.82288 - 3.15731i) q^{5} +(1.32288 + 2.29129i) q^{7} +1.00000 q^{8} +(-1.82288 + 3.15731i) q^{10} +(0.322876 - 0.559237i) q^{11} +1.00000 q^{13} +(1.32288 - 2.29129i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-3.32288 + 5.75539i) q^{17} +(-2.50000 - 4.33013i) q^{19} +3.64575 q^{20} -0.645751 q^{22} +(-1.17712 - 2.03884i) q^{23} +(-4.14575 + 7.18065i) q^{25} +(-0.500000 - 0.866025i) q^{26} -2.64575 q^{28} -4.29150 q^{29} +(-1.64575 + 2.85052i) q^{31} +(-0.500000 + 0.866025i) q^{32} +6.64575 q^{34} +(4.82288 - 8.35347i) q^{35} +(-2.82288 - 4.88936i) q^{37} +(-2.50000 + 4.33013i) q^{38} +(-1.82288 - 3.15731i) q^{40} +2.35425 q^{41} -5.29150 q^{43} +(0.322876 + 0.559237i) q^{44} +(-1.17712 + 2.03884i) q^{46} +(1.50000 + 2.59808i) q^{47} +(-3.50000 + 6.06218i) q^{49} +8.29150 q^{50} +(-0.500000 + 0.866025i) q^{52} +(-1.50000 + 2.59808i) q^{53} -2.35425 q^{55} +(1.32288 + 2.29129i) q^{56} +(2.14575 + 3.71655i) q^{58} +(-3.96863 + 6.87386i) q^{59} +(5.96863 + 10.3380i) q^{61} +3.29150 q^{62} +1.00000 q^{64} +(-1.82288 - 3.15731i) q^{65} +(-3.79150 + 6.56708i) q^{67} +(-3.32288 - 5.75539i) q^{68} -9.64575 q^{70} -16.2915 q^{71} +(6.82288 - 11.8176i) q^{73} +(-2.82288 + 4.88936i) q^{74} +5.00000 q^{76} +1.70850 q^{77} +(5.00000 + 8.66025i) q^{79} +(-1.82288 + 3.15731i) q^{80} +(-1.17712 - 2.03884i) q^{82} +13.2915 q^{83} +24.2288 q^{85} +(2.64575 + 4.58258i) q^{86} +(0.322876 - 0.559237i) q^{88} +(8.46863 + 14.6681i) q^{89} +(1.32288 + 2.29129i) q^{91} +2.35425 q^{92} +(1.50000 - 2.59808i) q^{94} +(-9.11438 + 15.7866i) q^{95} +0.937254 q^{97} +7.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} - 2 q^{5} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} - 2 q^{4} - 2 q^{5} + 4 q^{8} - 2 q^{10} - 4 q^{11} + 4 q^{13} - 2 q^{16} - 8 q^{17} - 10 q^{19} + 4 q^{20} + 8 q^{22} - 10 q^{23} - 6 q^{25} - 2 q^{26} + 4 q^{29} + 4 q^{31} - 2 q^{32} + 16 q^{34} + 14 q^{35} - 6 q^{37} - 10 q^{38} - 2 q^{40} + 20 q^{41} - 4 q^{44} - 10 q^{46} + 6 q^{47} - 14 q^{49} + 12 q^{50} - 2 q^{52} - 6 q^{53} - 20 q^{55} - 2 q^{58} + 8 q^{61} - 8 q^{62} + 4 q^{64} - 2 q^{65} + 6 q^{67} - 8 q^{68} - 28 q^{70} - 44 q^{71} + 22 q^{73} - 6 q^{74} + 20 q^{76} + 28 q^{77} + 20 q^{79} - 2 q^{80} - 10 q^{82} + 32 q^{83} + 44 q^{85} - 4 q^{88} + 18 q^{89} + 20 q^{92} + 6 q^{94} - 10 q^{95} - 28 q^{97} + 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.82288 3.15731i −0.815215 1.41199i −0.909174 0.416417i \(-0.863286\pi\)
0.0939588 0.995576i \(-0.470048\pi\)
\(6\) 0 0
\(7\) 1.32288 + 2.29129i 0.500000 + 0.866025i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.82288 + 3.15731i −0.576444 + 0.998430i
\(11\) 0.322876 0.559237i 0.0973507 0.168616i −0.813237 0.581933i \(-0.802296\pi\)
0.910587 + 0.413317i \(0.135630\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 1.32288 2.29129i 0.353553 0.612372i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.32288 + 5.75539i −0.805916 + 1.39589i 0.109755 + 0.993959i \(0.464993\pi\)
−0.915671 + 0.401928i \(0.868340\pi\)
\(18\) 0 0
\(19\) −2.50000 4.33013i −0.573539 0.993399i −0.996199 0.0871106i \(-0.972237\pi\)
0.422659 0.906289i \(-0.361097\pi\)
\(20\) 3.64575 0.815215
\(21\) 0 0
\(22\) −0.645751 −0.137675
\(23\) −1.17712 2.03884i −0.245447 0.425127i 0.716810 0.697269i \(-0.245602\pi\)
−0.962257 + 0.272141i \(0.912268\pi\)
\(24\) 0 0
\(25\) −4.14575 + 7.18065i −0.829150 + 1.43613i
\(26\) −0.500000 0.866025i −0.0980581 0.169842i
\(27\) 0 0
\(28\) −2.64575 −0.500000
\(29\) −4.29150 −0.796912 −0.398456 0.917187i \(-0.630454\pi\)
−0.398456 + 0.917187i \(0.630454\pi\)
\(30\) 0 0
\(31\) −1.64575 + 2.85052i −0.295586 + 0.511969i −0.975121 0.221673i \(-0.928848\pi\)
0.679535 + 0.733643i \(0.262181\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 6.64575 1.13974
\(35\) 4.82288 8.35347i 0.815215 1.41199i
\(36\) 0 0
\(37\) −2.82288 4.88936i −0.464078 0.803806i 0.535081 0.844800i \(-0.320281\pi\)
−0.999159 + 0.0409939i \(0.986948\pi\)
\(38\) −2.50000 + 4.33013i −0.405554 + 0.702439i
\(39\) 0 0
\(40\) −1.82288 3.15731i −0.288222 0.499215i
\(41\) 2.35425 0.367672 0.183836 0.982957i \(-0.441148\pi\)
0.183836 + 0.982957i \(0.441148\pi\)
\(42\) 0 0
\(43\) −5.29150 −0.806947 −0.403473 0.914991i \(-0.632197\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) 0.322876 + 0.559237i 0.0486753 + 0.0843082i
\(45\) 0 0
\(46\) −1.17712 + 2.03884i −0.173558 + 0.300610i
\(47\) 1.50000 + 2.59808i 0.218797 + 0.378968i 0.954441 0.298401i \(-0.0964533\pi\)
−0.735643 + 0.677369i \(0.763120\pi\)
\(48\) 0 0
\(49\) −3.50000 + 6.06218i −0.500000 + 0.866025i
\(50\) 8.29150 1.17260
\(51\) 0 0
\(52\) −0.500000 + 0.866025i −0.0693375 + 0.120096i
\(53\) −1.50000 + 2.59808i −0.206041 + 0.356873i −0.950464 0.310835i \(-0.899391\pi\)
0.744423 + 0.667708i \(0.232725\pi\)
\(54\) 0 0
\(55\) −2.35425 −0.317447
\(56\) 1.32288 + 2.29129i 0.176777 + 0.306186i
\(57\) 0 0
\(58\) 2.14575 + 3.71655i 0.281751 + 0.488007i
\(59\) −3.96863 + 6.87386i −0.516671 + 0.894901i 0.483141 + 0.875542i \(0.339496\pi\)
−0.999813 + 0.0193585i \(0.993838\pi\)
\(60\) 0 0
\(61\) 5.96863 + 10.3380i 0.764204 + 1.32364i 0.940666 + 0.339333i \(0.110201\pi\)
−0.176462 + 0.984307i \(0.556465\pi\)
\(62\) 3.29150 0.418021
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.82288 3.15731i −0.226100 0.391617i
\(66\) 0 0
\(67\) −3.79150 + 6.56708i −0.463206 + 0.802296i −0.999119 0.0419774i \(-0.986634\pi\)
0.535913 + 0.844273i \(0.319968\pi\)
\(68\) −3.32288 5.75539i −0.402958 0.697943i
\(69\) 0 0
\(70\) −9.64575 −1.15289
\(71\) −16.2915 −1.93345 −0.966723 0.255826i \(-0.917653\pi\)
−0.966723 + 0.255826i \(0.917653\pi\)
\(72\) 0 0
\(73\) 6.82288 11.8176i 0.798557 1.38314i −0.121998 0.992530i \(-0.538930\pi\)
0.920556 0.390611i \(-0.127736\pi\)
\(74\) −2.82288 + 4.88936i −0.328153 + 0.568377i
\(75\) 0 0
\(76\) 5.00000 0.573539
\(77\) 1.70850 0.194701
\(78\) 0 0
\(79\) 5.00000 + 8.66025i 0.562544 + 0.974355i 0.997274 + 0.0737937i \(0.0235106\pi\)
−0.434730 + 0.900561i \(0.643156\pi\)
\(80\) −1.82288 + 3.15731i −0.203804 + 0.352998i
\(81\) 0 0
\(82\) −1.17712 2.03884i −0.129992 0.225152i
\(83\) 13.2915 1.45893 0.729466 0.684017i \(-0.239769\pi\)
0.729466 + 0.684017i \(0.239769\pi\)
\(84\) 0 0
\(85\) 24.2288 2.62798
\(86\) 2.64575 + 4.58258i 0.285299 + 0.494152i
\(87\) 0 0
\(88\) 0.322876 0.559237i 0.0344187 0.0596149i
\(89\) 8.46863 + 14.6681i 0.897673 + 1.55481i 0.830462 + 0.557076i \(0.188077\pi\)
0.0672111 + 0.997739i \(0.478590\pi\)
\(90\) 0 0
\(91\) 1.32288 + 2.29129i 0.138675 + 0.240192i
\(92\) 2.35425 0.245447
\(93\) 0 0
\(94\) 1.50000 2.59808i 0.154713 0.267971i
\(95\) −9.11438 + 15.7866i −0.935115 + 1.61967i
\(96\) 0 0
\(97\) 0.937254 0.0951637 0.0475819 0.998867i \(-0.484849\pi\)
0.0475819 + 0.998867i \(0.484849\pi\)
\(98\) 7.00000 0.707107
\(99\) 0 0
\(100\) −4.14575 7.18065i −0.414575 0.718065i
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 2.64575 + 4.58258i 0.260694 + 0.451535i 0.966426 0.256943i \(-0.0827154\pi\)
−0.705733 + 0.708478i \(0.749382\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 3.00000 0.291386
\(107\) −6.00000 10.3923i −0.580042 1.00466i −0.995474 0.0950377i \(-0.969703\pi\)
0.415432 0.909624i \(-0.363630\pi\)
\(108\) 0 0
\(109\) 2.00000 3.46410i 0.191565 0.331801i −0.754204 0.656640i \(-0.771977\pi\)
0.945769 + 0.324840i \(0.105310\pi\)
\(110\) 1.17712 + 2.03884i 0.112234 + 0.194396i
\(111\) 0 0
\(112\) 1.32288 2.29129i 0.125000 0.216506i
\(113\) −15.2288 −1.43260 −0.716300 0.697792i \(-0.754166\pi\)
−0.716300 + 0.697792i \(0.754166\pi\)
\(114\) 0 0
\(115\) −4.29150 + 7.43310i −0.400185 + 0.693140i
\(116\) 2.14575 3.71655i 0.199228 0.345073i
\(117\) 0 0
\(118\) 7.93725 0.730683
\(119\) −17.5830 −1.61183
\(120\) 0 0
\(121\) 5.29150 + 9.16515i 0.481046 + 0.833196i
\(122\) 5.96863 10.3380i 0.540374 0.935955i
\(123\) 0 0
\(124\) −1.64575 2.85052i −0.147793 0.255985i
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −10.2288 −0.907655 −0.453828 0.891089i \(-0.649942\pi\)
−0.453828 + 0.891089i \(0.649942\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −1.82288 + 3.15731i −0.159877 + 0.276915i
\(131\) 5.46863 + 9.47194i 0.477796 + 0.827567i 0.999676 0.0254518i \(-0.00810242\pi\)
−0.521880 + 0.853019i \(0.674769\pi\)
\(132\) 0 0
\(133\) 6.61438 11.4564i 0.573539 0.993399i
\(134\) 7.58301 0.655072
\(135\) 0 0
\(136\) −3.32288 + 5.75539i −0.284934 + 0.493521i
\(137\) −9.76013 + 16.9050i −0.833864 + 1.44430i 0.0610877 + 0.998132i \(0.480543\pi\)
−0.894952 + 0.446163i \(0.852790\pi\)
\(138\) 0 0
\(139\) −22.2288 −1.88542 −0.942709 0.333615i \(-0.891731\pi\)
−0.942709 + 0.333615i \(0.891731\pi\)
\(140\) 4.82288 + 8.35347i 0.407607 + 0.705997i
\(141\) 0 0
\(142\) 8.14575 + 14.1089i 0.683576 + 1.18399i
\(143\) 0.322876 0.559237i 0.0270002 0.0467658i
\(144\) 0 0
\(145\) 7.82288 + 13.5496i 0.649654 + 1.12523i
\(146\) −13.6458 −1.12933
\(147\) 0 0
\(148\) 5.64575 0.464078
\(149\) −3.53137 6.11652i −0.289301 0.501085i 0.684342 0.729161i \(-0.260090\pi\)
−0.973643 + 0.228077i \(0.926756\pi\)
\(150\) 0 0
\(151\) −3.03137 + 5.25049i −0.246690 + 0.427279i −0.962605 0.270908i \(-0.912676\pi\)
0.715916 + 0.698187i \(0.246009\pi\)
\(152\) −2.50000 4.33013i −0.202777 0.351220i
\(153\) 0 0
\(154\) −0.854249 1.47960i −0.0688373 0.119230i
\(155\) 12.0000 0.963863
\(156\) 0 0
\(157\) −1.32288 + 2.29129i −0.105577 + 0.182865i −0.913974 0.405773i \(-0.867002\pi\)
0.808397 + 0.588638i \(0.200336\pi\)
\(158\) 5.00000 8.66025i 0.397779 0.688973i
\(159\) 0 0
\(160\) 3.64575 0.288222
\(161\) 3.11438 5.39426i 0.245447 0.425127i
\(162\) 0 0
\(163\) −1.20850 2.09318i −0.0946568 0.163950i 0.814809 0.579730i \(-0.196842\pi\)
−0.909465 + 0.415780i \(0.863509\pi\)
\(164\) −1.17712 + 2.03884i −0.0919180 + 0.159207i
\(165\) 0 0
\(166\) −6.64575 11.5108i −0.515810 0.893410i
\(167\) 6.87451 0.531965 0.265983 0.963978i \(-0.414304\pi\)
0.265983 + 0.963978i \(0.414304\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −12.1144 20.9827i −0.929130 1.60930i
\(171\) 0 0
\(172\) 2.64575 4.58258i 0.201737 0.349418i
\(173\) −11.1458 19.3050i −0.847396 1.46773i −0.883524 0.468385i \(-0.844836\pi\)
0.0361285 0.999347i \(-0.488497\pi\)
\(174\) 0 0
\(175\) −21.9373 −1.65830
\(176\) −0.645751 −0.0486753
\(177\) 0 0
\(178\) 8.46863 14.6681i 0.634750 1.09942i
\(179\) −3.00000 + 5.19615i −0.224231 + 0.388379i −0.956088 0.293079i \(-0.905320\pi\)
0.731858 + 0.681457i \(0.238654\pi\)
\(180\) 0 0
\(181\) 14.6458 1.08861 0.544305 0.838887i \(-0.316793\pi\)
0.544305 + 0.838887i \(0.316793\pi\)
\(182\) 1.32288 2.29129i 0.0980581 0.169842i
\(183\) 0 0
\(184\) −1.17712 2.03884i −0.0867788 0.150305i
\(185\) −10.2915 + 17.8254i −0.756646 + 1.31055i
\(186\) 0 0
\(187\) 2.14575 + 3.71655i 0.156913 + 0.271781i
\(188\) −3.00000 −0.218797
\(189\) 0 0
\(190\) 18.2288 1.32245
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) −9.46863 + 16.4001i −0.681567 + 1.18051i 0.292936 + 0.956132i \(0.405368\pi\)
−0.974503 + 0.224376i \(0.927966\pi\)
\(194\) −0.468627 0.811686i −0.0336455 0.0582756i
\(195\) 0 0
\(196\) −3.50000 6.06218i −0.250000 0.433013i
\(197\) 26.8118 1.91026 0.955129 0.296189i \(-0.0957157\pi\)
0.955129 + 0.296189i \(0.0957157\pi\)
\(198\) 0 0
\(199\) 11.1144 19.2507i 0.787877 1.36464i −0.139388 0.990238i \(-0.544513\pi\)
0.927265 0.374406i \(-0.122153\pi\)
\(200\) −4.14575 + 7.18065i −0.293149 + 0.507749i
\(201\) 0 0
\(202\) 0 0
\(203\) −5.67712 9.83307i −0.398456 0.690146i
\(204\) 0 0
\(205\) −4.29150 7.43310i −0.299732 0.519150i
\(206\) 2.64575 4.58258i 0.184338 0.319283i
\(207\) 0 0
\(208\) −0.500000 0.866025i −0.0346688 0.0600481i
\(209\) −3.22876 −0.223338
\(210\) 0 0
\(211\) −6.35425 −0.437445 −0.218722 0.975787i \(-0.570189\pi\)
−0.218722 + 0.975787i \(0.570189\pi\)
\(212\) −1.50000 2.59808i −0.103020 0.178437i
\(213\) 0 0
\(214\) −6.00000 + 10.3923i −0.410152 + 0.710403i
\(215\) 9.64575 + 16.7069i 0.657835 + 1.13940i
\(216\) 0 0
\(217\) −8.70850 −0.591171
\(218\) −4.00000 −0.270914
\(219\) 0 0
\(220\) 1.17712 2.03884i 0.0793617 0.137459i
\(221\) −3.32288 + 5.75539i −0.223521 + 0.387149i
\(222\) 0 0
\(223\) −20.5203 −1.37414 −0.687069 0.726592i \(-0.741103\pi\)
−0.687069 + 0.726592i \(0.741103\pi\)
\(224\) −2.64575 −0.176777
\(225\) 0 0
\(226\) 7.61438 + 13.1885i 0.506501 + 0.877285i
\(227\) −2.35425 + 4.07768i −0.156257 + 0.270645i −0.933516 0.358536i \(-0.883276\pi\)
0.777259 + 0.629181i \(0.216609\pi\)
\(228\) 0 0
\(229\) −13.2288 22.9129i −0.874181 1.51413i −0.857633 0.514263i \(-0.828066\pi\)
−0.0165480 0.999863i \(-0.505268\pi\)
\(230\) 8.58301 0.565947
\(231\) 0 0
\(232\) −4.29150 −0.281751
\(233\) 0.322876 + 0.559237i 0.0211523 + 0.0366368i 0.876408 0.481570i \(-0.159933\pi\)
−0.855256 + 0.518207i \(0.826600\pi\)
\(234\) 0 0
\(235\) 5.46863 9.47194i 0.356734 0.617881i
\(236\) −3.96863 6.87386i −0.258336 0.447450i
\(237\) 0 0
\(238\) 8.79150 + 15.2273i 0.569868 + 0.987041i
\(239\) −3.00000 −0.194054 −0.0970269 0.995282i \(-0.530933\pi\)
−0.0970269 + 0.995282i \(0.530933\pi\)
\(240\) 0 0
\(241\) 6.93725 12.0157i 0.446868 0.773998i −0.551312 0.834299i \(-0.685873\pi\)
0.998180 + 0.0603011i \(0.0192061\pi\)
\(242\) 5.29150 9.16515i 0.340151 0.589158i
\(243\) 0 0
\(244\) −11.9373 −0.764204
\(245\) 25.5203 1.63043
\(246\) 0 0
\(247\) −2.50000 4.33013i −0.159071 0.275519i
\(248\) −1.64575 + 2.85052i −0.104505 + 0.181009i
\(249\) 0 0
\(250\) −6.00000 10.3923i −0.379473 0.657267i
\(251\) 13.2915 0.838952 0.419476 0.907766i \(-0.362214\pi\)
0.419476 + 0.907766i \(0.362214\pi\)
\(252\) 0 0
\(253\) −1.52026 −0.0955779
\(254\) 5.11438 + 8.85836i 0.320905 + 0.555823i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.93725 13.7477i −0.495112 0.857560i 0.504872 0.863194i \(-0.331540\pi\)
−0.999984 + 0.00563467i \(0.998206\pi\)
\(258\) 0 0
\(259\) 7.46863 12.9360i 0.464078 0.803806i
\(260\) 3.64575 0.226100
\(261\) 0 0
\(262\) 5.46863 9.47194i 0.337853 0.585178i
\(263\) −1.82288 + 3.15731i −0.112403 + 0.194688i −0.916739 0.399487i \(-0.869188\pi\)
0.804335 + 0.594175i \(0.202522\pi\)
\(264\) 0 0
\(265\) 10.9373 0.671870
\(266\) −13.2288 −0.811107
\(267\) 0 0
\(268\) −3.79150 6.56708i −0.231603 0.401148i
\(269\) 3.43725 5.95350i 0.209573 0.362991i −0.742007 0.670392i \(-0.766126\pi\)
0.951580 + 0.307401i \(0.0994593\pi\)
\(270\) 0 0
\(271\) 11.3229 + 19.6118i 0.687816 + 1.19133i 0.972543 + 0.232723i \(0.0747636\pi\)
−0.284727 + 0.958609i \(0.591903\pi\)
\(272\) 6.64575 0.402958
\(273\) 0 0
\(274\) 19.5203 1.17926
\(275\) 2.67712 + 4.63692i 0.161437 + 0.279617i
\(276\) 0 0
\(277\) −9.26013 + 16.0390i −0.556387 + 0.963691i 0.441407 + 0.897307i \(0.354480\pi\)
−0.997794 + 0.0663840i \(0.978854\pi\)
\(278\) 11.1144 + 19.2507i 0.666596 + 1.15458i
\(279\) 0 0
\(280\) 4.82288 8.35347i 0.288222 0.499215i
\(281\) 2.58301 0.154089 0.0770446 0.997028i \(-0.475452\pi\)
0.0770446 + 0.997028i \(0.475452\pi\)
\(282\) 0 0
\(283\) 5.53137 9.58062i 0.328806 0.569509i −0.653469 0.756953i \(-0.726687\pi\)
0.982275 + 0.187444i \(0.0600204\pi\)
\(284\) 8.14575 14.1089i 0.483361 0.837207i
\(285\) 0 0
\(286\) −0.645751 −0.0381841
\(287\) 3.11438 + 5.39426i 0.183836 + 0.318413i
\(288\) 0 0
\(289\) −13.5830 23.5265i −0.799000 1.38391i
\(290\) 7.82288 13.5496i 0.459375 0.795661i
\(291\) 0 0
\(292\) 6.82288 + 11.8176i 0.399279 + 0.691571i
\(293\) −7.52026 −0.439338 −0.219669 0.975574i \(-0.570498\pi\)
−0.219669 + 0.975574i \(0.570498\pi\)
\(294\) 0 0
\(295\) 28.9373 1.68479
\(296\) −2.82288 4.88936i −0.164076 0.284189i
\(297\) 0 0
\(298\) −3.53137 + 6.11652i −0.204567 + 0.354320i
\(299\) −1.17712 2.03884i −0.0680749 0.117909i
\(300\) 0 0
\(301\) −7.00000 12.1244i −0.403473 0.698836i
\(302\) 6.06275 0.348872
\(303\) 0 0
\(304\) −2.50000 + 4.33013i −0.143385 + 0.248350i
\(305\) 21.7601 37.6897i 1.24598 2.15810i
\(306\) 0 0
\(307\) −9.58301 −0.546931 −0.273465 0.961882i \(-0.588170\pi\)
−0.273465 + 0.961882i \(0.588170\pi\)
\(308\) −0.854249 + 1.47960i −0.0486753 + 0.0843082i
\(309\) 0 0
\(310\) −6.00000 10.3923i −0.340777 0.590243i
\(311\) −0.531373 + 0.920365i −0.0301314 + 0.0521891i −0.880698 0.473678i \(-0.842926\pi\)
0.850566 + 0.525868i \(0.176259\pi\)
\(312\) 0 0
\(313\) −6.58301 11.4021i −0.372093 0.644485i 0.617794 0.786340i \(-0.288027\pi\)
−0.989887 + 0.141855i \(0.954693\pi\)
\(314\) 2.64575 0.149308
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) −6.64575 11.5108i −0.373263 0.646510i 0.616803 0.787118i \(-0.288428\pi\)
−0.990065 + 0.140608i \(0.955094\pi\)
\(318\) 0 0
\(319\) −1.38562 + 2.39997i −0.0775799 + 0.134372i
\(320\) −1.82288 3.15731i −0.101902 0.176499i
\(321\) 0 0
\(322\) −6.22876 −0.347115
\(323\) 33.2288 1.84890
\(324\) 0 0
\(325\) −4.14575 + 7.18065i −0.229965 + 0.398311i
\(326\) −1.20850 + 2.09318i −0.0669325 + 0.115930i
\(327\) 0 0
\(328\) 2.35425 0.129992
\(329\) −3.96863 + 6.87386i −0.218797 + 0.378968i
\(330\) 0 0
\(331\) −5.70850 9.88741i −0.313767 0.543461i 0.665407 0.746480i \(-0.268258\pi\)
−0.979175 + 0.203019i \(0.934925\pi\)
\(332\) −6.64575 + 11.5108i −0.364733 + 0.631736i
\(333\) 0 0
\(334\) −3.43725 5.95350i −0.188078 0.325761i
\(335\) 27.6458 1.51045
\(336\) 0 0
\(337\) −15.5830 −0.848860 −0.424430 0.905461i \(-0.639526\pi\)
−0.424430 + 0.905461i \(0.639526\pi\)
\(338\) −0.500000 0.866025i −0.0271964 0.0471056i
\(339\) 0 0
\(340\) −12.1144 + 20.9827i −0.656994 + 1.13795i
\(341\) 1.06275 + 1.84073i 0.0575509 + 0.0996811i
\(342\) 0 0
\(343\) −18.5203 −1.00000
\(344\) −5.29150 −0.285299
\(345\) 0 0
\(346\) −11.1458 + 19.3050i −0.599199 + 1.03784i
\(347\) 0.114378 0.198109i 0.00614015 0.0106350i −0.862939 0.505308i \(-0.831379\pi\)
0.869079 + 0.494673i \(0.164712\pi\)
\(348\) 0 0
\(349\) 18.9373 1.01369 0.506844 0.862038i \(-0.330812\pi\)
0.506844 + 0.862038i \(0.330812\pi\)
\(350\) 10.9686 + 18.9982i 0.586298 + 1.01550i
\(351\) 0 0
\(352\) 0.322876 + 0.559237i 0.0172093 + 0.0298074i
\(353\) −10.2915 + 17.8254i −0.547761 + 0.948751i 0.450666 + 0.892693i \(0.351187\pi\)
−0.998428 + 0.0560580i \(0.982147\pi\)
\(354\) 0 0
\(355\) 29.6974 + 51.4374i 1.57617 + 2.73001i
\(356\) −16.9373 −0.897673
\(357\) 0 0
\(358\) 6.00000 0.317110
\(359\) −3.00000 5.19615i −0.158334 0.274242i 0.775934 0.630814i \(-0.217279\pi\)
−0.934268 + 0.356572i \(0.883946\pi\)
\(360\) 0 0
\(361\) −3.00000 + 5.19615i −0.157895 + 0.273482i
\(362\) −7.32288 12.6836i −0.384882 0.666635i
\(363\) 0 0
\(364\) −2.64575 −0.138675
\(365\) −49.7490 −2.60398
\(366\) 0 0
\(367\) 0.291503 0.504897i 0.0152163 0.0263554i −0.858317 0.513120i \(-0.828490\pi\)
0.873533 + 0.486764i \(0.161823\pi\)
\(368\) −1.17712 + 2.03884i −0.0613618 + 0.106282i
\(369\) 0 0
\(370\) 20.5830 1.07006
\(371\) −7.93725 −0.412082
\(372\) 0 0
\(373\) −7.32288 12.6836i −0.379164 0.656732i 0.611777 0.791030i \(-0.290455\pi\)
−0.990941 + 0.134299i \(0.957122\pi\)
\(374\) 2.14575 3.71655i 0.110954 0.192178i
\(375\) 0 0
\(376\) 1.50000 + 2.59808i 0.0773566 + 0.133986i
\(377\) −4.29150 −0.221024
\(378\) 0 0
\(379\) −9.16601 −0.470826 −0.235413 0.971895i \(-0.575644\pi\)
−0.235413 + 0.971895i \(0.575644\pi\)
\(380\) −9.11438 15.7866i −0.467558 0.809834i
\(381\) 0 0
\(382\) 0 0
\(383\) 12.8745 + 22.2993i 0.657857 + 1.13944i 0.981169 + 0.193149i \(0.0618701\pi\)
−0.323313 + 0.946292i \(0.604797\pi\)
\(384\) 0 0
\(385\) −3.11438 5.39426i −0.158723 0.274917i
\(386\) 18.9373 0.963881
\(387\) 0 0
\(388\) −0.468627 + 0.811686i −0.0237909 + 0.0412071i
\(389\) 3.85425 6.67575i 0.195418 0.338474i −0.751619 0.659597i \(-0.770727\pi\)
0.947038 + 0.321123i \(0.104060\pi\)
\(390\) 0 0
\(391\) 15.6458 0.791240
\(392\) −3.50000 + 6.06218i −0.176777 + 0.306186i
\(393\) 0 0
\(394\) −13.4059 23.2197i −0.675379 1.16979i
\(395\) 18.2288 31.5731i 0.917188 1.58862i
\(396\) 0 0
\(397\) 7.46863 + 12.9360i 0.374840 + 0.649241i 0.990303 0.138924i \(-0.0443644\pi\)
−0.615463 + 0.788165i \(0.711031\pi\)
\(398\) −22.2288 −1.11423
\(399\) 0 0
\(400\) 8.29150 0.414575
\(401\) −9.11438 15.7866i −0.455150 0.788343i 0.543547 0.839379i \(-0.317081\pi\)
−0.998697 + 0.0510356i \(0.983748\pi\)
\(402\) 0 0
\(403\) −1.64575 + 2.85052i −0.0819807 + 0.141995i
\(404\) 0 0
\(405\) 0 0
\(406\) −5.67712 + 9.83307i −0.281751 + 0.488007i
\(407\) −3.64575 −0.180713
\(408\) 0 0
\(409\) 13.4686 23.3283i 0.665981 1.15351i −0.313038 0.949741i \(-0.601347\pi\)
0.979018 0.203772i \(-0.0653201\pi\)
\(410\) −4.29150 + 7.43310i −0.211942 + 0.367095i
\(411\) 0 0
\(412\) −5.29150 −0.260694
\(413\) −21.0000 −1.03334
\(414\) 0 0
\(415\) −24.2288 41.9654i −1.18934 2.06000i
\(416\) −0.500000 + 0.866025i −0.0245145 + 0.0424604i
\(417\) 0 0
\(418\) 1.61438 + 2.79619i 0.0789618 + 0.136766i
\(419\) −30.4575 −1.48795 −0.743973 0.668209i \(-0.767061\pi\)
−0.743973 + 0.668209i \(0.767061\pi\)
\(420\) 0 0
\(421\) −24.3542 −1.18695 −0.593477 0.804851i \(-0.702245\pi\)
−0.593477 + 0.804851i \(0.702245\pi\)
\(422\) 3.17712 + 5.50294i 0.154660 + 0.267879i
\(423\) 0 0
\(424\) −1.50000 + 2.59808i −0.0728464 + 0.126174i
\(425\) −27.5516 47.7208i −1.33645 2.31480i
\(426\) 0 0
\(427\) −15.7915 + 27.3517i −0.764204 + 1.32364i
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 9.64575 16.7069i 0.465159 0.805680i
\(431\) 10.2915 17.8254i 0.495724 0.858620i −0.504264 0.863550i \(-0.668236\pi\)
0.999988 + 0.00493021i \(0.00156934\pi\)
\(432\) 0 0
\(433\) −33.5830 −1.61390 −0.806948 0.590622i \(-0.798882\pi\)
−0.806948 + 0.590622i \(0.798882\pi\)
\(434\) 4.35425 + 7.54178i 0.209011 + 0.362017i
\(435\) 0 0
\(436\) 2.00000 + 3.46410i 0.0957826 + 0.165900i
\(437\) −5.88562 + 10.1942i −0.281547 + 0.487655i
\(438\) 0 0
\(439\) −11.8229 20.4778i −0.564275 0.977353i −0.997117 0.0758831i \(-0.975822\pi\)
0.432842 0.901470i \(-0.357511\pi\)
\(440\) −2.35425 −0.112234
\(441\) 0 0
\(442\) 6.64575 0.316106
\(443\) 9.53137 + 16.5088i 0.452849 + 0.784358i 0.998562 0.0536147i \(-0.0170743\pi\)
−0.545713 + 0.837972i \(0.683741\pi\)
\(444\) 0 0
\(445\) 30.8745 53.4762i 1.46359 2.53502i
\(446\) 10.2601 + 17.7711i 0.485831 + 0.841484i
\(447\) 0 0
\(448\) 1.32288 + 2.29129i 0.0625000 + 0.108253i
\(449\) −12.0000 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) 0 0
\(451\) 0.760130 1.31658i 0.0357931 0.0619955i
\(452\) 7.61438 13.1885i 0.358150 0.620334i
\(453\) 0 0
\(454\) 4.70850 0.220981
\(455\) 4.82288 8.35347i 0.226100 0.391617i
\(456\) 0 0
\(457\) −16.1144 27.9109i −0.753799 1.30562i −0.945969 0.324256i \(-0.894886\pi\)
0.192170 0.981362i \(-0.438447\pi\)
\(458\) −13.2288 + 22.9129i −0.618139 + 1.07065i
\(459\) 0 0
\(460\) −4.29150 7.43310i −0.200092 0.346570i
\(461\) 36.4575 1.69800 0.848998 0.528396i \(-0.177206\pi\)
0.848998 + 0.528396i \(0.177206\pi\)
\(462\) 0 0
\(463\) 25.1660 1.16956 0.584782 0.811191i \(-0.301180\pi\)
0.584782 + 0.811191i \(0.301180\pi\)
\(464\) 2.14575 + 3.71655i 0.0996140 + 0.172537i
\(465\) 0 0
\(466\) 0.322876 0.559237i 0.0149569 0.0259062i
\(467\) −18.7601 32.4935i −0.868115 1.50362i −0.863920 0.503629i \(-0.831998\pi\)
−0.00419497 0.999991i \(-0.501335\pi\)
\(468\) 0 0
\(469\) −20.0627 −0.926412
\(470\) −10.9373 −0.504498
\(471\) 0 0
\(472\) −3.96863 + 6.87386i −0.182671 + 0.316395i
\(473\) −1.70850 + 2.95920i −0.0785568 + 0.136064i
\(474\) 0 0
\(475\) 41.4575 1.90220
\(476\) 8.79150 15.2273i 0.402958 0.697943i
\(477\) 0 0
\(478\) 1.50000 + 2.59808i 0.0686084 + 0.118833i
\(479\) −17.3745 + 30.0935i −0.793862 + 1.37501i 0.129698 + 0.991554i \(0.458599\pi\)
−0.923560 + 0.383455i \(0.874734\pi\)
\(480\) 0 0
\(481\) −2.82288 4.88936i −0.128712 0.222936i
\(482\) −13.8745 −0.631967
\(483\) 0 0
\(484\) −10.5830 −0.481046
\(485\) −1.70850 2.95920i −0.0775789 0.134371i
\(486\) 0 0
\(487\) 11.9686 20.7303i 0.542350 0.939378i −0.456418 0.889765i \(-0.650868\pi\)
0.998769 0.0496129i \(-0.0157987\pi\)
\(488\) 5.96863 + 10.3380i 0.270187 + 0.467978i
\(489\) 0 0
\(490\) −12.7601 22.1012i −0.576444 0.998430i
\(491\) −11.1660 −0.503915 −0.251957 0.967738i \(-0.581074\pi\)
−0.251957 + 0.967738i \(0.581074\pi\)
\(492\) 0 0
\(493\) 14.2601 24.6993i 0.642244 1.11240i
\(494\) −2.50000 + 4.33013i −0.112480 + 0.194822i
\(495\) 0 0
\(496\) 3.29150 0.147793
\(497\) −21.5516 37.3285i −0.966723 1.67441i
\(498\) 0 0
\(499\) 14.6458 + 25.3672i 0.655634 + 1.13559i 0.981734 + 0.190256i \(0.0609318\pi\)
−0.326101 + 0.945335i \(0.605735\pi\)
\(500\) −6.00000 + 10.3923i −0.268328 + 0.464758i
\(501\) 0 0
\(502\) −6.64575 11.5108i −0.296614 0.513751i
\(503\) −36.4575 −1.62556 −0.812780 0.582571i \(-0.802047\pi\)
−0.812780 + 0.582571i \(0.802047\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0.760130 + 1.31658i 0.0337919 + 0.0585293i
\(507\) 0 0
\(508\) 5.11438 8.85836i 0.226914 0.393026i
\(509\) 12.0000 + 20.7846i 0.531891 + 0.921262i 0.999307 + 0.0372243i \(0.0118516\pi\)
−0.467416 + 0.884037i \(0.654815\pi\)
\(510\) 0 0
\(511\) 36.1033 1.59711
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −7.93725 + 13.7477i −0.350097 + 0.606386i
\(515\) 9.64575 16.7069i 0.425043 0.736195i
\(516\) 0 0
\(517\) 1.93725 0.0852003
\(518\) −14.9373 −0.656305
\(519\) 0 0
\(520\) −1.82288 3.15731i −0.0799384 0.138457i
\(521\) 9.00000 15.5885i 0.394297 0.682943i −0.598714 0.800963i \(-0.704321\pi\)
0.993011 + 0.118020i \(0.0376547\pi\)
\(522\) 0 0
\(523\) 13.3542 + 23.1302i 0.583941 + 1.01141i 0.995007 + 0.0998091i \(0.0318232\pi\)
−0.411066 + 0.911606i \(0.634843\pi\)
\(524\) −10.9373 −0.477796
\(525\) 0 0
\(526\) 3.64575 0.158962
\(527\) −10.9373 18.9439i −0.476434 0.825208i
\(528\) 0 0
\(529\) 8.72876 15.1186i 0.379511 0.657333i
\(530\) −5.46863 9.47194i −0.237542 0.411435i
\(531\) 0 0
\(532\) 6.61438 + 11.4564i 0.286770 + 0.496700i
\(533\) 2.35425 0.101974
\(534\) 0 0
\(535\) −21.8745 + 37.8878i −0.945717 + 1.63803i
\(536\) −3.79150 + 6.56708i −0.163768 + 0.283654i
\(537\) 0 0
\(538\) −6.87451 −0.296381
\(539\) 2.26013 + 3.91466i 0.0973507 + 0.168616i
\(540\) 0 0
\(541\) −20.8229 36.0663i −0.895245 1.55061i −0.833501 0.552518i \(-0.813667\pi\)
−0.0617447 0.998092i \(-0.519666\pi\)
\(542\) 11.3229 19.6118i 0.486359 0.842399i
\(543\) 0 0
\(544\) −3.32288 5.75539i −0.142467 0.246760i
\(545\) −14.5830 −0.624667
\(546\) 0 0
\(547\) −20.9373 −0.895212 −0.447606 0.894231i \(-0.647723\pi\)
−0.447606 + 0.894231i \(0.647723\pi\)
\(548\) −9.76013 16.9050i −0.416932 0.722148i
\(549\) 0 0
\(550\) 2.67712 4.63692i 0.114153 0.197719i
\(551\) 10.7288 + 18.5828i 0.457060 + 0.791652i
\(552\) 0 0
\(553\) −13.2288 + 22.9129i −0.562544 + 0.974355i
\(554\) 18.5203 0.786850
\(555\) 0 0
\(556\) 11.1144 19.2507i 0.471355 0.816410i
\(557\) 5.58301 9.67005i 0.236560 0.409733i −0.723165 0.690675i \(-0.757314\pi\)
0.959725 + 0.280942i \(0.0906468\pi\)
\(558\) 0 0
\(559\) −5.29150 −0.223807
\(560\) −9.64575 −0.407607
\(561\) 0 0
\(562\) −1.29150 2.23695i −0.0544788 0.0943600i
\(563\) −13.5203 + 23.4178i −0.569811 + 0.986942i 0.426773 + 0.904359i \(0.359650\pi\)
−0.996584 + 0.0825829i \(0.973683\pi\)
\(564\) 0 0
\(565\) 27.7601 + 48.0820i 1.16788 + 2.02282i
\(566\) −11.0627 −0.465002
\(567\) 0 0
\(568\) −16.2915 −0.683576
\(569\) −16.6144 28.7769i −0.696511 1.20639i −0.969669 0.244423i \(-0.921401\pi\)
0.273158 0.961969i \(-0.411932\pi\)
\(570\) 0 0
\(571\) 8.00000 13.8564i 0.334790 0.579873i −0.648655 0.761083i \(-0.724668\pi\)
0.983444 + 0.181210i \(0.0580014\pi\)
\(572\) 0.322876 + 0.559237i 0.0135001 + 0.0233829i
\(573\) 0 0
\(574\) 3.11438 5.39426i 0.129992 0.225152i
\(575\) 19.5203 0.814051
\(576\) 0 0
\(577\) 6.29150 10.8972i 0.261919 0.453656i −0.704833 0.709373i \(-0.748978\pi\)
0.966752 + 0.255717i \(0.0823114\pi\)
\(578\) −13.5830 + 23.5265i −0.564979 + 0.978572i
\(579\) 0 0
\(580\) −15.6458 −0.649654
\(581\) 17.5830 + 30.4547i 0.729466 + 1.26347i
\(582\) 0 0
\(583\) 0.968627 + 1.67771i 0.0401164 + 0.0694837i
\(584\) 6.82288 11.8176i 0.282333 0.489014i
\(585\) 0 0
\(586\) 3.76013 + 6.51274i 0.155330 + 0.269039i
\(587\) −31.9373 −1.31819 −0.659096 0.752059i \(-0.729061\pi\)
−0.659096 + 0.752059i \(0.729061\pi\)
\(588\) 0 0
\(589\) 16.4575 0.678120
\(590\) −14.4686 25.0604i −0.595664 1.03172i
\(591\) 0 0
\(592\) −2.82288 + 4.88936i −0.116019 + 0.200952i
\(593\) 21.7601 + 37.6897i 0.893581 + 1.54773i 0.835551 + 0.549414i \(0.185149\pi\)
0.0580309 + 0.998315i \(0.481518\pi\)
\(594\) 0 0
\(595\) 32.0516 + 55.5151i 1.31399 + 2.27590i
\(596\) 7.06275 0.289301
\(597\) 0 0
\(598\) −1.17712 + 2.03884i −0.0481362 + 0.0833743i
\(599\) −16.4059 + 28.4158i −0.670326 + 1.16104i 0.307485 + 0.951553i \(0.400512\pi\)
−0.977812 + 0.209486i \(0.932821\pi\)
\(600\) 0 0
\(601\) 14.8745 0.606744 0.303372 0.952872i \(-0.401888\pi\)
0.303372 + 0.952872i \(0.401888\pi\)
\(602\) −7.00000 + 12.1244i −0.285299 + 0.494152i
\(603\) 0 0
\(604\) −3.03137 5.25049i −0.123345 0.213639i
\(605\) 19.2915 33.4139i 0.784311 1.35847i
\(606\) 0 0
\(607\) −8.40588 14.5594i −0.341184 0.590948i 0.643469 0.765472i \(-0.277495\pi\)
−0.984653 + 0.174524i \(0.944161\pi\)
\(608\) 5.00000 0.202777
\(609\) 0 0
\(610\) −43.5203 −1.76208
\(611\) 1.50000 + 2.59808i 0.0606835 + 0.105107i
\(612\) 0 0
\(613\) −20.9373 + 36.2644i −0.845648 + 1.46470i 0.0394098 + 0.999223i \(0.487452\pi\)
−0.885058 + 0.465482i \(0.845881\pi\)
\(614\) 4.79150 + 8.29913i 0.193369 + 0.334925i
\(615\) 0 0
\(616\) 1.70850 0.0688373
\(617\) 10.7085 0.431108 0.215554 0.976492i \(-0.430844\pi\)
0.215554 + 0.976492i \(0.430844\pi\)
\(618\) 0 0
\(619\) 20.8745 36.1557i 0.839017 1.45322i −0.0516999 0.998663i \(-0.516464\pi\)
0.890717 0.454558i \(-0.150203\pi\)
\(620\) −6.00000 + 10.3923i −0.240966 + 0.417365i
\(621\) 0 0
\(622\) 1.06275 0.0426122
\(623\) −22.4059 + 38.8081i −0.897673 + 1.55481i
\(624\) 0 0
\(625\) −1.14575 1.98450i −0.0458301 0.0793800i
\(626\) −6.58301 + 11.4021i −0.263110 + 0.455720i
\(627\) 0 0
\(628\) −1.32288 2.29129i −0.0527885 0.0914323i
\(629\) 37.5203 1.49603
\(630\) 0 0
\(631\) 14.4575 0.575545 0.287772 0.957699i \(-0.407085\pi\)
0.287772 + 0.957699i \(0.407085\pi\)
\(632\) 5.00000 + 8.66025i 0.198889 + 0.344486i
\(633\) 0 0
\(634\) −6.64575 + 11.5108i −0.263937 + 0.457151i
\(635\) 18.6458 + 32.2954i 0.739934 + 1.28160i
\(636\) 0 0
\(637\) −3.50000 + 6.06218i −0.138675 + 0.240192i
\(638\) 2.77124 0.109715
\(639\) 0 0
\(640\) −1.82288 + 3.15731i −0.0720555 + 0.124804i
\(641\) −10.7085 + 18.5477i −0.422960 + 0.732589i −0.996228 0.0867798i \(-0.972342\pi\)
0.573267 + 0.819368i \(0.305676\pi\)
\(642\) 0 0
\(643\) −10.8745 −0.428849 −0.214424 0.976741i \(-0.568788\pi\)
−0.214424 + 0.976741i \(0.568788\pi\)
\(644\) 3.11438 + 5.39426i 0.122724 + 0.212564i
\(645\) 0 0
\(646\) −16.6144 28.7769i −0.653684 1.13221i
\(647\) 12.8745 22.2993i 0.506149 0.876676i −0.493826 0.869561i \(-0.664402\pi\)
0.999975 0.00711502i \(-0.00226480\pi\)
\(648\) 0 0
\(649\) 2.56275 + 4.43881i 0.100597 + 0.174238i
\(650\) 8.29150 0.325219
\(651\) 0 0
\(652\) 2.41699 0.0946568
\(653\) 6.00000 + 10.3923i 0.234798 + 0.406682i 0.959214 0.282681i \(-0.0912238\pi\)
−0.724416 + 0.689363i \(0.757890\pi\)
\(654\) 0 0
\(655\) 19.9373 34.5323i 0.779013 1.34929i
\(656\) −1.17712 2.03884i −0.0459590 0.0796033i
\(657\) 0 0
\(658\) 7.93725 0.309426
\(659\) 16.9373 0.659782 0.329891 0.944019i \(-0.392988\pi\)
0.329891 + 0.944019i \(0.392988\pi\)
\(660\) 0 0
\(661\) −7.76013 + 13.4409i −0.301834 + 0.522792i −0.976551 0.215284i \(-0.930932\pi\)
0.674717 + 0.738076i \(0.264266\pi\)
\(662\) −5.70850 + 9.88741i −0.221867 + 0.384285i
\(663\) 0 0
\(664\) 13.2915 0.515810
\(665\) −48.2288 −1.87023
\(666\) 0 0
\(667\) 5.05163 + 8.74968i 0.195600 + 0.338789i
\(668\) −3.43725 + 5.95350i −0.132991 + 0.230348i
\(669\) 0 0
\(670\) −13.8229 23.9419i −0.534024 0.924957i
\(671\) 7.70850 0.297583
\(672\) 0 0
\(673\) −6.58301 −0.253756 −0.126878 0.991918i \(-0.540496\pi\)
−0.126878 + 0.991918i \(0.540496\pi\)
\(674\) 7.79150 + 13.4953i 0.300117 + 0.519819i
\(675\) 0 0
\(676\) −0.500000 + 0.866025i −0.0192308 + 0.0333087i
\(677\) 10.0830 + 17.4643i 0.387521 + 0.671207i 0.992115 0.125327i \(-0.0399980\pi\)
−0.604594 + 0.796534i \(0.706665\pi\)
\(678\) 0 0
\(679\) 1.23987 + 2.14752i 0.0475819 + 0.0824142i
\(680\) 24.2288 0.929130
\(681\) 0 0
\(682\) 1.06275 1.84073i 0.0406947 0.0704852i
\(683\) 9.64575 16.7069i 0.369084 0.639273i −0.620338 0.784334i \(-0.713005\pi\)
0.989423 + 0.145061i \(0.0463380\pi\)
\(684\) 0 0
\(685\) 71.1660 2.71911
\(686\) 9.26013 + 16.0390i 0.353553 + 0.612372i
\(687\) 0 0
\(688\) 2.64575 + 4.58258i 0.100868 + 0.174709i
\(689\) −1.50000 + 2.59808i −0.0571454 + 0.0989788i
\(690\) 0 0
\(691\) 20.0203 + 34.6761i 0.761607 + 1.31914i 0.942022 + 0.335551i \(0.108922\pi\)
−0.180416 + 0.983590i \(0.557744\pi\)
\(692\) 22.2915 0.847396
\(693\) 0 0
\(694\) −0.228757 −0.00868348
\(695\) 40.5203 + 70.1831i 1.53702 + 2.66220i
\(696\) 0 0
\(697\) −7.82288 + 13.5496i −0.296313 + 0.513228i
\(698\) −9.46863 16.4001i −0.358393 0.620755i
\(699\) 0 0
\(700\) 10.9686 18.9982i 0.414575 0.718065i
\(701\) −12.0000 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(702\) 0 0
\(703\) −14.1144 + 24.4468i −0.532334 + 0.922029i
\(704\) 0.322876 0.559237i 0.0121688 0.0210770i
\(705\) 0 0
\(706\) 20.5830 0.774652
\(707\) 0 0
\(708\) 0 0
\(709\) −3.23987 5.61162i −0.121676 0.210749i 0.798753 0.601659i \(-0.205494\pi\)
−0.920429 + 0.390911i \(0.872160\pi\)
\(710\) 29.6974 51.4374i 1.11452 1.93041i
\(711\) 0 0
\(712\) 8.46863 + 14.6681i 0.317375 + 0.549710i
\(713\) 7.74902 0.290203
\(714\) 0 0
\(715\) −2.35425 −0.0880439
\(716\) −3.00000 5.19615i −0.112115 0.194189i
\(717\) 0 0
\(718\) −3.00000 + 5.19615i −0.111959 + 0.193919i
\(719\) 22.2915 + 38.6100i 0.831333 + 1.43991i 0.896982 + 0.442068i \(0.145755\pi\)
−0.0656489 + 0.997843i \(0.520912\pi\)
\(720\) 0 0
\(721\) −7.00000 + 12.1244i −0.260694 + 0.451535i
\(722\) 6.00000 0.223297
\(723\) 0 0
\(724\) −7.32288 + 12.6836i −0.272153 + 0.471382i
\(725\) 17.7915 30.8158i 0.660760 1.14447i
\(726\) 0 0
\(727\) −16.4575 −0.610375 −0.305188 0.952292i \(-0.598719\pi\)
−0.305188 + 0.952292i \(0.598719\pi\)
\(728\) 1.32288 + 2.29129i 0.0490290 + 0.0849208i
\(729\) 0 0
\(730\) 24.8745 + 43.0839i 0.920647 + 1.59461i
\(731\) 17.5830 30.4547i 0.650331 1.12641i
\(732\) 0 0
\(733\) −7.11438 12.3225i −0.262776 0.455141i 0.704203 0.709999i \(-0.251305\pi\)
−0.966978 + 0.254858i \(0.917971\pi\)
\(734\) −0.583005 −0.0215191
\(735\) 0 0
\(736\) 2.35425 0.0867788
\(737\) 2.44837 + 4.24070i 0.0901868 + 0.156208i
\(738\) 0 0
\(739\) 8.64575 14.9749i 0.318039 0.550860i −0.662040 0.749469i \(-0.730309\pi\)
0.980079 + 0.198609i \(0.0636423\pi\)
\(740\) −10.2915 17.8254i −0.378323 0.655275i
\(741\) 0 0
\(742\) 3.96863 + 6.87386i 0.145693 + 0.252347i
\(743\) 51.4575 1.88779 0.943897 0.330241i \(-0.107130\pi\)
0.943897 + 0.330241i \(0.107130\pi\)
\(744\) 0 0
\(745\) −12.8745 + 22.2993i −0.471685 + 0.816983i
\(746\) −7.32288 + 12.6836i −0.268110 + 0.464379i
\(747\) 0 0
\(748\) −4.29150 −0.156913
\(749\) 15.8745 27.4955i 0.580042 1.00466i
\(750\) 0 0
\(751\) 16.5830 + 28.7226i 0.605122 + 1.04810i 0.992032 + 0.125985i \(0.0402092\pi\)
−0.386910 + 0.922118i \(0.626457\pi\)
\(752\) 1.50000 2.59808i 0.0546994 0.0947421i
\(753\) 0 0
\(754\) 2.14575 + 3.71655i 0.0781437 + 0.135349i
\(755\) 22.1033 0.804420
\(756\) 0 0
\(757\) 26.6458 0.968456 0.484228 0.874942i \(-0.339100\pi\)
0.484228 + 0.874942i \(0.339100\pi\)
\(758\) 4.58301 + 7.93800i 0.166462 + 0.288321i
\(759\) 0 0
\(760\) −9.11438 + 15.7866i −0.330613 + 0.572639i
\(761\) 3.64575 + 6.31463i 0.132158 + 0.228905i 0.924508 0.381162i \(-0.124476\pi\)
−0.792350 + 0.610067i \(0.791143\pi\)
\(762\) 0 0
\(763\) 10.5830 0.383131
\(764\) 0 0
\(765\) 0 0
\(766\) 12.8745 22.2993i 0.465175 0.805707i
\(767\) −3.96863 + 6.87386i −0.143299 + 0.248201i
\(768\) 0 0
\(769\) 5.64575 0.203591 0.101795 0.994805i \(-0.467541\pi\)
0.101795 + 0.994805i \(0.467541\pi\)
\(770\) −3.11438 + 5.39426i −0.112234 + 0.194396i
\(771\) 0 0
\(772\) −9.46863 16.4001i −0.340783 0.590254i
\(773\) 20.1660 34.9286i 0.725321 1.25629i −0.233521 0.972352i \(-0.575025\pi\)
0.958842 0.283941i \(-0.0916420\pi\)
\(774\) 0 0
\(775\) −13.6458 23.6351i −0.490170 0.848999i
\(776\) 0.937254 0.0336455
\(777\) 0 0
\(778\) −7.70850 −0.276363
\(779\) −5.88562 10.1942i −0.210874 0.365245i
\(780\) 0 0
\(781\) −5.26013 + 9.11081i −0.188222 + 0.326010i
\(782\) −7.82288 13.5496i −0.279745 0.484533i
\(783\) 0 0
\(784\) 7.00000 0.250000
\(785\) 9.64575 0.344272
\(786\) 0 0